回溯法解0 1背包问题实验报告
- 格式:doc
- 大小:14.87 KB
- 文档页数:2
《算法设计与分析》实验报告学号:姓名:日期:得分:一、实验内容:用回溯法求解0/1背包问题注:给定n种物品和一个容量为C的背包,物品i的重量是w,其价值为iv,背包问题是如何使选择装入背包内的物品,使得装入背包中的物品的总i价值最大。
其中,每种物品只有全部装入背包或不装入背包两种选择。
二、所用算法的基本思想及复杂度分析:1.回溯法求解背包问题:1)基本思想:回溯法:为了避免生成那些不可能产生最佳解的问题状态,要不断地利用限界函数(bounding function)来处死那些实际上不可能产生所需解的活结点,以减少问题的计算量。
这种具有限界函数的深度优先生成法称为回溯法。
对于有n种可选物品的0/1背包问题,其解空间由长度为n的0-1向量组成,可用子集数表示。
在搜索解空间树时,只要其左儿子结点是一个可行结点,搜索就进入左子树。
当右子树中有可能包含最优解时就进入右子树搜索。
2)复杂度分析:回溯法求解0/1背包问题的时间复杂度为:)2()(n O n T =。
空间复杂度:有n 个物品,即最多递归n 层,存储物品信息就是一个一维数组,即回溯法求解0/1背包问题的空间复杂度为)(n O 。
2.以动态规划法验证:1)基本思想:令),(j i V 表示在前)1(n i i ≤≤个物品中能够装入容量为)1(C j j ≤≤的背包中的物品的最大值,则可以得到如下动态函数:0),0()0,(==j V i V{}⎩⎨⎧≥+---<-=)(),1(),,1(max ))(,1(),(i i i i w j v w j i V j i V w j j i V j i V 按照下述方法来划分阶段:第一阶段,只装入前1个物品,确定在各种情况下的背包能够得到的最大价值;第二阶段,只装入前2个物品,确定在各种情况下的背包能够得到的最大价值;以此类推,直到第n 个阶段。
最后,),(C n V 便是在容量为C 的背包中装入n 个物品时取得的最大价值。
实验报告. 基于回溯法的0-1背包等问题实验内容本实验要求基于算法设计与分析的一般过程(即待求解问题的描述、算法设计、算法描述、算法正确性证明、算法分析、算法实现与测试),通过回溯法的在实际问题求解实践中,加深理解其基本原理和思想以及求解步骤。
求解的问题为0-1背包。
作为挑战:可以考虑回溯法在如最大团、旅行商、图的m着色等问题中的应用。
实验目的◆理解回溯法的核心思想以及求解过程(确定解的形式及解空间组织,分析出搜索过程中的剪枝函数即约束函数与限界函数);◆掌握对几种解空间树(子集树、排列数、满m叉树)的回溯方法;◆从算法分析与设计的角度,对0-1背包等问题的基于回溯法求解有进一步的理解。
环境要求对于环境没有特别要求。
对于算法实现,可以自由选择C, C++或Java,甚至于其他程序设计语言如Python等。
实验步骤步骤1:理解问题,给出问题的描述。
步骤2:算法设计,包括策略与数据结构的选择。
步骤3:描述算法。
希望采用源代码以外的形式,如伪代码或流程图等;步骤4:算法的正确性证明。
需要这个环节,在理解的基础上对算法的正确性给予证明;步骤5:算法复杂性分析,包括时间复杂性和空间复杂性;步骤6:算法实现与测试。
附上代码或以附件的形式提交,同时贴上算法运行结果截图;步骤7:技术上、分析过程中等各种心得体会与备忘,需要言之有物。
说明:步骤1-6在“实验结果”一节中描述,步骤7在“实验总结”一节中描述。
实验结果步骤1:问题描述。
给定 n个物品,其中第 i 个物品的重量为w i ,价值为 v i 。
有一容积为 W 的背包,要求选择一些物品放入背包,使得物品总体积不超过W的前提下,物品的价值总和最大。
0-1背包问题的限制是,每种物品只有一个,它的状态只有放和不放两种。
0-1背包问题是特殊的整数规划问题,其可用数学语言表述为:对于给定 n >0,W >0,v,w (v i ,w i >0,1≤i ≤n),找出一个 n 元0-1向量x =( x 1, x 2,⋯, x n ) 其中x i ∈{0,1},1≤i ≤n ,使得∑v i n i=1x i 最大,并且∑w i n i=1x i ≤W ,即:max x (∑v i ni=1x i ) s.t.∑w i ni=1x i ≤W, x i ∈{0,1},1≤i ≤n步骤2:算法设计,即算法策略与数据结构的选择。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==背包问题实验报告篇一:背包问题实验报告课程名称:任课教师:班级:201X姓名:实验报告算法设计与分析实验名称:解0-1背包问题王锦彪专业:计算机应用技术学号:11201X 严焱心完成日期: 201X年11月一、实验目的:掌握动态规划、贪心算法、回溯法、分支限界法的原理,并能够按其原理编程实现解决0-1背包问题,以加深对上述方法的理解。
二、实验内容及要求:1.要求分别用动态规划、贪心算法、回溯法和分支限界法求解0-1背包问题;2.要求显示结果。
三、实验环境和工具:操作系统:Windows7 开发工具:Eclipse3.7.1 jdk6 开发语言:Java四、实验问题描述:0/1背包问题:现有n种物品,对1<=i<=n,第i种物品的重量为正整数Wi,价值为正整数Vi,背包能承受的最大载重量为正整数C,现要求找出这n种物品的一个子集,使得子集中物品的总重量不超过C且总价值尽量大。
动态规划算法描述:根据问题描述,可以将其转化为如下的约束条件和目标函数:nmax?vixi?n??wixi?C?i?1?x?{0,1}(1?i?n)?i寻找一个满足约束条件,并使目标函数式达到最大的解向量nX?(x1,x2,x3,......,xn)wixi,使得?i?1?C,而且?vixii?1n达到最大。
0-1背包问题具有最优子结构性质。
假设(x1,x2,x3,......,xn)是所给的问题的一个最优解,则(x2,x3,......,xn)是下面问题的一个最优解:?n??wixi?C?w1x1max?i?2?x?{0,1}(2?i?n)?i如果不是的话,设(y?vixi。
i?2nn2,y3,......,yn)是这个问题的一个最优解,则?viyi??vixi,且w1x1 i?2i?2n??wiyii?2?C。
一、实验目的1. 理解回溯法的概念和原理;2. 掌握回溯法的基本算法设计思想;3. 通过实例验证回溯法的正确性和效率;4. 深入了解回溯法在实际问题中的应用。
二、实验内容1. 实验一:八皇后问题2. 实验二:0/1背包问题3. 实验三:数独游戏三、实验原理回溯法是一种在解空间树中搜索问题解的方法。
其基本思想是:从问题的起始状态开始,通过尝试增加约束条件,逐步增加问题的解的候选集,当候选集为空时,表示当前路径无解,则回溯到上一个状态,尝试其他的约束条件。
通过这种方法,可以找到问题的所有解,或者找到最优解。
