北师大版七年级数学下册 第四章知识点汇总(全)
- 格式:doc
- 大小:28.00 KB
- 文档页数:3
(完整版)北师大版七年级数学下册第四章知识点汇总(全)北师大版七年级数学下册第四章知识点汇总(全)1. 相似与全等在数学中,相似与全等是两个重要的概念。
相似指的是两个对象在形状上相似,但可能在大小上不同。
全等则表示两个对象在形状和大小上完全相同。
在判断两个图形相似或全等时,我们需要注意三个方面:对应边相等、对应角相等、对应边与对应角的对应关系。
2. 直角三角形直角三角形是一种特殊的三角形,其中一个角是直角(90度角)。
直角三角形有一些重要的性质:直角三角形的斜边是其他两个边的最长边;直角三角形的两条直角边的平方和等于斜边的平方,即勾股定理。
3. 锐角三角形与钝角三角形除了直角三角形,三角形还可以根据角的大小分为锐角三角形和钝角三角形。
锐角三角形中的三个角都是锐角(小于90度),钝角三角形中的三个角都是钝角(大于90度)。
4. 勾股数勾股数是指满足勾股定理的三个正整数。
例如,3、4、5就是一个勾股数,因为3²+4²=5²。
在求解勾股数时,我们可以用穷举法、勾股数公式等方法。
5. 颞角与补角在数学中,互为补角的两个角的度数之和等于90度,互为颉角的两个角的度数之和等于180度。
当我们知道一个角的度数时,可以求解它的补角或颉角。
6. 直角三角形的应用直角三角形在几何学中有广泛的应用。
例如,我们可以利用直角三角形的性质计算三角形的面积、边长、角度等问题。
直角三角形还可以用于解决实际问题,如测量高度、距离等。
7. 图形的扩大与缩小图形的扩大与缩小是数学中的一个重要概念。
当我们将一个图形按照比例进行放大或缩小时,图形的形状保持不变,只是大小发生改变。
在进行图形的扩大与缩小时,我们需要注意比例尺和变化的方向。
8. 相似三角形的性质相似三角形有一些重要的性质:相似三角形的对应角相等,对应边的比例相等。
利用相似三角形的性质,我们可以进行一些复杂的几何证明和计算。
9. 图形的旋转图形的旋转是指将一个图形按照某个点为中心进行旋转。
北师大版《数学》(七年级下册)知识点总结第一章整式的运算 组长检查签名 _________ 家长检查签名_________一. 整式※1. 单项式①由数与字母的积组成的代数式叫做单项式。
单独一个数或字母也是单项式。
②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.③一个单项式中,所有字母的指数和叫做这个单项式的次数.※2.多项式①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数. ②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.※3.整式单项式和多项式统称为整式.⎪⎩⎪⎨⎧⎩⎨⎧其他代数式多项式单项式整式代数式二. 整式的加减1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三. 同底数幂的乘法※同底数幂的乘法法则: n m n m a a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n m a a a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m n m a a a ⋅=+(m 、n 均为正整数)四.幂的乘方与积的乘方※1. 幂的乘方法则:mn n m a a =)((m,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.),()()(都为正数n m a a a mn m n n m ==.在应用时需要注意以下几点:(1) 底数有负号时,运算时要注意,底数是a 与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成-a 3⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n(2)底数有时形式不同,但可以化成相同。
完整版北师大版七年级数学下册第四章知识点汇总全第四章:有理数本章主要介绍有理数的概念和有理数的加法、减法运算,以及简单的有理数绝对值的计算等。
1. 有理数的概念有理数是可以用两个整数的比表示的数,包括整数、分数和小数。
有理数包括正有理数、零和负有理数。
2. 有理数的表示与比较有理数可以用数轴上的点来表示,数轴上的原点表示0,正有理数在原点的右侧,负有理数在原点的左侧。
比较有理数时,比较它们在数轴上所对应的位置。
3. 有理数的加法有理数的加法遵循以下规律:- 两个正数相加,结果为正数。
- 两个负数相加,结果为负数。
- 正数与负数相加,结果取正数的绝对值大的符号。
4. 有理数的减法有理数的减法可以转化为加法进行计算,即被减数加上减数的相反数。
5. 有理数的绝对值一个数的绝对值是它到0的距离,有理数的绝对值总是非负的。
