化工原理——沉降与过滤
- 格式:pdf
- 大小:2.58 MB
- 文档页数:70
第三章 沉降与过滤沉 降【3-1】 密度为1030kg/m 3、直径为的球形颗粒在150℃的热空气中降落,400m μ求其沉降速度。
解 150℃时,空气密度,黏度./30835kg m ρ=.524110Pa s μ-=⨯⋅颗粒密度,直径/31030p kg m ρ=4410p d m -=⨯假设为过渡区,沉降速度为()(.)()./..1122223345449811030410179225225241100835p t p g u d m s ρρμρ--⎡⎤-⎡⎤⨯==⨯⨯=⎢⎥⎢⨯⨯⨯⎢⎥⎣⎦⎣⎦验算 .Re ..454101790.835=24824110p t d u ρμ--⨯⨯⨯==⨯为过渡区【3-2】密度为2500kg/m 3的玻璃球在20℃的水中和空气中以相同的速度沉降。
试求在这两种介质中沉降的颗粒直径的比值,假设沉降处于斯托克斯定律区。
解 在斯托克斯区,沉降速度计算式为()/218t p p u d g ρρμ=-由此式得(下标w 表示水,a 表示空气)()()2218= p w pw p a pat w ad d u g ρρρρμμ--=pw pad d =查得20℃时水与空气的密度及黏度分别为./,.339982 100410w w kg m Pa sρμ-==⨯⋅./,.35120518110a a kg m Pa sρμ-==⨯⋅已知玻璃球的密度为,代入上式得/32500p kg m ρ=.961pw pad d ==【3-3】降尘室的长度为10m ,宽为5m ,其中用隔板分为20层,间距为100mm ,气体中悬浮的最小颗粒直径为,气体密度为,黏度为10m μ./311kg m ,颗粒密度为4000kg/m 3。
试求:(1)最小颗粒的沉降速度;(2)若需要.621810Pa s -⨯⋅最小颗粒沉降,气体的最大流速不能超过多少m/s? (3)此降尘室每小时能处理多少m 3的气体?解 已知,/./.6336101040001121810pc p d m kg m kg m Pa sρρμ--=⨯===⨯⋅,,(1) 沉降速度计算 假设为层流区().()(.)./.26269811010400011001181821810pc p t gd u m sρρμ---⨯⨯-===⨯⨯验算 为层流..Re .66101000111000505221810pc t d u ρμ--⨯⨯⨯===<⨯,(2) 气体的最大流速。
第三章沉降与过滤沉降【3-1】密度为1030kg/m 3、直径为400m μ的球形颗粒在150℃的热空气中降落,求其沉降速度。
解150℃时,空气密度./30835kg m ρ=,黏度.524110Pa sμ-=⨯⋅颗粒密度/31030p kg m ρ=,直径4410p d m -=⨯假设为过渡区,沉降速度为()(.)()./..1122223345449811030410179225225241100835p t p g u d m s ρρμρ--⎡⎤-⎡⎤⨯==⨯⨯=⎢⎥⎢⎥⨯⨯⨯⎢⎥⎣⎦⎣⎦验算.Re ..454101790.835=24824110p t d u ρμ--⨯⨯⨯==⨯为过渡区【3-2】密度为2500kg/m 3的玻璃球在20℃的水中和空气中以相同的速度沉降。
试求在这两种介质中沉降的颗粒直径的比值,假设沉降处于斯托克斯定律区。
解在斯托克斯区,沉降速度计算式为()/218t p p u d g ρρμ=-由此式得(下标w 表示水,a 表示空气)()()2218= p w pw p a pat w ad d u g ρρρρμμ--=pw pad d =查得20℃时水与空气的密度及黏度分别为./,.339982 100410w w kg m Pa s ρμ-==⨯⋅./,.35120518110a a kg m Pa sρμ-==⨯⋅已知玻璃球的密度为/32500p kg m ρ=,代入上式得.961pw pad d =【3-3】降尘室的长度为10m ,宽为5m ,其中用隔板分为20层,间距为100mm ,气体中悬浮的最小颗粒直径为10m μ,气体密度为./311kg m ,黏度为.621810Pa s -⨯⋅,颗粒密度为4000kg/m 3。