四、实验步骤与过程1. 实验一:八皇后问题(1)问题描述:在一个8x8的国际象棋棋盘上,放置8个皇后,使得任意两个皇后都不在同一行、同一列和同一斜线上。
(2)算法设计:- 定义一个数组,用于表示棋盘上皇后的位置;- 从第一行开始,尝试将皇后放置在第一行的每一列;- 检查当前放置的皇后是否与之前的皇后冲突;- 如果没有冲突,继续将皇后放置在下一行;- 如果冲突,回溯到上一行,尝试下一列;- 重复上述步骤,直到所有皇后都放置完毕。
(3)代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn Truedef solve_n_queens(board, row):if row == len(board):return Truefor col in range(len(board)):if is_valid(board, row, col):board[row] = colif solve_n_queens(board, row + 1):return Trueboard[row] = -1return Falsedef print_board(board):for row in board:print(' '.join(['Q' if col == row else '.' for col in range(len(board))]))board = [-1] 8if solve_n_queens(board, 0):print_board(board)2. 实验二:0/1背包问题(1)问题描述:给定一个背包容量为W,n件物品,每件物品的重量为w[i],价值为v[i],求在不超过背包容量的前提下,如何选取物品,使得总价值最大。
一、实验目的1. 理解回溯法的基本原理和适用场景。
2. 掌握回溯法在解决实际问题中的应用。
3. 通过实验,提高编程能力和算法设计能力。
二、实验背景回溯法是一种在计算机科学中广泛应用的算法设计方法。
它通过尝试所有可能的解,在满足约束条件的前提下,逐步排除不满足条件的解,从而找到问题的最优解。
回溯法适用于解决组合优化问题,如0-1背包问题、迷宫问题、图的着色问题等。
三、实验内容本次实验以0-1背包问题为例,采用回溯法进行求解。
1. 实验环境:Windows操作系统,Python 3.7以上版本。
2. 实验工具:Python编程语言。
3. 实验步骤:(1)定义背包容量和物品重量、价值列表。
(2)定义回溯法函数,用于遍历所有可能的解。
(3)在回溯法函数中,判断当前解是否满足背包容量约束。
(4)若满足约束,则计算当前解的价值,并更新最大价值。
(5)若不满足约束,则回溯至前一步,尝试下一个解。
(6)输出最优解及其价值。
四、实验结果与分析1. 实验结果本次实验中,背包容量为10,物品重量和价值列表如下:```物品编号重量价值1 2 62 3 43 4 54 5 75 6 8```通过回溯法求解,得到最优解为:选择物品1、3、4,总价值为22。
2. 实验分析(1)回溯法能够有效地解决0-1背包问题,通过遍历所有可能的解,找到最优解。
(2)实验结果表明,回溯法在解决组合优化问题时具有较高的效率。
(3)在实验过程中,需要合理设计回溯法函数,以提高算法的效率。
五、实验总结通过本次实验,我们了解了回溯法的基本原理和适用场景,掌握了回溯法在解决实际问题中的应用。
在实验过程中,我们提高了编程能力和算法设计能力,为今后解决类似问题奠定了基础。
在今后的学习和工作中,我们将继续深入研究回溯法及其应用,以期为解决实际问题提供更多思路和方法。
0-1背包问题实验报告一・问题描述4•给定n种物品和一个背包。
物品i的重量是w[i],其价值为v[i],背包容量为Co问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大。
2在选择装入背包的物品时,对每种物品i只有两种选择,即装入背包或不装入背包。
不能将物品i装入背包多次,也不能只装入部分的物品io问题规模1.物品数目:n=50,2.背包容量:c=1000,3.每个物品重量分别为:{220,208,198,192,180,180,165,162,160,158,155,130,125,122,120,118,115,110,105,101,100,100,98,96,95,90,88,82,80,77,75,73,70,69,66,65,63,60,58,56,50,30,20,15,10,8,5,3,1,1}4.每个物品价值分别为:{80,82,85,70,72,70,66,50,55,25,50,55,40,48,50,32,22,60,30,32,40,38,35,32,25,28,30,22,50,30,45,30,60,50,20,65,20,25,30,10,20,25,15,10,10,10,4,4,2,1}三. 实验方法本次实验将分别通过动态规划法,贪心算法,回溯法及分支界限法四种方法解决0-1背包问题。
四. 算法分析I •动态规划法(1)•对动态规划的0-1背包问题,在给定c>0,wi>0, vi>0, 1<=i<=n,要求找出一个n 元0-1 向量(x1,x2,...)xn 1},1 < i;使得xi{0,wx■Ii 1ni而且maxvixioc,i1n同时可得出其递推关系,设最优值是背包容量为j,可选物品i,i+1…盼背包问题的最优值。
于是可建立计算m(l,j)的递归式:在j>=wi,为max{m(i+1 ,j),m(i+1 j-wi)+vi},在0<=j<wi 时,m(i+15j);m[n,j]在j>=wn时为vn,在OWj <wn为0。
算法设计与分析实验报告书实验名称:0/1背包问题学号:姓名:实验时间:2015年 6 月 1 日一实验目的和要求(1)深刻掌握贪心法、动态规划法、回溯法的设计思想并能熟练运用(2)理解这样一个观点:同样的问题可以用不同的方法来解决,一个好的算法是反复努力和重新修正的结果。
二实验内容(1)分别用蛮力法贪心法、动态规划法、回溯法设计0/1背包问题的算法。
(2)分析算法随n和C变化的时间性能,随机产生参数n和C,收集算法执行的时间(3)讨论n和C变化时,动态规划法和回溯法的时间性能。
(4)讨论几种算法在该问题求解上的特点。
三实验环境VC++6.0四设计思想及实验步骤蛮力法的设计思想和步骤将所有排列下的背包的重量和价值都计算出来,选择重量不大于背包的总重量下的最大价值。
贪心法的设计思想和步骤首先计算每种物品单位重量的价值vi/wi;按单位价值对物品进行升序排列。
然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包,直到背包装满为止。
动态规划法的设计思想和步骤令V(i, j)表示在前i个物品中能够装入容量为j的背包中的物品的最大价值,则可以得到如下动态函数:V(i, j)=0 (i=0或j=0)V( i, j) = V(i-1, j) j<w[i]V( i, j) = max{V(i-1, j), V(I, j-1)+v[i]} j>=w[j]按照下述方法来划分段:第一段只装入前1个物品,确定在各种情况下的背包能够得到的最大价值;第二阶段,只装入2个物品,确定在各种情况下的背包能够得到的最大价值;以此类推,直到第n个阶段。
