电力系统继电保护新技术分析
- 格式:pdf
- 大小:249.85 KB
- 文档页数:2
电力系统中传统继电保护与智能继电保护技术对比分析电力系统是现代社会不可或缺的基础设施之一,而保护系统作为电力系统的核心部分,起着保障电力系统安全稳定运行的重要作用。
传统继电保护技术是基于电磁式继电器的保护方案,而智能继电保护技术则是基于数字化技术的新一代保护方案。
传统继电保护技术是建立在电力系统的发展历程中逐步形成的。
它采用电磁式继电器作为执行器,通过测量电流、电压等信号,进行判断和决策,确保电力系统故障时能够及时切断故障环节,保护其他设备不受损害。
传统继电保护技术已经经过多年的实践和改进,具有成熟稳定的特点,得到了广泛应用。
然而,传统继电保护技术也存在一些局限性。
首先,由于电磁式继电器的机械特性,传统继电保护技术在响应速度上受到了限制,难以满足现代电力系统高速运行和大规模联动控制的需求。
其次,由于传统继电保护技术采用的是模拟信号处理和硬连线方式,不便于与其他系统进行信息交互和数据共享,限制了保护系统的智能化水平。
此外,传统继电保护技术的可靠性和灵活性也面临着一些挑战,尤其是在高压、大容量和复杂网架的电力系统中。
为了解决传统继电保护技术的局限性,智能继电保护技术应运而生。
智能继电保护技术采用数字化设备和先进的算法,实现了对电力系统的全面监测和快速判断。
与传统继电保护技术相比,智能继电保护技术具有以下特点。
首先,智能继电保护技术采用数字化设备,能够实现远距离信息传输和数据共享。
通过与其他系统连接,智能继电保护技术可以获取更多的电力系统信息,提高保护决策的准确性和可靠性。
其次,智能继电保护技术采用先进的算法,能够实现更快速的保护响应。
智能继电保护技术利用数字信号处理和复杂算法,能够在微秒级的时间内做出判断和决策,大大提高了保护系统的响应速度。
此外,智能继电保护技术还具有自适应调整和自动化控制的功能。
通过大数据分析和机器学习算法,智能继电保护技术可以根据电力系统实际运行情况进行自动调整,提高了保护系统的灵活性和适应性。
电力系统继电保护技术分析电力系统继电保护技术是电力系统中非常重要的一项技术,它的主要功能是在电力系统出现故障时,能够及时地检测故障并保护系统的安全运行。
为了提高电力系统的可靠性和安全性,不断研究和推广继电保护技术已经变得十分必要。
继电保护技术是通过使用传感器或检测装置来监测电力系统中的电流、电压、功率等参数,并通过继电器或其他控制设备来判断故障的发生,并对故障信号进行处理以实现故障保护。
目前,继电保护技术已经非常成熟,应用非常广泛。
继电保护技术主要包括以下几个方面:1. 故障检测技术:电力系统中的故障类型很多,如短路、接地故障、过电流等,继电保护技术需要能够准确检测故障类型,并能在故障发生后的最短时间内作出反应。
故障检测技术是继电保护技术的核心内容之一。
2. 故障定位技术:一旦发生故障,继电保护技术需要准确地确定故障发生的地点,以便及时采取措施修复故障。
传统的故障定位技术主要是通过测量电力系统中的电流、电压等参数来确定故障位置,但是由于电力系统复杂性和测量误差的存在,定位结果常常不准确。
研究高精度、快速的故障定位技术成为研究的热点之一。
3. 故障保护策略:电力系统中的绝大部分故障都是由短暂的过电流引起的,继电保护技术需要能够对不同类型的故障做出不同的保护策略。
如对短路故障要立即切除电路,对过电流故障要减小系统负荷等。
研究不同类型故障的保护策略,提高继电保护技术的智能化水平成为未来的重点。
4. 继电保护设备的可靠性和稳定性:电力系统是一个复杂的工程系统,继电保护设备的工作可靠性和稳定性对于整个电力系统的可靠运行至关重要。
研究和发展高可靠性、高稳定性的继电保护设备成为研究的重点。
继电保护技术是电力系统中非常重要的一项技术,它的发展对于提高电力系统的可靠性和安全性具有重要意义。