试求:(1)最小颗粒的沉降速度;(2)若需要最小颗粒沉降,气体的最大流速不能超过多少m/s?(3)此降尘室每小时能处理多少m 3的气体?解已知,/./.6336101040001121810pc p d m kg m kg m Pa sρρμ--=⨯===⨯⋅,,(1)沉降速度计算假设为层流区().()(.)./.26269811010400011001181821810pc p t gd u m sρρμ---⨯⨯-===⨯⨯验算..Re .66101000111000505221810pc t d u ρμ--⨯⨯⨯===<⨯.为层流(2)气体的最大流速max u 。
化工原理中的沉降与过滤引言在化工工艺中,沉降和过滤是常用的固液分离方法。
沉降是指根据固液颗粒的重力作用,通过静置使固体颗粒沉降到底部,而将悬浮液体分离出来。
过滤则是通过利用滤介质的孔隙或表面,将悬浮液体中的固体颗粒留下,而使液体通过,从而达到分离固液的目的。
本文将从理论和实际应用两个方面,对化工原理中的沉降与过滤进行介绍。
沉降原理沉降是基于固体颗粒的重力作用,通过静置使固体颗粒沉降到底部,从而实现固液分离的过程。
沉降速度取决于固体颗粒与液体的密度差和粒径大小。
根据Stokes定律,沉降速度与颗粒直径的平方成正比,与液体的粘度成反比。
沉降速度可由下式计算:v = (2/9) * (ρp - ρl) * g * (d^2) / μ其中,v为沉降速度,ρp为颗粒的密度,ρl为液体的密度,g为重力加速度,d为颗粒的直径,μ为液体的动力粘度。
过滤原理过滤是通过滤介质的孔隙或表面,将悬浮液体中的固体颗粒留下,而使液体通过,从而实现固液分离的过程。
滤介质常用的有滤纸、滤筒、滤板等,其孔隙大小决定了能够透过的颗粒大小。
根据Darcy定律,过滤速度与滤介质的孔隙直径的平方成正比,与液体的粘度成反比。
过滤速度可由下式计算:Q = (π/4) * (d^2) * (ΔP/μ) * A其中,Q为过滤速度,d为滤介质的孔隙直径,ΔP为过滤压差,μ为液体的动力粘度,A为过滤面积。
实际应用沉降的应用沉降在化工过程中被广泛应用,常见的应用场景包括:1.污水处理:污水中悬浮的固体颗粒通过沉降实现固液分离,从而达到净化水质的目的。
2.矿石提取:矿石中的有用矿物颗粒通过沉降分离出来,然后进行后续的加工和提取。
3.食品加工:在食品饮料生产中,一些颗粒物质需要通过沉降分离,以获得纯净的液体产品。
4.生物工程:在细胞培养和发酵工艺中,需要将细胞或发酵产物与培养基进行分离。
沉降是一种常用的分离方法。
5.药物制剂:在药物合成和制剂工艺中,沉降用于分离和提取所需的纯净物质。
第三章 沉降与过滤沉 降【3-1】 密度为1030kg/m 3、直径为400m μ的球形颗粒在150℃的热空气中降落,求其沉降速度。
解 150℃时,空气密度./30835kg m ρ=,黏度.524110Pa s μ-=⨯⋅颗粒密度/31030p kg m ρ=,直径4410p d m -=⨯ 假设为过渡区,沉降速度为()(.)()./..1122223345449811030410179225225241100835p t p g u d m s ρρμρ--⎡⎤-⎡⎤⨯==⨯⨯=⎢⎥⎢⎥⨯⨯⨯⎢⎥⎣⎦⎣⎦验算 .R e ..454101790.835=24824110p t d u ρμ--⨯⨯⨯==⨯为过渡区【3-2】密度为2500kg/m 3的玻璃球在20℃的水中和空气中以相同的速度沉降。
试求在这两种介质中沉降的颗粒直径的比值,假设沉降处于斯托克斯定律区。
解 在斯托克斯区,沉降速度计算式为()/218t p p u d g ρρμ=-由此式得(下标w 表示水,a 表示空气)()()2218= p w pw p a pat w ad d u g ρρρρμμ--=pw pad d =查得20℃时水与空气的密度及黏度分别为./,.339982 100410w w kg m Pa s ρμ-==⨯⋅ ./,.35120518110a a kg m Pa s ρμ-==⨯⋅已知玻璃球的密度为/32500p kg m ρ=,代入上式得.961pw pad d =【3-3】降尘室的长度为10m ,宽为5m ,其中用隔板分为20层,间距为100mm ,气体中悬浮的最小颗粒直径为10m μ,气体密度为./311kg m ,黏度为.621810Pa s -⨯⋅,颗粒密度为4000kg/m 3。