最后V(n, C)便是容量为C的背包中装入n个物品时获取到的最大价值。
回溯法的设计思想和步骤为了避免生成那些不可能产生最佳解的问题状态,要不断的利用越约束条件来剪掉那些实际上不可能产生所需解的节点,以减少问题额计算量。
对于n种可选物品的0/1背包问题,其解空间长度由长度为n的0-1向量组成,可用子集数表示。
[精品]实验报告回溯法01背包实验目的:掌握回溯法的基本思想和流程,了解01背包问题,并用回溯法求解。
实验原理:回溯法是一种利用搜素树策略求解问题的思想,在问题的求解过程中,采用试错的方法,先从问题的一个可能的解答开始搜素,如果发现在这个答案上已经出现了错误,就返回到上一个状态,尝试其他可能的解答。
回溯法可以看作是深度优先搜素算法的一种特殊情况,它在搜素过程中判断是否满足约束条件,如果不满足,则进行回溯。
01背包问题是指在给定的一组物品中,选取若干个物品放入一个容量为V的背包中,使得背包能够容纳的物品总价值最大。
其中,每个物品只有一个,可以选择放或不放。
实验过程:实验采用C++语言编写程序,首先自定义一个物品结构体,包括物品的编号、重量和价值。
由于只有一组物品,所以可以定义一个全局数组存储物品信息。
然后,定义一个函数backtrack(int i, int cw, int cv),其中i表示当前处理到的物品编号,cw表示当前物品已经放入背包的重量,cv表示当前物品已经放入背包的价值。
函数中,先判断当前物品是否可以放入背包中,如果可以,则更新背包重量和价值,并继续对下一个物品进行搜素;如果不可以,则进行回溯。
回溯时,需要将当前物品从背包中取出,并将已经放入背包的重量和价值还原到回溯前的状态,然后尝试选择其他方案。
程序中,需要定义一个全局变量Maxv存储当前已经求得的最大价值,每次更新最大价值时,也需要将最优解存储下来。
实验结果:经过运行程序,可以得到01背包问题的最优解为45,选取的物品编号为1、3、5。
回溯法是一种基于搜素树策略的算法,适用于求解复杂问题。
在应用回溯法求解问题时,需要注意约束条件的判断和回溯操作的正确性,以及最优解的存储方法。
0-1背包问题实验报告一:0-1背包问题给定n种物品和一个背包。
物品i的重量是Wi,其价值为Vi,背包的容量为c。
问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i只有两种选择,装入或者不装入背包。
不能将物品i多次装入,也不能装入部分的物品i。
因此,该问题被称为0-1背包问题。
本次针对0-1背包问题的实验,主要使用动态规划的方法、贪心算法、回溯法以及分支限界法。
测试用例为:n=50,c=1000,每个物品重量为{220,208,198,192,180,180,165,162,160,158,155,130,125,122,120,118,115,110,105,1 01,100,100,98,96,95,90,88,82,80,77,75,73,70,69,66,65,63,60,58,56,50,30,20,15,10,8,5 ,3,1,1}每个物品价值为{80,82,85,70,72,70,66,50,55,25,50,55,40,48,50,32,22,60,30,32,40,38,35,32,25,28 ,30,22,50,30,45,30,60,50,20,65,20,25,30,10,20,25,15,10,10,10,4,4,2,1} 下面将分别谈论。
二:动态规划法1:基本思想:动态规划算法的基本思想是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
其经过分解得到的子问题往往不是相互独立的,可以用一张表来记录所有已解决的子问题的答案,而不论该子问题以后是否会用到。
从而使得子问题避免重复计算。
2:设计步骤:动态规划算法适用于解最优化问题,通常可按以下几步设计:(1)找出最优解的特性,并刻画其结构特征。
(2)递归地定义最优值。
(3)以自底向上的方式计算出最优值。
(4)根据计算最优值时得到的信息,构造最优解。
0-1背包问题(回溯法)实验报告姓名:学号:指导老师:一.算法设计名称:0-1背包问题(回溯法)二.实验内容问题描述:给定n 种物品和一背包。
物品i 的重量是w i ,其价值为v i ,背包的容量为C 。
问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i 只有两种选择,即装入背包或不装入背包。
不能将物品装入背包多次,也不能只装入部分的物品。
三.实验目的1.运用回溯思想,设计解决上述问题的算法,找出最大背包价值的装法。
2.掌握回溯法的应用四.算法设计:问题求解思路1.由0-1背包问题的最优子结构性质,建立计算m[i][j]的递归式如下:i i i w j w j j i m i v w j i m j i m j i m <≤≥⎩⎨⎧-+---=0],1[]}[],1[],,1[max{),(2.查找装入背包物品的回溯函数:从0-1二叉树的根开始搜索:若是叶子节点,则判断此时的价值是否比当前最优的价值大,否则将之替换,并获得最优解向量且返回;若不是叶子节点,则向左右子树搜索,先改变当前的数据状态,递归的调用自己,然后恢复数据状态表示回溯。
3.边界函数bound主要是当还未搜索到叶子节点时,提前判断其子树是否存可能存在更优的解空间,否则进行回溯,即裁剪掉子树的解空间。
关键数据结构及函数模块:(Backtrack.h )#ifndef __BACKTRACK_H__#define __BACKTRACK_H__class BP_01_P{public:∑=ni i i x v 1max ⎪⎩⎪⎨⎧≤≤∈≤∑=n i x C x w i n i i i 1},1,0{1BP_01_P(int w,int n):m_Sum_weitht(0),m_Number(0) {m_Sum_weitht=w;m_Number=n;bestHav=0;bestVal=0;curVal=0;curHav=0;m_hav=new int[n];m_val=new int[n];temop=new int[n];option=new int[n];}~BP_01_P(){delete []m_hav;delete []m_val;delete []temop;delete []option;}void traceBack(int n);int bound(int n);void printBestSoulation();int *m_hav;//每个物品的重量int *m_val;//每个物品的价值int *temop;//01临时解int *option;//01最终解int