计算绝对值时,去掉符号。
6. 有理数的乘法有理数的乘法遵循以下规律:- 同号相乘,结果为正数。
- 异号相乘,结果为负数。
7. 有理数的除法有理数的除法可以转化为乘法进行计算,即被除数乘以除数的倒数。
8. 混合运算混合运算是指有理数的加、减、乘、除等运算混合在一起进行,按照运算的优先级和规定的顺序进行计算。
9. 约分与化简约分是指将一个分数的分子和分母同时除以一个相同的数,使分数的值保持不变。
化简是指将一个分数做最简形式的处理。
10. 小数与分数的相互转化小数可以用分数表示,分子是小数点后的数字,分母是1后面有多少个0。
分数可以用小数表示,将分子除以分母,得到一个有限小数或无限循环小数。
11. 各种数的性质和运算法则有理数的性质和运算法则可以帮助我们更好地理解和应用有理数,包括交换律、结合律、分配律等。
以上就是完整版北师大版七年级数学下册第四章有理数的知识点汇总。
通过学习这些知识点,可以更好地掌握有理数的概念、运算规律以及与其他数的关系,为以后的数学学习打下坚实的基础。
北师大版《数学》(七年级下册)知识点总结第一章整式的运算1整式运算单项式多项式同底数幂的乘法幂的乘方积的乘方同底数幂的除法零指数幂负指数幂整式的加减整式的乘法整式的除法单项式与单项式相乘单项式与多项式相乘多项式与多项式相乘平方差公式究全平方公式单项式除以单项式多项式除以单项式一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
二、多项式1、多项式、多项式的次数、项几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做_项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式:单项式和多项式统称为整式。
四、整式的加减法:整式加减法的一般步骤:(1〉去括号;(2〉合并同类项。
五、幂的运算性质:1、同底数幂的乘法:• a^a^m.n都是正整数〉;2、幂的乘方:(a m)n =a mn<m,n都是正整数〉;3、积的乘方:(ab)n=a n b n(n都是正整数〉;4、同底数幂的除法:a m-ba n=a ffrn(m,n都是正整数,a^0);六、孝幕和负整数^幂:1、零指数幂:a°=l (a彡0);2、负整数指数幂:a-p=±(a^o)p是正整数。
七、整式的乘除法:1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、P是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
3、多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除卮,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
第四章三角形三角形三角形三边关系三角形内角和定理三条重要线段角平分线中线高线全等图形的概念全等三角形的性质SSS三角形SAS全等三角形全等三角形的判定ASAAASHL(适用于Rt)全等三角形的应用利用全等三角形测距离作三角形一、三角形概念1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ ”表示。
2、顶点是 A、 B、 C的三角形,记作“ABC”,读作“三角形ABC”。
3、组成三角形的三条线段叫做三角形的边,即边AB、 BC、 AC,有时也用顶点 A 所对的边BC用 a 表示,边AC、AB 分别用 b, c 来表示;4、∠ A、∠ B、∠ C为ABC的三个内角。
a,b,c来表示,二、三角形中三边的关系1、三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。
用字母可表示为 a+b>c,a+c>b,b+c>a ; a-b<c,a-c<b,b-c<a2、判断三条线段a,b,c 能否组成三角形:。
当两条较短线段之和大于最长线段时,则可以组成三角形。
3、确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即 a b c a b.三、三角形中三角的关系1、三角形内角和定理:三角形的三个内角的和等于1800。
2、三角形按内角的大小可分为三类:(1)锐角三角形:即三角形的三个内角都是锐角的三角形;(2)直角三角形:即有一个内角是直角的三角形,我们通常用“ Rt ”表示“直角三角形” , 其中直角∠ C 所对的边AB称为直角三角表的斜边,其余两边称为直角三角形的直角边。
直角三角形的性质:直角三角形的两个锐角互余。
(3)钝角三角形:即有一个内角是钝角的三角形。
3、判定一个三角形的形状主要看三角形中最大角的度数。
4、直角三角形的面积等于两直角边乘积的一半。
四、三角形的三条重要线段1、三角形的三条重要线段是指三角形的角平分线、中线和高线。