未来,随着电力系统的发展和技术进步,继电保护技术将会进一步发展和完善。
电力系统继电保护技术分析随着电力系统的不断发展和扩大,电力系统的继电保护技术也得到了不断的改进和完善。
继电保护技术是保障电力系统安全和稳定运行的关键环节,它需要不断地根据电力系统的发展状况进行技术更新和改进。
本文将对电力系统继电保护技术进行全面分析和总结,以期为电力系统的安全稳定运行提供更好的技术支持。
一、继电保护技术的发展历程继电保护技术起源于上个世纪,最初是采用机械式继电保护装置,这种装置工作不灵活,并且容易出现误动作。
随着电力系统的发展,继电保护技术逐渐开始采用电子、微机等技术,从而取得了长足的发展。
目前,继电保护技术已经应用了数字化、智能化等先进技术,使得继电保护系统在保护功能、可靠性和灵活性方面都得到了显著提高。
继电保护技术的基本原理是利用电力系统的各种参数信号,对电力系统中的异常情况进行检测和判断,并通过采取相应的保护措施,防止异常情况的进一步发展,保护设备和系统的安全运行。
继电保护技术的基本原理包括测量、判断和动作三个环节。
1.测量:测量是继电保护技术中的一个重要环节,通过对电流、电压等参数进行测量,获取电力系统中各种参数的实时数值。
2.判断:判断是根据测量得到的参数数值,来进行电力系统中异常情况的判断和分析,判断出异常情况的类型和位置,并确定是否需要进行保护动作。
3.动作:动作是指在判断出异常情况后,继电保护系统根据预先设定的逻辑条件和控制命令,启动相关的保护装置,采取相应的措施,将异常情况隔离或限制在一定范围内,确保电力系统的安全和稳定运行。
根据不同的保护对象和保护原理,继电保护技术可以分为多种不同的类型。
常见的继电保护技术包括过流保护、距离保护、差动保护、零序保护等,每种保护技术都有其特定的应用场景和保护对象。
1.过流保护:过流保护是电力系统中的一种常见保护技术,主要用于对电流超过额定值的异常情况进行保护。
过流保护可以根据保护对象的不同分为线路过流保护、母线过流保护、变压器过流保护等多种类型。
电力系统继电保护技术分析电力系统的快速发展促使对继电保护的要求更加严格,近些年来,电子计算机技术的蓬勃发展无疑为继电保护技术的发展提供了新的动力源泉。
怎样通过继电保护技术有效解决电气发生的问题,提升电力系统工作效率与操作质量已经是重点需要研究的技术性问题。
文章主要分析了电力系统继电保护的发展现状,电力系统继电保护组成与工作原理,电力系统继电保护配置与应用,电力系统继电保护技术发展趋势。
标签:电力系统;继电保护;技术发展1 电力系统继电保护的发展现状目前社会发展的重要能源是电力,在国家发展经济与提升人民生活质量中电力发挥了关键作用。
电力系统现代化的组成部分是产生电能、运输、分配与用电阶段等。
伴随着电力系统的发展继电保护也呈现了快速发展的趋势,继电保护与电力系统不断提升运行可靠性存在着紧密联系。
新中国成立之后,我国从无到有出现了继电保护学科、继电保护相关设计、继电保护科学技术等,在将近10年的时间中已经成功走完了半个世纪的发展道路。
我国工程技术人员在50年代成功吸收并且消化了先进的国外继电保护设备技术,组建了一支具有丰富继电保护运行经验的技术队伍,这对于我国继电保护技术队伍的健康成长发挥了关键作用。
我国在60年代中期已经构建了继电保护设计、运行等相关环节的一整套体系。
这是探索机电式继电保护的重要时代,为我国发展继电保护技术奠定了基础。
我国从70年代末开始研究微机保护,虽然起步很晚,但是却呈现了较快的发展趋势。
我国自从1984年批量生产第一套微机距离保护样机通过运行之后,几乎每年都会有新产品问世;第二代微机线路保护设备在1990年开始正式使用运行。
当前微机保护设备在低压网络、电气设备中运行应用,已经形成了线路保护的相关产品,并且获得了广泛的应用。
