2021 等比数列的性质及应用
- 格式:pptx
- 大小:1.20 MB
- 文档页数:31
第三节等比数列及其前n项和[最新考纲][考情分析][核心素养]1.理解等比数列的概念。
2.掌握等比数列的通项公式与前n项和公式.3.了解等比数列与指数函数的关系。
等比数列的基本运算,等比数列的判断与证明,等比数列的性质与应用仍是2021年高考考查的热点,三种题型都有可能出现,分值为5~12分.1.数学运算2.逻辑推理‖知识梳理‖1.等比数列的有关概念(1)定义①文字语言:从错误!第2项起,每一项与它的前一项的错误!比都等于错误!同一个常数.②符号语言:错误!错误!=q(n∈N*,q为非零常数).(2)等比中项:如果a,G,b成等比数列,那么错误!G叫做a 与b的等比中项.即:G是a与b的等比中项⇔a,G,b成等比数列⇒G26ab.2.等比数列的有关公式(1)通项公式:a n=错误!a1q n-1.(2)前n项和公式3.等比数列的性质(1)通项公式的推广:a n=a m·q n-m(m,n∈N*).(2)对任意的正整数m,n,p,q,若m+n=p+q,则错误!a m·a n =错误a p·a q.特别地,若m+n=2p,则a m·a n=a2p.(3)若等比数列前n项和为S n,则S m,S2m-S m,S3m-S2m仍成等比数列,即(S2m-S m)213S m(S3m-S2m)(m∈N*,公比q≠1).(4)数列{a n}是等比数列,则数列{pa n}(p≠0,p是常数)也是错误!等比数列.(5)在等比数列{a n}中,等距离取出若干项也构成一个等比数列,即a n,a n+k,a n+2k,a n+3k,…为等比数列,公比为错误!q k.►常用结论1.若{a n},{b n}(项数相同)是等比数列,则{λa n}(λ≠0),错误!,{a2,n},{a n·b n},错误!仍是等比数列.2.一个等比数列各项的k次幂仍组成一个等比数列,新公比是原公比的k次幂.3.{a n}为等比数列,若a1·a2·…·a n=T n,则T n,错误!,错误!,…成等比数列.4.当q≠0且q≠1时,S n=k-k·q n(k≠0)是{a n}成等比数列的充要条件,这时k=错误!.5.有穷等比数列中,与首末两项等距离的两项的积相等,特别地,若项数为奇数时,还等于中间项的平方.‖基础自测‖一、疑误辨析1.判断下列结论是否正确(请在括号中打“√”或“×”).(1)若一个数列从第2项起每一项与它的前一项的比都是常数,则这个数列是等比数列.()(2)三个数a,b,c成等比数列的充要条件是b2=ac。
第02讲 等比数列及其前n 项和知识精讲一. 等比数列的概念一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比;公比通常用字母q 表示(0)q ≠,即:1(0,0)n n na q q a a +=≠≠ 根据q 判断数列的单调性: 当11a >{}1n q a >⇔是递增数列; {}01n q a <<⇔是递减数列;{}=1n q a ⇔是常数列二. 等比数列的通项公式推导等比数列的通项公式:3121221n n n n a a aa q q q q a a a a ---====,,,,, 将这1n -个式子的等号两边分别相乘得:11n na q a -=,即()1*1n n a a q n N -=∈. 这种方法就叫做累乘法.三. 等比中项如果三个数 a G b ,,组成等比数列⇔2G ab =,G 叫做a 与b 的等比中项. 两个符号相同的非零实数,有两个等比中项,一正一负.若数列是等比数列⇔任意相邻三项之间都存在如下关系:211(2)n n n a a a n -+=≥四. 等比数列的性质设{}n a 为等比数列,公比为q ,则:1. 若在等比数列中,若n m u v +=+,则n m u v a a a a ⋅=⋅;特殊地,若2m p q =+,则2mp q a a a =⋅; 推广到三项,即m ,n ,t ,p ,q ,*s N ∈且m n t p q s ++=++m n t p q s a a a a a a ⇒=; 推广到一般形式,只要两边项数一样,且下标和相等,则各项之积相等.2. n m n m a a q -=*(,)m n N ∈;3. 在等比数列{}n a 中,等距离取出若干项也构成一个等比数列,即n a ,n m a +,2n m a +,……为等比数列,公比为m q .4. 若{}{} n n a b ,均为等比数列,且公比分别为()1212 0q q q q ⋅≠,,则数列{} n pa ,{}mn a ,{}n n a b ⋅,n n a b ⎧⎫⎨⎬⎩⎭也为等比数列,且公比分别为111122 mq q q q q q ⋅,,,.五. 等比数列的前n 项和公式()()111(1)11n n na q S a q q q⎧=⎪=⎨-≠⎪-⎩.用错位相减法推导等比数列前n 项和公式:211111n n S a a q a q a q -=++++,等式两边同乘q 得:211111n n n qS a q a q a q a q -=++++,将这两式相减得:()11111(1)n n n q S a a q a q --=-=-, 从而得到等比数列的前n 项和公式()1(1)11n n a q S q q-=≠-;当1q =时,1n S na =.六. 等比数列{}n a 前n 项和公式与指数函数. 区别和联系区别联系n S定义域为*N 图象是一系列的孤立点 (1)解析式都是指数型; (2)n S 图象是指数型函数()f x 图象上一系列的点.()f x定义域为R图象是一条指数型曲线2. 观察()0nn S Aq B AB =+≠和111(1)111n n a q a aS q q q q--==+--- 得11a A B q-=-=-3. 