北师大版七年级数学下册数学各章节知识点总结第一章代数初步1.1 数与式•数的性质,包括整数、有理数、无理数、实数•代数式的概念•代数式的加减乘除法•代数式的值•代数式的相等1.2 带字母的式子•代数式的字母表示•带字母的式子的意义•带字母的式子的意义在实际问题中的应用第二章方程式2.1 一元一次方程•方程的概念•一元一次方程的解法及其应用•一元一次方程的实际应用问题2.2 一元一次方程组•一元一次方程组的概念•一元一次方程组的解法及其应用•一元一次方程组的实际应用问题第三章比例与类比3.1 比例•比例的概念•比例的性质及其推论•比例的应用3.2 类比•类比的概念•类比的性质及其证明•类比的应用第四章几何初步4.1 平面直角坐标系•平面直角坐标系的概念•平面直角坐标系中的点及其坐标•平面直角坐标系中的距离公式•平面直角坐标系中的中点公式4.2 线段和角•线段的概念•线段的性质及其证明•角的概念•角度的计量及其表示方法4.3 三角形•三角形的概念和分类•三角形中角的性质及其证明•三角形中边的性质及其证明•三角形的周长和面积第五章数据统计与概率初步5.1 统计图和平均数•统计图的概念和种类•平均数的概念和计算方法•平均数的应用5.2 概率初步•随机事件和概率的概念•概率的计算方法•概率在日常生活中的应用以上为北师大版七年级数学下册各章节的知识点总结,希望能对你的学习有所帮助。
北师大版七年级下册数学各章知识点总结第一章:集合与函数在本章中,我们学习了集合和函数的概念及其相关性质。
集合是由一些确定的元素所组成的整体,可以用各种方式进行表示和描述。
函数是一种具有特定关系的元素对应规则,它可以将每一个元素都与唯一的另一个元素对应起来。
1.1 集合的基本概念- 元素:构成集合的个体或对象。
- 集合的含义:具有某种特定性质的元素的整体。
- 集合的表示方法:列举法、描述法、图形法等。
- 空集:不包含任何元素的集合,用符号{}表示。
1.2 集合的运算- 并集:包含两个或多个集合中的所有元素,用符号∪表示。
- 交集:同时属于两个或多个集合的元素,用符号∩表示。
- 差集:属于一个集合而不属于另一个集合的元素,用符号-表示。
1.3 函数与映射- 函数的概念:具有唯一对应关系的元素对应规则。
- 定义域与值域:函数中可输入的元素的全体构成的集合称为定义域,函数中对应的输出元素的全体构成的集合称为值域。
- 映射:通过函数规则将一个集合中的元素对应到另一个集合中的元素。
第二章:有理数与运算该章节主要介绍了有理数的概念及其运算法则,以及有理数之间的大小比较和约分等操作。
2.1 有理数的基本概念- 有理数:能够表示为两个整数之比的数,包括正整数、负整数和零等。
- 整数:自然数、0和负整数的统称。
- 分数:用一个整数除以另一个非零整数所得的数。
2.2 有理数的加减法- 加法法则:同号两数相加,异号两数相减。
- 减法法则:将减法问题转化为加法问题。
- 有理数的加法运算法则:相同/不同符号数相加,绝对值相加、符号不变。
2.3 有理数的乘除法- 乘法法则:同号得正,异号得负。
- 除法法则:除以一个非零有理数相当于乘以它的倒数。
第三章:代数式的定义与计算该章节主要讲解了代数式的概念及其计算方法,介绍了加法、减法、乘法和幂运算等代数式的性质和规则。
3.1 代数式的定义与基本运算- 代数式:用字母和数字表示数的式子。
七年级下册数学知识清单第四章三角形【知识点】1.认识三角形(1)由三条线段所组成的图形叫做三角形.(2)按三角形内角的大小可以把三角形分成:、、.(3)直角三角形两锐角.(4)三角形的三边关系:①;②.(5)三角形的重心是的交点.(6)三角形的中线性质:.注意:①三角形的三条中线和角平分线交于一点,三角形的三条高不一定相交,但高所在的直线交于一点;锐角三角形的三条高交于三角形内部,直角三角形的三条高交于直角边的交点(即三角形的边上),钝角三角形三条高所在的直线交于三角形外部.②三角形的中线、角平分线和高指的都是线段,但一个角的角平分线是射线.③2.图形的全等(1)称为全等图形.(2)全等图形的和都相同.(3)称为全等三角形.(4)全等三角形的性质:、.3.探索三角形全等的条件证三角形全等的方法有、、、.4.全等三角形的应用(1)尺规作图:作一个角等于已知角.(原理:SSS)(2)用全等三角形测距离【巩固练习】1.下列说法错误的是()A.三角形的角平分线能把三角形分成面积相等的两部分B.三角形的三条中线,角平分线都相交于一点C.直角三角形三条高交于三角形的一个顶点D.钝角三角形三条高所在直线的交点在三角形的外部2.如图所示,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为()①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE平分∠BAC.A.1个B.2个C.3个D.4个3.如图,AD是△ABC的中线,BE是△ABD的中线,已知,则△ABC的面积为()A.18B.28C.36D.454.