超过220kv的微机系统保护效率在2000年是43.9%,微机保护线路所占比例是87%。
在实际操作运行过程中,微机保护要比其他保护的正确动作率高。
我国经过多年以來的微机保护操作运行之后,凭借其先进的技术原理以及优良的操作工艺已经整体超过了进口继电保护。
电力系统继电保护新技术的发展与分析近年来,信息技术快速发展,电力系统继电保护技术也随之不断进步,新的技术不断推出,很大程度上改善了电力系统,让其更加全面与完善,给我国电力事业的发展提供了大力的支持。
在继电保护范围中广泛的普及使用新的技术,不光能够提升继电保护的效果,同时,还能够让电力系统运行的更为安全、稳定,进而促进社会经济的发展。
本文就对当前电力系统继电保护新技术的应用进行分析,了解其发展情况。
标签:电力系统;继电保护;新技术;发展一、电力系统继电保护新技术的应用(一)数字化技术的应用由于社会经济的快速发展以及科技的创新,数字化技术在电力系统继电保护的应用已经得到了普及,数字化变电站的建立,已经是当前电网建设的主流。
数字化技术的应用主要体现在两个方面:第一,智能化继电保护测试仪。
由于智能化变电站的开发以及使用,数字化测量仪器在电力用户与厂家中的需要不断增加。
第二,是全数字化变电站的实时仿真系统。
只能电话推广的主要方式就是建立具备数字化、信息化、自动化、互动化几个特点的数字化边带暗战。
但是当前很多的变电站还是不能检查出继电保护二次设备的功能,只有全数字化变电站站才能够进行此项工作。
(二)超高压输电技术的应用目前的电力系统不断升级,电网的电压等级也持续提升,对于高电压技术以及绝缘技术也有了更进一步的需求。
因为计算机继电保护和通讯技术的发展与普及,超高压继电保护系统的运转情况也不断提升。
当前,世界当中的许多国家,都已经建设超高压输电线路,它是指利用超高压等级来进行电能的输送。
超高压直流输电包扩以下几个特点:输送容量大;送电距离远;输送功率能够调控;不受系统稳定极限的影响;能够充分使用线路走廊资源;能维持输送功率或者降低输送功率的损害;能够按照系统的需要来做出表现,提升电力系统暂态稳固情况;进行系统的交流电压调控;能够快速进行功率改变。
当前超高压输电技术广泛的使用,在美国、俄罗斯、加拿大、日本等国家都已经首先对其进行研究与使用。
电力系统继电保护技术分析电力系统继电保护是电力系统中非常重要的一项技术,其作用是在电力系统发生故障时,及时地检测、定位并隔离故障,保证电力系统的安全稳定运行。
本文将对电力系统继电保护技术进行分析,包括其基本原理、分类以及技术发展趋势等方面。
电力系统继电保护的基本原理是利用电流、电压等参数的变化来判断电力系统是否发生故障,并根据不同类型的故障采取相应的保护措施。
电流保护主要是通过检测电流的大小和方向来判断电路中是否存在短路故障,电压保护主要是通过检测电压的大小和频率来判断电路中是否存在过电压或欠电压故障。
根据保护对象的不同,电力系统继电保护可以分为发电机保护、变压器保护、线路保护和母线保护等多个不同的保护类型。
发电机保护主要是对发电机内部故障进行保护,包括对发电机过载、短路、接地等故障进行检测和隔离。
变压器保护主要是对变压器内部故障进行保护,如变压器内部短路、接地等故障。
线路保护主要是对输电线路的故障进行保护,如线路的短路、接地、断线等故障。
母线保护主要是对电力系统母线的故障进行保护,如母线的短路、接地等故障。
随着电力系统的不断发展,电力系统继电保护技术也在不断地演进。
一方面,保护装置的精度和可靠性越来越高,能够更加准确地判断故障发生的位置,并进行精确的隔离操作。
保护装置的智能化程度也在不断提高,能够通过与电力系统中其他设备的联动,实现更加智能化的保护操作。
通过与断路器的联动,实现故障的自动隔离,同时在故障发生前进行预警,提醒操作人员采取相应措施。
还有一些新的保护技术不断涌现,如基于通信的保护、基于人工智能的保护等,这些技术将进一步提高电力系统继电保护的性能和可靠性。