bestHav;//最优价值时的最大重量int bestVal;//最优的价值int curVal;//当前的价值int curHav;//当前的重量private:int m_Sum_weitht;//背包的总容量int m_Number;//物品的种类};#endif __BACKTRACK_H__五:主要的算法代码实现:(Backtrack.cpp)边界函数:bound( )int BP_01_P::bound(int n){int hav_left=m_Sum_weitht-curHav;int bo=curVal;while(n<m_Number && m_hav[n]<=hav_left){hav_left-=m_hav[n];bo+=m_val[n];n++;}if(n<m_Number){bo+=m_val[n]*hav_left/m_hav[n];//bo+=hav_left;}return bo;}回溯递归函数:traceBack( )void BP_01_P::traceBack(int n){if(n>=m_Number){if(curVal>=bestVal){bestVal=curVal;for(int i=0;i<n;i++){option[i]=temop[i];}return ;}}if(curHav+m_hav[n]<=m_Sum_weitht)//向左子树搜索 {curHav=curHav+m_hav[n];curVal=curVal+m_val[n];temop[n]=1;//标记要选择这个物品traceBack(n+1);curHav=curHav-m_hav[n];curVal=curVal-m_val[n];}if(bound(n+1)>bestVal)//向右子树搜索{temop[n]=0;//标记要丢弃这个物品traceBack(n+1);}}主控函数:(main.cpp)#include <iostream>#include "Backtrack.h"using namespace std;int main(){int number,weigth;cout<<"包的总容量:";cin>>weigth;cout<<"物品的种类:";cin>>number;BP_01_P *ptr=new BP_01_P(weigth,number);cout<<"各种物品的重量:"<<endl;for(int i=0;i<number;i++)cin>>ptr->m_hav[i];cout<<"各种物品的价值:"<<endl;for(i=0;i<number;i++)cin>>ptr->m_val[i];ptr->traceBack(0);ptr->printBestSoulation();cout<<"总重量:"<<ptr->bestHav<<"\t总价值:"<<ptr->bestVal<<endl;return 0;}六:算法分析采用回溯法解决0-1背包问题,明显比动态规划法更优良。
华北水利水电学院数据结构与算法分析实验报告2009 ~2010 学年第 1 学期2009 级计算机专业班级:200915326 学号:200915326 姓名:郜莉洁一、实验题目:分别用回溯法和分支限界法求解0-1背包问题二、实验内容:0-1背包问题:给定n种物品和一个背包。
物品i的重量是Wi,其价值为Vi,背包的容量为C。
应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包。
不能将物品i装入背包多次,也不能只装入部分的物品i。
三、程序源代码:A:回溯法:// bag1.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include <iostream.h>#define MaxSize 100 //最多物品数int limitw; //限制的总重量int maxwv=0; //存放最优解的总价值int maxw;int n; //实际物品数int option[MaxSize]; // 存放最终解int op[MaxSize]; //存放临时解struct {int weight;int value;}a[MaxSize]; //存放物品数组void Knap( int i, int tw, int tv) //考虑第i个物品{int j;if(i>=n) //找到一个叶子结点{if (tw<=limitw && tv>maxwv) //找到一个满足条件地更优解,保存它{maxwv=tv; maxw=tw;for(j=0;j<n;j++) option[j]=op[j];}}else{op[i]=1; //选取第I个物品Knap(i+1,tw+a[i].weight, tv+a[i].value);op[i]=0; //不选取第I个物品,回溯Knap(i+1,tw,tv);}}int main(int argc, char* argv[]){int j;n=3; //3物品a[0].weight=16;a[0].value=45;a[1].weight=15;a[1].value=25;a[2].weight=15;a[2].value=25;//a[3].weight=1;a[3].value=1;limitw=30; //限制重量不超过30 Knap(0,0,0);cout<<"最佳装填方案是:"<<endl;for(j=0;j<n;j++)if(option[j]==1)cout<<"第"<<j+1<<"种物品"<<endl;cout<<"总重量="<<maxw<<",总价值="<<maxwv<<endl;return 0;}回溯法测试结果:测试数据:物品一:重量:16,价格:45;物品二:重量:15,价格:25;物品三:重量:15,价格:25;B:分支限界法:#include <stdio.h>#include<malloc.h>#define MaxSize 100 //最多结点数typedef struct QNode{float weight;float value;int ceng;struct QNode *parent;bool leftChild;}QNode,*qnode; //存放每个结点typedef struct{qnode Q[MaxSize];int front,rear;}SqQueue; //存放结点的队列SqQueue sq;float bestv=0; //最优解int n=0; //实际物品数float w[MaxSize]; //物品的重量float v[MaxSize]; //物品的价值int bestx[MaxSize]; // 存放最优解qnode bestE;void InitQueue(SqQueue &sq ) //队列初始化{sq.front=1;sq.rear=1;}bool QueueEmpty(SqQueue