如图,正方形ABCD的面积为1,M是AD边的中点,△ABG的面积为()A. B.C. D.5.如图,△ABC的两条中线AM,BN相交于点O,已知△ABO的面积为4,△BOM的面积为2,则四边形MCNO的面积为()A.4B.3C.4.5D.3.56.下列说法:①全等三角形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④形状相同的两个三角形是全等三角形.其中正确的说法有() A.②③ B.①②③C.①③④D.①②③④7.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长.判定△EDC≌△ABC最恰当的理由是()A.AAAB.ASAC.SASD.AAS8.已知:如图,AB=AC,DB=DC,F是AD的延长线上的一点.求证:BF=CF.证明:如图,在△ADB和△ADC中_________________________∴△ADB≌△ADC(_____)∴_______________________在△ABF和△ACF中___________________________________________________________________________∴△ABF≌△ACF(_____)∴BF=CF9.已知:如图,在四边形ABCD中,AB=CD,AB∥CD,E,F分别是DA,BC延长线上的点,且AE=CF,连接EF交BD于点O.求证:△EOD≌△FOB.10.已知:如图,OP平分∠AOB,C,D分别在OA,OB上,若∠PCO+∠PDO=180°.求证:PC=PD.11.已知:如图,在△ABC中,BD=CD,∠1=∠2.求证:AD是∠BAC的平分线.第五章生活中的轴对称【知识点】1.垂直平分线相关定理(1)线段垂直平分线上的点_____________________________.(2)到一条线段两个端点________________,在这条线段的垂直平分线上.2.角平分线相关定理(1)角平分线上的点__________________________.(2)在一个角的内部,______________________在这个角的平分线上.4.轴对称的性质在轴对称图形或两个成轴对称的图形中,________________被对称轴垂直平分,____________相等,____________相等.5.等腰三角形等腰三角形的性质:①对称性:它是轴对称图形,对称轴为顶角的平分线或底边上的中线或底边上的高所在的直线;②两个底角相等(等边对等角);③顶角的平分线、底边上的中线、底边上的高互相重合(三线合一).6.尺规作图(1)作线段的垂直平分线(2)作一个角的角平分线【巩固练习】1.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠CED的度数为()A.40°B.45°C.50°D.60°2.如图,在等腰三角形ABC中,AB=AC=18,BC=10,AB的垂直平分线DE交AB于点D,交AC于点E,连接BE,则△BEC的周长为()A.19B.23C.28D.363.已知:如图,OA垂直平分CP,OB垂直平分PD,连接CD,交OA于M,交OB于N,若△PMN的周长是8cm,则下列说法不一定正确的是()A.MC=MPB.PC=PDC.NP=NDD.CD=8cm4.如图,OP平分∠MON,PA⊥ON于A,点Q是射线OM上一个动点,若PA=3,则PQ 的最小值为()A.1B.2C.3D.45.已知:如图,在△ABC中,∠BAC=110°,DF,EG分别是AB,AC的垂直平分线,则∠DAE 等于()A.50°B.40°C.30°D.20°6.如图,在△ABC中,BC=9cm,BP,CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE∥AC,则下列说法错误的是()A.△BDP为等腰三角形B.PE=CEC.△PDE的周长是9cmD.PE=DE7.如图,等边△ABC的三个内角的角平分线交于点O,DE∥BC,则这个图形中的等腰三角形共有()A.4个B.5个C.6个D.7个8.如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD.若AC=6,BC=3,则BD的长为()A.1B.1.5C.2D.2.59.如图所示,∠MON=40°,P为∠MON内一个定点,A为OM上一动点,B为ON上一动点,则当△PAB的周长取最小值时,∠APB的度数为()A.80°B.100°C.110°D.120°10.如图,在等腰△ABC中,AB=BC,∠B=120°,M,N分别是AB,BC边上的中点.若△ABC 的边AC上的高为1,点P是边AC上的动点,则MP+NP的长度最小为()A.1B.2C.3D.411.如图,等腰三角形ABC的底边BC长为6,面积是27,腰AC的垂直平分线EF交AB边于点F,若点D为BC边上的中点,M为线段EF上一动点,则△CDM周长的最小值为()A.6B.9C.12D.15。