电力系统继电保护技术是电力系统中非常重要的一项技术,其作用是保证电力系统的安全稳定运行。
随着电力系统的不断发展,电力系统继电保护技术也在不断演进,提高了精度、可靠性和智能化程度,并出现了一些新的保护技术。
相信随着技术的不断进步和发展,电力系统继电保护技术将在未来发挥更加重要的作用。
电力系统继电保护技术分析电力系统继电保护技术是一种重要的电力技术,在电力系统运行中起着重要的作用。
随着电力系统的扩展和规模的增大,系统各个部件之间的联动性加强,电力设备故障频繁出现,因此继电保护技术也变得越来越重要。
本文将从继电保护的定义、分类、功能和技术特点等几个方面对继电保护技术进行分析。
一、继电保护的定义继电保护是指在电力系统中,由继电保护装置对电力设备的运行状态进行监测,一旦发生故障会立即进行切除,保护系统安全可靠运行的一种电力技术。
继电保护技术通过维护系统稳定运行,防止系统意外停电,提高系统的可靠性和稳定性。
按照保护对象的不同,继电保护可以分为发电机保护、变压器保护、输电线路保护、配电线路保护等种类。
按照保护的方式进行分类,可以分为过流保护、距离保护、差流保护、接地保护、过电压保护、欠电压保护、过频保护、欠频保护等多种方式。
继电保护的功能可以总结为以下几个方面:(1)保护电力设备,保护电力系统运行的安全可靠。
(2)缩短故障持续时间,减少系统停电时间。
(3)提高电力系统的稳定性,防止系统的不稳定性扩散。
(4)发现故障原因,为故障排除提供依据。
(5)提高系统的自动化水平,减少操作维护人员的负担,提高经济效益。
四、继电保护技术的特点(1)精度高:继电保护技术采用的电子元器件能够实现高精度的检测和判断,保护的动作时间非常短,能够有效保护电力系统的安全稳定运行。
(2)可靠性高:继电保护技术采用的设备结构紧凑,操作简单,能够长期稳定运行,保证系统的可靠性。
(3)自动化水平高:继电保护技术采用了先进的电子技术和计算机技术,能够实现自动化的检测和判断,减少操作维护人员的工作量,提高经济效益。
(4)灵活性强:继电保护技术可以根据不同的保护对象和保护方式进行配置,具有较强的适应性。
(5)操作维护方便:继电保护技术操作简单,维护方便,能够实现远程控制和监测,提高了系统的管理和维护效率。
五、结论。
电力系统继电保护新技术的发展与分析随着电力系统规模的不断扩大和电力设备的不断更新,电力系统保护技术也得到了快速发展。
在电力系统的保护中,继电保护被认为是最为重要的一项技术,其作用是在电力系统发生故障时通过准确地检测故障并及时采取保护措施,保证电力系统的安全稳定运行。
在这篇文章中,将会探讨电力系统继电保护新技术的发展与分析。
一、继电保护的分类电力系统中的继电保护,根据它的作用和安装位置的不同,可以分为主保护和备用保护。
主保护是指对电力系统中硬件相关的组件进行保护,这些组件通常包括变压器、发电机、变流器、线路等。
而备用保护则是对主保护的补充,通常是保证电力系统容错能力和备份能力的重要组成部分。
主保护中的继电保护又可以分为线路保护、变压器保护、发电机保护和母线保护等多种类型。
其中,线路保护作为电力系统中最重要的保护之一,是指对输电线路进行保护,避免出现短路、接地等故障。
变压器保护则是指对变压器设备进行保护,避免因电路故障或操作错误等原因引起的损坏。
发电机保护则是指对发电机设备进行保护,一旦出现故障,及时采取保护措施,保证电力系统的安全运行。
而母线保护则是指对电力系统的母线设备进行保护,避免因故障引起电力系统的不稳定运行。
在近年来,随着电力设备的不断升级和电力系统规模的扩大,继电保护技术也在不断地发展和更新。
现代电力系统继电保护新技术主要包括以下几个方面:1、新型继电保护装置:新型继电保护装置引入了人工智能、数字信号处理等先进技术,以更加准确和可靠地检测电力系统故障。
