PWMDCDC全桥变换器的软开关技术
- 格式:pptx
- 大小:2.61 MB
- 文档页数:56
第31卷 第9期2010年9月仪器仪表学报Ch i nese Journa l o f Sc ientific Instru m entV ol 31N o 9Sep .2010收稿日期:2010-04 R ece i ved D ate :2010-04一种新的全桥软开关变换器PWM 实现方法佘致廷,陈文科,刘 娟,彭永进(湖南大学电气与信息工程学院 长沙 410082)摘 要:本文在研究ZV ZCS -FB 变换器工作原理的基础上,分析了数字软开关P WM 的控制要求,提出了一种基于D SP +EPLD 的ZV ZCS -FB 变换器PWM 数字触发的新方法。
该方法克服了传统软开关P WM 专用芯片存在的控制精度低、可靠性不高等不足。
仿真与实验结果表明基于DSP +EPLD 构成的软开关PWM 数字触发具有编程灵活、抗干扰能力强、可适用于不同拓扑结构变换器等显著优点。
所研究的数字PWM 新方法为全面实现ZV ZCS -FB 变换器数字化控制打下良好的基础。
关键词:全桥移相变换器;脉宽调制;软开关;数字控制技术中图分类号:TN98 文献标识码:A 国家标准学科分类代码:510.50N ovel realizati on m ethod of ful-l bri dge soft -s w itchi ng converter P WMShe Zhiti n g ,Chen W enke ,Liu Juan ,Peng Yong jin(Co llege of E lectrical and Informa tion Eng ineering,H unan University,Changsha 410082,China )Abst ract :In this paper ,the contro l requ ire m ents of dig ita l so f-t s w itch i n g P WM are ana l y zed based on the st u dy ofZVZCS -FB converter ,and a ne w m et h od of Z VZCS-FB converter P WM d i g ital trigger is proposed .The hard w are co re of this m ethod isDSP and EPLD .Th ism ethod overco m es the shortco m i n gs o f sof-t s w itching P WM ASI C ,such as lo w contro l precision and poor reliab ility .Si m ulati o n and experi m ent results sho w th is sof-t s w itching P WM tri g ger syste m has m any exce llent characteristics .For exa m ple ,it can be applied i n vari o us converters w ith different topo l o g ies ,and it a lso has t h e advantages o f ant-i j a mm i n g and flex i b le progra mm ing .This ne w dig ita l P WM m ethod lays a good foundation for f u ll d i g ital ZVZCS -FB converter .K ey w ords :phase -shift ful-l bridge converter ;pu lse w idth m odulation;sof-t s w itching ;digita l contr o l techno l o gy1 引 言全桥移相Z VZCS -FB 变换器与传统的硬开关变换器相比,具有开关损耗小、可靠性高等显著优点,一直是人们的研究热点[1-5],并在弧焊、电镀电源等低压大电流高频能量转换中得到广泛应用[6-7]。
DC/AC三相软开关PWM逆变器的研究1 引言常规的pwm逆变电路, 由于电力电子开关器件在大电压下导通,大电流下关断,处于强迫开关过程,因而存在开关损耗大,工作频率低、体积大及电磁干扰严重等缺点。
而软开关技术利用电感、电容谐振,为开关器件创造零电压、零电流的开关条件, 使器件在开通关断的过程中,电流和电压的重叠区域减小, 电流和电压的变化率减小, 有效地降低了电磁干扰,并且可使逆变器工作在较高频率下, 减小输出滤波电压电容的体积, 从而可减小整个装置的体积,提高性能。