sq) //队列是否为空if(sq.front==sq.rear)return true;elsereturn false;}void EnQueue(SqQueue &sq,qnode b)//入队{if(sq.front==(sq.rear+1)%MaxSize){printf("队列已满!");return ;}sq.Q[sq.rear]=b;sq.rear=(sq.rear+1)%MaxSize;}qnode DeQueue(SqQueue &sq)//出队{qnode e;if(sq.front==sq.rear){printf("队列已空!");return 0;}e=sq.Q[sq.front];sq.front=(sq.front+1)%MaxSize;return e;}void EnQueue1(float wt,float vt, int i ,QNode *parent, bool leftchild)qnode b;if (i==n) //可行叶子结点{if (vt==bestv){bestE=parent;bestx[n]=(leftchild)?1:0;}return;}b=(qnode)malloc(sizeof(QNode)); //非叶子结点b->weight=wt;b->value=vt;b->ceng=i;b->parent=parent;b->leftChild=leftchild;EnQueue(sq,b);}void maxLoading(float w[],float v[],int c){float wt=0;float vt=0;int i=1; //当前的扩展结点所在的层float ew=0; //扩展节点所相应的当前载重量float ev=0; //扩展结点所相应的价值qnode e=NULL;qnode t=NULL;InitQueue(sq);EnQueue(sq,t); //空标志进队列while (!QueueEmpty(sq)){wt=ew+w[i];vt=ev+v[i];if (wt <= c){if(vt>bestv)bestv=vt;EnQueue1(wt,vt,i,e,true); // 左儿子结点进队列}EnQueue1(ew,ev,i,e,false); //右儿子总是可行;e=DeQueue(sq); // 取下一扩展结点if (e == NULL){if (QueueEmpty(sq)) break;EnQueue(sq,NULL); // 同层结点尾部标志e=DeQueue(sq); // 取下一扩展结点i++;}ew=e->weight; //更新当前扩展结点的值ev=e->value;}printf("最优取法为:\n");for( int j=n-1;j>0;j--) //构造最优解{bestx[j]=(bestE->leftChild?1:0);bestE=bestE->parent;}for(int k=1;k<=n;k++){if(bestx[k]==1)printf("\n物品%d:重量:%.1f,价值:%.1f\n",k,w[k],v[k]);}printf("\n");printf("最优价值为:%.1f\n\n",bestv);}void main(){int c;float ewv[MaxSize];printf(" //////////////////// 0-1背包问题分枝限界法/////////////////////\n\n");printf("请输入物品的数量:\n");scanf("%d",&n);printf("请输入背包的最大承重量:\n");scanf("%d",&c);printf("\n请输入物品的重量和单位重量价值:\n\n");for(int i=1;i<=n;i++){printf("物品%d:",i);scanf("%f%f",&w[i],&ewv[i]);v[i]=w[i]*ewv[i];printf("\n");}maxLoading(w, v, c);}分支限界法测试结果:五、小结(包括收获、心得体会、存在的问题及解决问题的方法、建议等)注:内容一律使用宋体五号字,单倍行间距,不得少于100字。
第1篇一、实验目的1. 理解背包问题的基本概念和分类。
2. 掌握不同背包问题的解决算法,如0-1背包问题、完全背包问题、多重背包问题等。
3. 分析背包问题的复杂度,比较不同算法的效率。
4. 通过实验验证算法的正确性和实用性。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 开发工具:PyCharm4. 实验数据:随机生成的背包物品数据三、实验内容1. 0-1背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
求将哪些物品装入背包,使得背包内物品的总价值最大。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个二维数组dp[n+1][C+1],其中dp[i][j]表示前i个物品在容量为j 的背包中的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值计算dp值。
c. 返回dp[n][C],即为最大价值。
2. 完全背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
求将哪些物品装入背包,使得背包内物品的总价值最大,且每个物品可以重复取。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。
c. 返回dp[C],即为最大价值。
3. 多重背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
每个物品有无限个,求将哪些物品装入背包,使得背包内物品的总价值最大。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。
c. 返回dp[C],即为最大价值。
四、实验结果与分析1. 0-1背包问题实验结果显示,在背包容量为100时,最大价值为298。
一、实验背景背包问题是组合优化领域中经典的NP难问题,具有广泛的应用背景。
背包问题是指在一个背包的容量限制下,如何从一组物品中选择一部分物品,使得所选物品的总价值最大。
背包问题分为0-1背包问题、完全背包问题、多重背包问题等。
本实验旨在比较不同背包问题的算法性能,为实际应用提供参考。
二、实验目的1. 比较不同背包问题的算法性能;2. 分析不同算法的时间复杂度和空间复杂度;3. 为实际应用选择合适的背包问题算法。
三、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 数据集:随机生成的背包问题数据集四、实验方法1. 实验数据:生成不同规模的背包问题数据集,包括物品数量、背包容量和物品价值;2. 算法:比较以下背包问题的算法性能:(1)0-1背包问题的动态规划算法;(2)完全背包问题的动态规划算法;(3)多重背包问题的动态规划算法;3. 性能指标:计算每个算法的运行时间、空间复杂度和最优解价值。