同时,新型继电保护装置的自诊断功能也能够有效地提高系统的容错能力。
2、通信技术在继电保护中的应用:通信技术在电力系统继电保护中的应用越来越广泛,它可以实现设备之间的信息交换,可以准确地控制电力系统故障并迅速提供故障信息,有效地减少了维护时间和费用。
3、局部放电检测技术:局部放电检测技术是用来检测电力设备内部故障的先进技术,它可以高精度地检测出电力设备存在的故障,并在早期采取措施,保证设备的安全运行。
电力系统继电保护新技术分析
发表时间:2019-05-14T10:31:38.260Z 来源:《基层建设》2019年第4期作者:陈骥群李坦
[导读] 摘要:伴随着现代科学技术的持续发展与经济社会现代化建设进程日益完善,整个电力系统的发展备受各方关注与重视。
国网河北省电力有限公司保定供电分公司河北省保定市 071000
摘要:伴随着现代科学技术的持续发展与经济社会现代化建设进程日益完善,整个电力系统的发展备受各方关注与重视。
社会大众日常生产生活的开展均需要电力系统的安全可靠运行为其提供可靠性保障。
其中,继电保护技术的应用无疑发挥着重要意义。
本文试针对以上问题做详细分析与说明。
关键词:电力系统;继电保护;技术
1继电保护对电力系统的作用
1.1耗费的成本投资较低,易于操作,便于安装。
继电保护装置的材料质量小,有利于电力施工,有效降低了电力系统占据的空间,还能有效促进系统的安装效率,降低成本消耗的效果是非常显著的。
此外,继电保护装置在安装上非常易于操作,只需按照安装图纸即可进行装置安装,因此在人力耗费上也是比较小的。
1.2对系统故障能够进行有效检测,及时防范电力系统中可能存在的隐患。
继电保护系统在设备或者元件出现故障后,发出警报提醒值班人员进行及时处理。
还能对断路器发出指令,控制跳闸,以免设备受到损害不能正常的运行,电气元件也能得到相应的保护,这些功能是其他设备无法达到的。
1.3优越的使用,保护电力安全。
在电力数据信息的安全性上继电保护技术发挥着非常重大的作用,能够将外界的干扰有效避免,从而避免装置出现损害的状况。
继电保护装置能够在电力系统正常运行的状态下实现有效的监测控制,科学技术的不断发展与进步,未来的继电保护装置将会发挥出更为优越的作用,能够抵御外界的腐蚀,同时继电保护装置的功用和性能将会更为优化升级。
2电力系统继电保护的要求
2.1选择性
继电保护是在系统中出现故障时,能够有效的切除故障部位,但切除故障时应尽可能在最小的敬意内进行断开,从而最大限度的保证系统中无故障部位的继续运行。
这就需要利用选择性使线路的后备保护与主保护能够正确的进行配合,同时相邻元件的后备保护之间也能够正确的进行配合。
2.2速动性
当故障发生时,继电保护通过速动性可以第一时间内将故障切除,从而确保系统运行的稳定性,使故障设备和线路损坏程度达最小,减少故障波及的范围,确保自动重合闸和备用电源的效果。
使继电保护的各项性能得以最好的发挥出来,提高继电器动作和跳闸时间。
2.3可靠性
继电保护装置在性能上需要满足可靠性的要求,这就需要继电保护装置本身的质量能够保障,而且各回路连接完好,运行维护工作都能到位。
通常情况下,继电保护装置的各个组成元件质量。
保护回路的连接和运行维护水平直接决定了继电保护装置可靠性的高低。
对于高质量的各个组成元件,则可以有效的保证其各个回路接线的简单化,也就使保护工作的可靠性得以增强。
另外继电保护装置可靠性的提高,还需要正确的对其进行调试、整定和运行维护,再通过丰富的运行经验,这将为继电保护装置可靠性提升奠定良好的基础。
继电保护可靠性就是要做到避免继电保护的误动和拒动。
因为不管是误动还是拒动都会导致电力系统受到严重的危害。
这就需要制定不误动和不拒动的安全性措施,但这二种情况下所采取的措施还存在着相互矛盾性。