第四章三角形
三角形三边关系
三角形三角形内角与定理
角平分线
三条重要线段中线
高线
全等图形的概念
全等三角形的性质
SSS
三角形SAS
全等三角形全等三角形的判定ASA
AAS
HL(适用于RtΔ)
全等三角形的应用
作三角形
一、三角形概念
1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”表示。
2、顶点就是A、B、C的三角形,记作“ΔABC”,读作“三角形ABC”。
3、组成三角形的三条线段叫做三角形的边,即边AB、BC、AC,有时也用a,b,c来表示,顶点A 所对的边BC用a表示,边AC、AB分别用b,c来表示;
4、∠A、∠B、∠C为ΔABC的三个内角。
二、三角形中三边的关系
1、三边关系:三角形任意两边之与大于第三边,任意两边之差小于第三边。
用字母可表示为a+b>c,a+c>b,b+c>a;a-b<c,a-c<b,b-c<a。
2、判断三条线段a,b,c能否组成三角形:
当两条较短线段之与大于最长线段时,则可以组成三角形。
3、确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的与,即
、
三、三角形中三角的关系
1、三角形内角与定理:三角形的三个内角的与等于1800。
2、三角形按内角的大小可分为三类:
(1)锐角三角形:即三角形的三个内角都就是锐角的三角形;
(2)直角三角形:即有一个内角就是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,其余两边称为直角三角形的直角边。
直角三角形的性质:直角三角形的两个锐角互余。
(3)钝角三角形:即有一个内角就是钝角的三角形。
3、判定一个三角形的形状主要瞧三角形中最大角的度数。
4、直角三角形的面积等于两直角边乘积的一半。
四、三角形的三条重要线段
1、三角形的三条重要线段就是指三角形的角平分线、中线与高线。
2、三角形的角平分线:
(1)三角形的一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
(2)任意三角形都有三条角平分线,并且它们相交于三角形内一点。
3、三角形的中线:
(1)在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。
(2)三角形有三条中线,它们相交于三角形内一点。
4、三角形的高线:
(1)从三角形的一个顶点向它的对边所在的直线做垂线,顶点与垂足之间的线段叫做三角形的高线,简称为三角形的高。
(2)任意三角形都有三条高线,它们所在的直线相交于一点。
1、两个能够重合的图形称为全等图形。
2、全等图形的性质:全等图形的形状与大小都相同。
3、全等图形的面积或周长均相等。
4、判断两个图形就是否全等时,形状相同与大小相等两者缺一不可。
5、全等图形在平移、旋转、折叠过程中仍然全等。
6、全等图形中的对应角与对应线段都分别相等。
六、全等三角形
1、能够重合的两个三角形就是全等三角形,用符号“≌”连接,读作“全等于”。
2、用“≌”连接的两个全等三角形,表示对应顶点的字母写在对应的位置上。
3、全等三角形的性质:全等三角形的对应边、对应角相等。
这就是今后证明边、角相等的重要依据。
4、两个全等三角形,准确判定对应边、对应角,即找准对应顶点就是关键。
七、全等三角形的判定
1、三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
2、两角与它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。
3、两角与其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。
4、两边与它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。
5、三角形的稳定性:根据三角形全等的判定方法(SSS)可知,只要三角形三边的长度确定了,这个三角形的形状与大小就完全确定了,三角形的这个性质叫做三角形的稳定性。
八、利用三角形全等测距离
1、利用三角形全等测距离,实际上就是利用已有的全等三角形,或构造出全等三角形,运用全
等三角形的性质(对应边相等),把较难测量或无法测量的距离转化成已知线段或较容易测量的线段的长度,从而得到被测距离。
2、运用全等三角形解决实际问题的步骤:
(1)先明确实际问题应该用哪些几何知道解决;
(2)根据实际问题抽象出几何图形;
(3)结合图形与题意分析已知条件;
(4)找到解决问题的途径。
十一、直角三角形全等的条件
1、在直角三角形中,斜边与一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。
2、“HL”就是直角三角形特有的判定条件,对非直角三角形就是不成立的;
3、书写时要规范,即在三角形前面必须加上“Rt”字样。