谐振电路的形式种类很多,本次研究采用了直流环节逆变电路的形式。
并将pwm调制技术与软开关技术相结合,利用单片机和大规模pwm集成芯片,设计了一个用于异步电机驱动的三相spwm调制型的开环vvvf控制的软开关逆变器电路的控制方案,对几个关键性电路的工作原理作了较为详细的分析说明,给出了部分实际电路形式和运行结果。
2 直流环节谐振主电路直流谐振电路如图1所示。
图1 谐波直流环节主电路其中直流谐振环节的开关元件由三相逆变桥的6个开关代替。
通过同时导通同一桥臂的两个开关来短接直流电路,所以这里的开关元件成为一个等效元件。
它的工作原理为:在直流电源与三相逆变电路之间接谐振元件的电感和电容,形成谐振槽路。
这样输入逆变桥的电压不再是直流电压,而是变为频率较高的谐振脉冲电压,它周期性地在谐振峰值与零电压之间振荡,从而产生零电压时间间隔,为三相逆变桥创造出零电压通断条件。
简化后的谐振直流电路如图2所示。
电路工作分两个阶段:图2 rdcli等效电路模型第一阶段:开关sr接通,电容两端电压为零,直流电源对电感进行预充电,近似的按线性规律增加。
结束时,其中为保证谐振正常进行的阈值电流,这段时间为。
第二阶段:开关sr断开,电容两端电压开始增加,电路进行谐振。
当电容电压再次过零点时,一个谐振周期结束。
开关sr再次接通,进入下一个周期。
通过分析可得出谐振电流电压方程为:式中,这种电路的主要特性是:拓扑结构简单,控制策略相对来说容易实现;但谐振峰值电压较高,是直流侧供电压的两倍,逆变桥中的开关器件需承受2~3倍的直流母线供电电压。
pwm变频调速及软开关电力变换技术[pwm变频调速及软开关电力变换技术]1. 引言在现代工业和电力系统中,pwm变频调速及软开关电力变换技术已经成为一种常见的技术应用。
它们在提高能源利用率、降低能源消耗和减少对环境的影响等方面具有重要作用。
本文将深入探讨pwm变频调速及软开关电力变换技术的原理、应用及未来发展趋势。
2. pwm变频调速技术的原理和应用2.1 什么是pwm变频调速技术pwm(Pulse Width Modulation)变频调速技术是一种通过控制电机输入的脉冲宽度来实现对电机转速的调节的技术。
它通过改变电机输入的频率和电压,使电机能够以不同的速度运行,从而满足不同工况下的需求。
2.2 pwm变频调速技术的应用pwm变频调速技术广泛应用于工业生产中的电机驱动系统、风力发电系统、水泵系统、压缩机系统等领域。
通过pwm变频调速技术,能够实现电机的精确控制和高效运行,从而提高设备的稳定性和工作效率。
3. 软开关电力变换技术的原理和应用3.1 什么是软开关电力变换技术软开关电力变换技术是一种通过对电力开关管进行控制,减少开关过程中电流和电压的突变,以减小开关损耗的技术。
它通过改善开关过程中的电压和电流波形,降低开关损耗和提高电力变换效率。
3.2 软开关电力变换技术的应用软开关电力变换技术在直流变换器、逆变器、变频器以及电力系统中的高压开关设备中得到广泛应用。
通过软开关电力变换技术,能够减少电力设备的能量损耗,提高系统的可靠性和稳定性。
4. pwm变频调速及软开关电力变换技术的未来发展趋势4.1 高性能功率模块的发展未来,随着高性能功率模块的不断发展,将能够提高pwm变频调速及软开关电力变换技术的性能和效率,满足更多复杂工况下的电力需求。
4.2 电力电子器件的集成化和智能化随着电力电子器件的集成化和智能化,pwm变频调速及软开关电力变换技术将更加灵活和智能化,能够更好地适应不同工况下的需求。
5. 总结和回顾pwm变频调速及软开关电力变换技术作为当前电力系统中重要的技术应用,具有重要的意义。
基于软开关技术的DC/DC功率变换器的设计O 引言基于软开关技术的全桥DC/DC变换器在高频、大功率的直流变换领域,有着广泛的应用前景,它提高了系统的效率,增大了装置的功率密度。
本文设计的变换器现正应用于电子模拟功率负载中,该负载系统要求能有效实现能量回馈电网,且直流高压>540V,低压直流为48~60V,因此,为升压变换。
限于篇幅,本文仅对DC/DC变换器的设计进行讨论,该变换器利用高频变压器的原边漏感、功率MOSFET并联外接的电容实现零电压开关,该方案简单、高效、易实现。
采用改进型移相控制器UC3879为控制核心,对变换器实现恒流输入控制,文中给出了实用的控制电路和主要参数的设计方法。
试验结果证明系统性能优良、效率高、功率密度大。
1 基本原理1.1 DC/DC变换器的电路原理图1所示的是DC/DC功率变换器的电路原理图,功率开关管S1~S4及内部集成的二极管组成全桥开关变换器,S1及S3组成超前桥臂,S2及S4组成滞后桥臂,S1~S4在寄生电容、外接电容C1~C4和变压器漏感的作用F谐振,实现零电压开关。