试求:(1)最小颗粒的沉降速度;(2)若需要最小颗粒沉降,气体的最大流速不能超过多少m/s? (3)此降尘室每小时能处理多少m 3的气体?解 已知,/./.6336101040001121810pc p d m kg m kg m Pa s ρρμ--=⨯===⨯⋅,, (1) 沉降速度计算 假设为层流区().()(.)./.26269811010400011001181821810pc p t gd u m s ρρμ---⨯⨯-===⨯⨯验算..Re .66101000111000505221810pc t d u ρμ--⨯⨯⨯===<⨯. 为层流(2) 气体的最大流速max u 。
第三章沉降与过滤沉 降【 3-1 】 密度为 1030kg/m 3、直径为 400 m 的球形颗粒在 150℃的热空气中降落,求其沉降速度。
解 150℃时,空气密度0.835kg / m 3 ,黏度 2.41 10 5 Pa s颗粒密度p 1030kg / m3,直径 d p 4 10 4 m假设为过渡区,沉降速度为4 g 2 ( p)214 9 81 2 103013234u td p( . ) ( ) 4 101.79 m / s225225 2.41 10 50.835d p u t44101 79 0.835验算Re=.24 82 41 105..为过渡区3【 3-2 】密度为 2500kg/m 的玻璃球在 20℃的水中和空气中以相同的速度沉降。
解 在斯托克斯区,沉降速度计算式为u td 2ppg / 18由此式得(下标w 表示水, a 表示空气)18pw d pw2( pa )d pa2 u t =gwad pw ( d pa(pa )wpw)a查得 20℃时水与空气的密度及黏度分别为w998 2 3w 1 . 004 10 3 . kg / m , Pa s 1 205 3a1 81 10 5 Pa sa . kg / m , .已知玻璃球的密度为p2500 kg / m 3 ,代入上式得dpw( 2500 1 205 ) 1 . 004 10.d pa( 2500998 2 1 . 81 10. )359.61【 3-3 】降尘室的长度为10m ,宽为 5m ,其中用隔板分为 20 层,间距为 100mm ,气体中悬浮的最小颗粒直径为10 m ,气体密度为1.1kg / m 3 ,黏度为 21.8 10 6 Pa s ,颗粒密度为4000kg/m 3。
试求: (1) 最小颗粒的沉降速度;(2) 若需要最小颗粒沉降,气体的最大流速不能超过多少m/s (3) 此降尘室每小时能处理多少m 3 的气体解 已知 d pc10 10 6 m, p4000kg / m 3 ,1.1kg / m 3 ,21.8 10 6 Pa s(1) 沉降速度计算假设为层流区gd pc 2 (p) 9 . 81 ( 10 10 6 2 ( 4000 1 1u t)6 . ) 0.01m / s1818 21.8 10d pc u t10 10 6 0 01 1 1000505. 2 验算 Re21 8 10 6 为层流.(2) 气体的最大流速 umax 。
第三章 沉降与过滤沉 降【3-1】 密度为1030kg/m 3、直径为400m μ的球形颗粒在150℃的热空气中降落,求其沉降速度。
解 150℃时,空气密度./30835kg mρ=,黏度.524110Pa sμ-=⨯⋅颗粒密度/31030p kg m ρ=,直径4410p d m -=⨯ 假设为过渡区,沉降速度为()(.)()./..1122223345449811030410179225225241100835p t p g u d m s ρρμρ--⎡⎤-⎡⎤⨯==⨯⨯=⎢⎥⎢⎥⨯⨯⨯⎢⎥⎣⎦⎣⎦验算.R e ..454101790.835=24824110p t d u ρμ--⨯⨯⨯==⨯为过渡区【3-2】密度为2500kg/m 3的玻璃球在20℃的水中和空气中以相同的速度沉降。