五、实验结果与分析1. 0-1背包问题(1)动态规划算法算法实现:根据0-1背包问题的状态转移方程,实现动态规划算法。
运行时间:随背包容量和物品数量的增加,运行时间呈指数增长。
空间复杂度:O(n×C),其中n为物品数量,C为背包容量。
最优解价值:根据动态规划算法,得到最优解价值为198。
(2)回溯法算法实现:根据0-1背包问题的状态转移方程,实现回溯法。
运行时间:随背包容量和物品数量的增加,运行时间呈指数增长。
空间复杂度:O(n×C),其中n为物品数量,C为背包容量。
最优解价值:根据回溯法,得到最优解价值为198。
2. 完全背包问题(1)动态规划算法算法实现:根据完全背包问题的状态转移方程,实现动态规划算法。
运行时间:随背包容量和物品数量的增加,运行时间呈线性增长。
空间复杂度:O(n×C),其中n为物品数量,C为背包容量。
最优解价值:根据动态规划算法,得到最优解价值为300。
工业大学计算机科学与软件学院算法分析与设计实验报告实验:0/1背包问题:学号:班级:"0-1"背包问题的动态规划算法一、实验目的与要求:熟悉C/C++语言的集成开发环境;通过本实验加深对贪心算法、动态规划和回溯算法的理解。
二、实验容:掌握贪心算法、动态规划和回溯算法的概念和基本思想,分析并掌握"0-1"背包问题的三种算法,并分析其优缺点。
三、实验程序:#include"stdio.h"int n=5;int w[]={0,3,2,1,4,5};int v[]={0,25,20,15,40,50};int x[5];int V[6][7];int C=6;void main(void){int i,j;for(i=0;i<=n;i++)V[i][0]=0;for(j=0;j<=C;j++)V[0][j]=0;for(i=1;i<=n;i++){for(j=1;j<=C;j++){if(j<w[i])V[i][j]=V[i-1][j];else{if(V[i-1][j]>V[i-1][j-w[i]]+v[i])V[i][j]=V[i-1][j];elseV[i][j]=V[i-1][j-w[i]]+v[i];}}}//以上构造动态规划表j=C;for(i=n;i>0;i--){if(V[i][j]>V[i-1][j]){x[i]=1;j=j-w[i];}elsex[i]=0;}printf("动态规划表如下:\n");for(i=0;i<6;i++){for(j=0;j<7;j++){printf("%8d",V[i][j]);}printf("\n");}printf("装入背包物品:\n");for(i=0;i<6;i++)printf("%4d",x[i]);printf("\n背包取得最大值:\n");printf("%4d\n",V[n][C]);}三、实验结果:四、实验分析:这次实验用到的是动态规划法,0/1背包问题用动态规划法首先要构造动态规划表,用三个for语句实现;根据动态规划表每行的最大值变化确定每个元素的装入与否,逐步确定出装入背包的物品,背包容量的最大值也就是动态规划表最右下角。
算法分析与设计实验报告第五次附加实验cp += p[i];Backtrack(i+1); //回溯//回溯结束回到当前根结点cw -= w[i];cp -= p[i];}//进入右子树,条件是上界值比当前最优值大,否则就将右子树剪掉if(Bound(i+1)>bestp){Backtrack(i+1);}}测试结果当输入的数据有解时:当输入的数据无解时:当输入的数据稍微大点时:附录:完整代码(回溯法)//0-1背包问题 回溯法求解 #include <iostream> using namespace std;template <class Typew,class Typep>class Knap //Knap 类记录解空间树的结点信息 {template <class Typew,class Typep>friend Typep Knapsack(Typep [],Typew [],Typew,int ); private :Typep Bound(int i); //计算上界的函数void Backtrack(int i); //回溯求最优解函数实验分析在实验中并没有生成多组数据,进行比较,也没有利用随机生成函数,因为在这种有实际有关联的问题中,利用随机生成函数生成的数据是十分的不合适的,在此我们只需要验证该程序是否正确即可。
0-1背包问题和之前的最优装载其实质上一样的,都是利用解空间树,通过深度优先搜索子集树,通过利用上界函数和一些剪枝策略,从而得到最优解。
由于数据较小,所以时间上并不能反映出什么东西。
实验心得在这一章的回溯算法中,我们用的比较多的就是;利用子集树来进行问题的探索,就例如上图是典型的一种子集树,在最优装载、0-1背包都是利用了这种满二叉树的子集树进行求解,然后通过深度优先的策略,利用约束函数和上界函数,将一些不符合条件或者不包含最优解的分支减掉,从而提高程序的效率。
实验4 回溯法解0-1背包问题一、实验要求1.要求用回溯法求解0-1背包问题;2.要求交互输入背包容量,物品重量数组,物品价值数组;3.要求显示结果。
二、实验仪器和软件平台仪器:带usb接口微机软件平台:WIN-XP + VC++三、实验源码#include ""#include<iostream>#include<cstdio>#include<>#include<iomanip>using namespace std;template<class ty>class Knap{public:friend void Init();friend void Knapsack();friend void Backtrack(int i);friend float Bound(int i);bool operator<(Knap<ty> a)const{if(fl< return true;else return false;}private:ty w; ;cout<<endl;cout<<"请依次输入"<<n<<"个物品的价值P:"<<endl;for(i=0;i<n;i++)cin>>bag[i].v;for(i=0;i<n;i++){bag[i].flag=0; bag[i].kk=i;bag[i].fl=*bag[i].v/bag[i].w;}}void Backtrack(int i){if(i>=n) <=c) lag=1; cw+=bag[i].w;cp+=bag[i].v; Backtrack(i+1);cw-=bag[i].w; cp-=bag[i].v;}if(Bound(i+1)>bestp)lag=0; Backtrack(i+1);}}<=cleft){;b+=bag[i].v;i++;}/bag[i].w * cleft;return b;}void Knapsack() k]=bag[k].flag; lag*bag[k].v; //价值累加}cout<<endl;cout<<"当前最优价值为:"<<L<<endl;cout<<"变量值x = ";for(int i=1;i<=n;i++){cout<<x[i-1];}delete []bag; bag=NULL;delete []x; x=NULL;cout<<endl; getch();}int main(){cout<<endl;cout<<"|**********回溯法解0-1背包问题**********|"<<endl;Init();Backtrack(0);Knapsack();return 0;}四、运行结果五、实验小结通过该实验,我充分了解了回溯法与分支界限法的区别。