其中C7为隔直电容,可有效地防止高频变压器的直流偏磁。
低压直流侧滤波电容为C5、C6、L1为共模电感。
实时检测的输入侧电流值同指令电流值比较,得到的误差信号经过PI环节输出,由改进型移相控制器U C3879组成的控制系统实时生成变换器的触发脉冲;系统实行恒流控制,便于在不同负载情况下考核被测试的直流电源组,同时,也利于根据试验考核系统的功率等级,实现多个相同电子模拟负载模块的并联。
经过实验测试,DC/DC功率变换器工作在软开关状态下,输出高压直流为560V时,高频变压器副边电压的峰值高达1000V。
考虑在工程应用中,系统应该有足够的储备裕量,以利于长时间可靠、安全的运行,整流部分由两个完全相同的整流桥串联构成。
1.2 控制策略对于全桥变换器的控制通常有双极性控制方式、有限双极性控制方式和移相控制方式。
DC/DC功率变换器软开关技术及Pspice仿真引言随着生产技术的发展,电力电子技术的应用已深入到工业生产和社会生活的各方面,目前功率变换器的开关变换技术主要采用两种方式:脉宽调制(PWM技术和谐振变换技术。
传统的PWM控制方式由于开关元件的非理想性,其状态变化需要一个过程,即开关元件上的电压和电流不能突变,开关器件是在承受电压或流过电流的情况下接通或断开电路的,因此在开通或关断过程中伴随着较大的损耗。
变频器工作频率一定时,开关管开通或关断一次的损耗也是一定的,所以开关频率越高,开关损耗就越大,因而硬开关变换器的开关频率不能太高。
相比之下软开关变换器的作用是,当电压加在器件两端或者电流流经器件时,抑制功率器件转换时间间隔, 即软开关的开关管在开通或关断过程中,或是加于其上的电压为零,或是通过器件的电流为零。
这种开关方式明显减小了开关损耗,不仅可以允许更高的开关频率以及更宽的控制带宽,同时又可以降低dv/dt 和电磁干扰。
本文为了更好地说明不同软开关技术的区别,采用Pspice 软件对其中两种有代表性的变换电路进行了仿真和分析。
图 1 升压半波模式的零电压开关准谐振变换器原理图图 2 开关管通断及其所受电压应力仿真波形图3 升压零电压PW变换器原理图图 4 主副开关管的驱动仿真波形软开关的原理谐振开关技术的核心问题是为器件提供良好的开关工作条件,使得器件在零电压或零电流条件下进行状态转变,从而把器件的开关损耗降到最低水平。
软开关下的器件通断可以明显减少功率的开关损耗。
减小开关损耗通常有以下两种方法:在开关管开通时,使其电流保持在零或抑制电流上升的变化率,减少电流与电压的重叠区,从而减少开通的功率损耗,即零电流导通;在开关管开通前,减小或消除加在其上的电压,即零电压导通。
减小关断损耗有以下两种方法:开关管关断前,减小或消除加在其上的电流,即零电流关断;开关管关断前,减小或消除加在其上的电压,即零电压关断。
1.引言将谐振变换器与PWM技术结合起来构成软开关PWM的控制方法,集谐振变换器与PWM控制的优点于一体,既能实现功率开关管的软开关,又能实现恒频控制,是当今电力子技术领域发展方向之一。
在直/直变换器中,则以全桥移相移控制软开关PWM变换器的研究十分活跃,它是直流电源实现高频化的理想拓扑之一,尤其是在中、大功率的应用场合。
目前全桥移相控制软开关PWM变换器的研究热点已由单纯地实现零电压软开关(ZVS)转向同时实现零压零流软开关(ZVZCS)。
全桥移相控制ZVS方案至少有四点缺陷:全桥电路内有自循环能量,影响变换效率。
副边存在占空度丢失,最大占空度利用不充分。
在副边整流管换流时,存在谐振电感与整流管的寄生电容的强烈振荡,导致整流管的电压应力较高,吸收电路的损耗较大,且有较大的开关噪音。
滞后臂实现零电压软开关的范围受负载和电源电压的影响。
另外,在功率器件发展领域,IGBT以其优越的性价比,在中大功率的应用场合已普遍实用化,适合将IGBT的开关方式软化的技术则是零电流开关(ZCS)。
因而,针对全桥移相控制ZVS方案存在的问题,各种全桥相移ZVZCS软开关的方案应运而生。
2.全桥ZVZCS软开关技术方案比较目前,正在研究或已产品化的全桥ZVZCS软开关技术主要有以下3种:变压器原边串联饱和电感和适当容量的隔直阻断电容。
变压器原边串联适当容量的隔直阻断电容,同时滞后臂的开关管串联二极管。
利用IGBT的反向雪崩击穿电压使原边电流复位的方法实现ZCS软开关。
除方案3为有限双极性控制方式以外,其它几种方案的控制方式全为相移PWM方式。
上述几种方案都能解决全桥相移ZVS的固有缺陷,如大幅度地降低电路内部的自循环能量,提高变换效率;减少副边的占空度丢失,提高最大占空度的利用率;软开关实现范围基本不受电源电压和负载变化的影响,实现全负载范围内的高变换效率。
为提高电路的开关频率准备了条件,使整机的轻量化,小型化成为可能,可进一步提高整机的功率变换密度,符合电力电子行业的发展方向。