由于电力系统各元器件存在于不同的位置,这样就导致误动或是拒动时所产在生的危害程度也存在着较大的差异性,因此在保护性措施其侧重点也会有所不同,不仅要防止误动,而且还要充分做到防止拒动,二者只有协调一致,才能真正做到继电保护装置的可靠性。
3确保电力系统继电保护安全性的策略探究
3.1一般性检查
由于目前所使用的保护屏,其具有较多的端子螺丝,所以需要对其连接件的坚固进行检查,特别是在对这些设备进行搬运、安装过程中,这些螺丝极易出现松动的情况,所以在安装完毕后则需要对这些螺丝进行检查,确保其都达到紧固性,否则会导致保护拒动和误动的发生。
检查过程中不仅需要做好各元器件螺母的紧固工作,而且还要对所有装置的插件进行检查,确保芯片按紧、螺丝都处于紧固状态,而且不存在虚焊接点。
3.2接地问题
做好接地检查工作,不仅需要确保保护民间各装置的良好接时,而且还要确保电流和电压回路的接地可靠性。
将保护屏内的铜排利用大截面的铜鞭和导线将其紧固的与接地网进行连接,确保接地电组与规程要求相符。
3.3继电保护装置检验应注意的问题
在继电保护装置检验过程中必须注意:将整组试验和电流回路升流试验放在本次检验最后进行,这两项工作完成后,严禁再拔插件、改定值、改定值区、改变二次回路接线等工作网。
电流回路升流、电压回路升压试验,也必须在其它试验项目完成后最后进行。
在定期检验中,经常在检验完成后或是设备进人热备状态,或是投入运行而暂时没负荷,在这种情况下是不能测负荷向量和打印负荷采样值的。
4继电保护新技术探索
4.1人工神经网络在继电保护中的应用
从20世纪90年代开始,人工智能技术在电力系统中得到了应用,因此电力系统保护领域的研究工作也转向了人工智能方面的研究。
专家系统、人工神经网络和模糊控制理论逐步应用于电力系统继电保护中,为继电保护的发展注入了活力。
基于生物神经系统的人工神经网络具有分布式存储信息、并行处理、自组织、自学习等特点,其应用研究发展十分迅速,目前主要集中在人工智能、信息处理、自动控制和非线性优化等方面上。
4.2变电所自动化技术
在变电站的监视、控制、保护和计量装置这这些方面的工作上逐渐运用上了现代的计算机技术、通信技术和网络技术,这些技术的运用,改变了变电站以前的工作状况,简化了工作量,使得更大规模的变电站也在此方面快速的发展着新的技术。
继电保护和自动化的结合
工作成为了一项对电力系统目前最重要的一项工作。
他们的相互结合工作,使得远程控制、资源共享,信息共享成为了可能。
以远方终端单元、微机保护装置为核心,将变电所的控制、信号、测量、计费等回路纳入微机系统,取代了传统的控制保护屏,它能够变电所的占地面积和设备投资都发生改变,减少资金的支出,提高二次系统的可靠性。
伴随着计算机性价比的增大,于此同时现代的通讯技术每天也在发生日新月异的进步,以及各种标准化规约的陆续推出,变电站综合自动化的发展将更加迅速。
4.3自适应控制技术在继电保护中的应用
从上个世纪80年代开始,就出现了自适应机电保护的相关概念了。
它是一种根据电力系统运行方式和故障状态的变化而实时改变保护性能、特性或定值的新型继电保护措施。
自适应继电保护的出现对电力系统来说是一项革命性的新措施。
它可以有效的保护电力在供应的过程中出现的突发状况,对用户的用电安全是一项安全措施。
这种保护原理一经出现,就引发了人们对它的关注,科学家也在此方面不断的进行研究,为了使它可以更好的为人们的生活服务。
5结束语
电力系统继电保护技术的广泛运用,大幅度增强了电力系统的运行质量,进而为社会各需求行业提供了优质的电力服务产品。
为了更好地加强电力系统继电保护技术的研发以及应用,文章重点探索了电力系统继电保护技术的发展现状以及未来发展趋势。
参考文献
[1]杨凌峰.电力系统继电保护可靠性问题研究[J].中国电力教育,2013 (27):336-338.
[2]冯琼.对电力系统继电保护的相关探讨[J].城市建设理论研究,2012 (31):106-108.。