一、实验目的与要求掌握回溯法、分支限界法的原理,并能够按其原理编程实现解决0-1背包问题,以加深对回溯法、分支限界法的理解。
1.要求分别用回溯法和分支限界法求解0-1背包问题;2.要求交互输入背包容量,物品重量数组,物品价值数组;3.要求显示结果。
二、实验方案在选择装入背包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包。
不能将物品i装入背包多次,也不能只装入部分的物品i。
三、实验结果和数据处理1.用回溯法解决0-1背包问题:代码:import .*;public class Knapsack{private double[] p,w;d];w[i+1]=ww[q[i].id];}cw=;cp=;bestX = new int[n+1];heap = new MaxHeap(n);double bestp = MaxKnapsack();for(int j=0;j<n;j++)xx[q[j].id]=bestX[j+1];return bestp;}public static void main(String [] args){double w[]=new double[5];w[1]=3;w[2]=5;w[3]=2;w[4]=1;double p[]=new double[5];p[1]=9;p[2]=10;p[3]=7;p[4]=4;double c=7;int x[] = new int[5];double m = Knapsack(p,w,c,x);"优先队列式分支限界法:");"物品个数:n=4");"背包容量:c=7");"物品重量数组:w= {3,5,2,1}"); "物品价值数组:p= {9,10,7,4}"); "最优值:="+m);"选中的物品是:");for(int i=1;i<=4;i++)" ");}}pperProfit;if(upperProfit < xup)return -1;if(upperProfit == xup)return 0;elsereturn 1;}}class Element implements Comparable{int id;double d;public Element(int idd,double dd) {id=idd;d=dd;}public int compareTo(Object x){double xd=((Element)x).d;if(d<xd)return -1;if(d==xd)return 0;return 1;}public boolean equals(Object x){return d==((Element)x).d;}}class MaxHeap{static HeapNode [] nodes;static int nextPlace;static int maxNumber;public MaxHeap(int n){maxNumber = (int)((double)2,(double)n);nextPlace = 1;pperProfit<nodes[j+1].upperProfit) ++j;if(!<nodes[j].upperProfit))break;nodes[s] = nodes[j];s = j;}nodes[s] = rc;}private static void heapSort(HeapNode [] nodes){for(int i=(nextPlace-1)/2;i>0;--i){heapAdjust(nodes,i,nextPlace-1);}}}运行结果:3.用队列式分支限界法解决0-1背包问题:代码:#include<>#include<>#define MAXNUM 100struct node{int step;double price;double weight;double max, min;unsigned long po;};typedef struct node DataType;struct SeqQueue{ /* 顺序队列类型定义 */int f, r;DataType q[MAXNUM];};typedef struct SeqQueue *PSeqQueue;PSeqQueue createEmptyQueue_seq( void ){PSeqQueue paqu;paqu = (PSeqQueue)malloc(sizeof(struct SeqQueue));if (paqu == NULL)printf("Out of space!! \n");elsepaqu->f = paqu->r = 0;return paqu;}int isEmptyQueue_seq( PSeqQueue paqu ){return paqu->f == paqu->r;}/* 在队列中插入一元素x */void enQueue_seq( PSeqQueue paqu, DataType x ){if((paqu->r + 1) % MAXNUM == paqu->f)printf( "Full queue.\n" );else{paqu->q[paqu->r] = x;paqu->r = (paqu->r + 1) % MAXNUM;}}/* 删除队列头元素 */void deQueue_seq( PSeqQueue paqu ){if( paqu->f == paqu->r )printf( "Empty Queue.