试求在这两种介质中沉降的颗粒直径的比值,假设沉降处于斯托克斯定律区。
解 在斯托克斯区,沉降速度计算式为()/218t p p u d g ρρμ=-由此式得(下标w 表示水,a 表示空气)()()2218=pw p wp a pat wad d u gρρρρμμ--=pw pad d =查得20℃时水与空气的密度及黏度分别为./,.339982 100410w w kg m Pa s ρμ-==⨯⋅./,.35120518110a a kg m Pa s ρμ-==⨯⋅已知玻璃球的密度为/32500p kg m ρ=,代入上式得.961pw pad d =【3-3】降尘室的长度为10m ,宽为5m ,其中用隔板分为20层,间距为100mm ,气体中悬浮的最小颗粒直径为10m μ,气体密度为./311kg m ,黏度为.621810Pa s -⨯⋅,颗粒密度为4000kg/m 3。
试求:(1)最小颗粒的沉降速度;(2)若需要最小颗粒沉降,气体的最大流速不能超过多少m/s? (3)此降尘室每小时能处理多少m 3的气体?解 已知,/./.6336101040001121810p c p d m k g m k g m P a sρρμ--=⨯===⨯⋅,, (1) 沉降速度计算 假设为层流区().()(.)./.26269811010400011001181821810p c p t gd u m sρρμ---⨯⨯-===⨯⨯验算..R e.66101000111000505221810pc t d u ρμ--⨯⨯⨯===<⨯. 为层流(2) 气体的最大流速m ax u 。
第三章 沉降与过滤沉 降【3-1】 密度为1030kg/m 3、直径为400m μ的球形颗粒在150℃的热空气中降落,求其沉降速度。
解 150℃时,空气密度./30835kg m ρ=,黏度.524110Pa s μ-=⨯⋅颗粒密度/31030p kg m ρ=,直径4410p d m -=⨯ 假设为过渡区,沉降速度为()(.)()./..1122223345449811030410179225225241100835p t p g u d m s ρρμρ--⎡⎤-⎡⎤⨯==⨯⨯=⎢⎥⎢⎥⨯⨯⨯⎢⎥⎣⎦⎣⎦验算 .R e ..454101790.835=24824110p t d u ρμ--⨯⨯⨯==⨯ 为过渡区【3-2】密度为2500kg/m 3的玻璃球在20℃的水中和空气中以相同的速度沉降。
试求在这两种介质中沉降的颗粒直径的比值,假设沉降处于斯托克斯定律区。
解 在斯托克斯区,沉降速度计算式为()/218t p p u d g ρρμ=-由此式得(下标w 表示水,a 表示空气)()()2218= p w pw p a pat w ad d u g ρρρρμμ--=pw pad d =查得20℃时水与空气的密度及黏度分别为./,.339982 100410w w kg m Pa s ρμ-==⨯⋅ ./,.35120518110a a kg m Pa s ρμ-==⨯⋅已知玻璃球的密度为/32500p kg m ρ=,代入上式得.961pw pad d =【3-3】降尘室的长度为10m ,宽为5m ,其中用隔板分为20层,间距为100mm ,气体中悬浮的最小颗粒直径为10m μ,气体密度为./311kg m ,黏度为.621810Pa s -⨯⋅,颗粒密度为4000kg/m 3。
试求:(1)最小颗粒的沉降速度;(2)若需要最小颗粒沉降,气体的最大流速不能超过多少m/s? (3)此降尘室每小时能处理多少m 3的气体?解 已知,/./.6336101040001121810pc p d m kg m kg m Pa sρρμ--=⨯===⨯⋅,, (1) 沉降速度计算 假设为层流区().()(.)./.26269811010400011001181821810pc p t gd u m s ρρμ---⨯⨯-===⨯⨯验算..Re .66101000111000505221810pc t d u ρμ--⨯⨯⨯===<⨯. 为层流(2) 气体的最大流速max u 。