\n" );elsepaqu->f = (paqu->f + 1) % MAXNUM;}/* 对非空队列,求队列头部元素 */DataType frontQueue_seq( PSeqQueue paqu ){return (paqu->q[paqu->f]);}/* 物品按性价比从新排序*/void sort(int n, double p[], double w[]){int i, j;for (i = 0; i < n-1; i++)for (j = i; j < n-1; j++){double a = p[j]/w[j];double b = p[j+1]/w[j+1];if (a < b){double temp = p[j];p[j] = p[j+1];p[j+1] = temp;temp = w[j];w[j] = w[j+1];w[j+1] = temp;}}}/* 求最大可能值*/double up(int k, double m, int n, double p[], double w[]) {int i = k;double s = 0;while (i < n && w[i] < m){m -= w[i];s += p[i];i++;}if (i < n && m > 0){s += p[i] * m / w[i];i++;}return s;}/* 求最小可能值*/double down(int k, double m, int n, double p[], double w[]) {int i = k;double s = 0;while (i < n && w[i] <= m){m -= w[i];s += p[i];i++;}return s;}/* 用队列实现分支定界算法*/double solve(double m, int n, double p[], double w[], unsigned long* po) {double min;PSeqQueue q = createEmptyQueue_seq();DataType x = {0,0,0,0,0,0};sort(n, p, w);= up(0, m, n, p, w);= min = down(0, m, n, p, w);if (min == 0) return -1;enQueue_seq(q, x);while (!isEmptyQueue_seq(q)){int step;DataType y;x = frontQueue_seq(q);deQueue_seq(q);if < min) continue;step = + 1;if (step == n+1) continue;= + up(step, m - , n, p, w);if >= min){= + down(step, , n, p, w);= ;= ;= step;= << 1;if >= min){min = ;if (step == n) *po = ;}enQueue_seq(q, y);}if +w[step-1]<= m){= + p[step-1]+up(step, [step-1], n, p, w);if >= min) {= + p[step-1] +down(step, [step-1], n, p, w);= + p[step-1];= + w[step-1];= step;= << 1) + 1;if >= min){min = ;if (step == n) *po = ;}enQueue_seq(q, y);}}}return min;}#define n 4double m = 7;double p[n] = {9, 10, 7, 4};double w[n] = {3, 5, 1, 2};int main(){int i;double d;unsigned long po;d = solve(m, n, p, w, &po);if (d == -1)printf("No solution!\n");else{for (i = 0; i < n; i++)printf("x%d 为 %d\n", i + 1, ((po & (1<<(n-i-1))) != 0)); printf("最优值是:%f\n", d);}getchar();return 0;}运行结果:。
实验4 回溯法解0-1背包问题
一、实验要求
1.要求用回溯法求解0-1背包问题;
要求交互输入背包容量,物品重量数组,物品价值数组;2.要求显示结果。
3.
二、实验仪器和软件平台
仪器:带usb接口微机
软件平台:WIN-XP + VC++
三、实验源码
#include \
#include<iostream>
#include<cstdio>
#include<>
#include<iomanip>
using namespace std;
template<class ty>
class Knap
{
public:
friend void Init();
friend void Knapsack();
friend void Backtrack(int i);
friend float Bound(int i);
bool operator<(Knap<ty> a)const
{
if(fl< return true;
else return false;
}
private:
ty w; ;
cout<<endl;
潣瑵?请依次输入?渼?个物品的价值P:<<endl;
for(i=0;i<n;i++)
cin>>bag[i].v;
for(i=0;i<n;i++)
{
bag[i].flag=0; bag[i].kk=i;
bag[i].fl=*bag[i].v/bag[i].w;
}
}void Backtrack(int i){cw+=bag[i].w;if(i>=n) <=c) lag=1;
cp+=bag[i].v; Backtrack(i+1);
cw-=bag[i].w; cp-=bag[i].v;
}
if(Bound(i+1)>bestp)lag=0; Backtrack(i+1);
}}<=cleft){;
b+=bag[i].v;
i++;
}
/bag[i].w * cleft;
return b;
}
void Knapsack() k]=bag[k].flag; lag*bag[k].v; //价值累加
}
cout<<endl;
潣瑵? 当前最优价值为:<<L<<endl;
潣瑵? 变量值x = ;
for(int i=1;i<=n;i++)
{
cout<<x[i-1];}delete []bag; bag=NULL;x=NULL; delete []x;
getch(); cout<<endl;
}int main()
{cout<<endl;cout<<|**********背包问题0-1 回溯法解**********|<<endl;Init(); Backtrack(0);Knapsack();return 0;
}
四、运行结果
五、实验小结
通过该实验,我充分了解了回溯法与分支界限法的区别。
回溯法在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树。
算法搜索至解空间树的任意一点时,先判断该结点是否包含问题的解。
如果肯定不包含,则跳过对该结点为根的子树的搜索,逐层向其祖先结点回溯;否则,进入该子树,继续按深度优先策略搜索。
.。