有指数型函数的性质可得:当10 10q a <<<,时,0A >,n S 递减有最大值, 当10 10q a <<>,时,0A <,n S 递增有最小值; 当110q a ><,时,0A <,n S 递减有最大值, 当110q a >>,时,0A >,n S 递增有最小值.七. 等比数列的前n 项和的性质等比数列{}n a 的前n 项和可以构成一个等比数列,即k S ,2k k S S -,32k k S S -成等比数列.公比为k q (k 为偶数时,1q ≠-)如下图所示:323212312213kkk k k kS k k k k kS S S S S a a a a a a a a ++--++++++++++三点剖析一、等比数列的判定方法:(1)定义法:对于数列{}n a ,若1(0)n na q q a +=≠,则数列{}n a 是等比数列; (2)等比中项:对于数列{}n a ,若221n n n a a a ++⋅=,则数列{}n a 是等比数列;(3)等比数列与对数的结合等比数列{}n a 中,若n m u v +=+,则n m u v a a a a ⋅=⋅,相应的,lg lg lg lg n m u v a a a a +=+,{}lg n a 是等差数列,公差为lg q .(4)前n 项和法:()0n n S Aq A Aq =-≠⇔{}n a 等比数列.等比数列的概念例题1、 在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+,则6a 的值是________例题2、 已知x ,22x +,33x +是等比数列的前三项,则该数列第四项的值是( )A.-27B.12C.272D.272-例题3、 已知等差数列{}n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a 等于( ) A.-4 B.-6C.-8D.-10例题4、 己知数列{}n a 是等差数列,数列{}n b 是等比数列,对一切*n N ∈,都有1n n na b a +=,则数列{}n b 的通项公式为_________.例题5、 在正项等比数列{}n a 中,已知412a =,563a a +=,则12n a a a ⋯的最小值为( ) A.1256B.1512C.11024D.12048随练1、 在数列{}n a 中,12n n a a +=,若54a =,则456a a a = . 随练2、 已知等比数列{}n a 中,各项都是正数,且1a ,312a ,22a 成等差数列,则91078a a a a ++=( )A.12+B.12C.322+D.322-随练3、 在等差数列{}n a 中,如果m ,n ,p ,*r N ∈,且3m n p r ++=,那么必有3m n p r a a a a ++=,类比该结论,在等比数列{}n b 中,如果m ,n ,p ,*r N ∈,且3m n p r ++=,那么必有( ) A.3m n p r b b b b ++=B.3m n p r b b b b ++= C.3m n p r b b b b = D.3m n p r b b b b =随练4、 公差不为0的等差数列{}n a 的部分项1ak ,2ak ,3ak …构成等比数列{}n ak ,且11k =,22k =,36k =,则5k =________.随练5、 在等比数列{}n a 中,22a =,5128a =. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若2log n n b a =,数列{}n b 的前n 项和为n S ,360n S =,求n 的值.等比数列的性质例题1、 已知{}n a 为各项都是正数的等比数列,若484a a =,则567a a a =________.例题2、 若等比数列{a n }的各项均为正数,且a 8a 10+a 7a 11=2e 6,则lna 1+lna 2+…+lna 17=________.例题3、 已知数列{a n }为等比数列,若a 4+a 6=10,则a 7(a 1+2a 3)+a 3a 9=________.例题4、 定义在00-∞⋃+∞(,)(,)上的函数f x (),如果对于任意给定的等比数列{}{}n n a f a ,()仍 是等比数列,则称f x ()为“保比等比数列”.现有定义在00-∞⋃+∞(,)(,)上的如下函数: ①2f x x =(); ②2x f x =(); ③f x x =()④ln f x x =(). 则其中是“保比等比数列”的f x ()的序号为 .随练1、 在等比数列{}n a 中,已知24a =,616a =,则4a =________.随练2、 设等比数列{a n }的前n 项和S n ,若a 1=-2,S 6=9S 3,则a 5的值为________随练3、 已知数列{}n a 是递增等比数列,152417,16a a a a +==,则公比q =( ) A.-4 B.4C.-2D.2随练4、 等比数列{}n a 中,42a =,75a =,则数列{lg }n a 的前10项和等于( ) A.2 B.lg50C.10D.5等比数列的前n 项和例题1、 已知数列{a n }满足a 1=1,*12()n n a a n N +=∈,则S 10=________.例题2、 已知等比数列{}n a 各项均为正数,满足313a a +=,356a a +=,则324354657l a a a a a a a a a a ++++=( )A.62B.2C.61D.612例题3、 数列112,124,138,…的前n 项和为n S =( )A.21n n-B.12n n -C.(1)1122n n n +-+D.(1)122n n n +-例题4、 已知正项等比数列{}n a 的前n 项和为n S 且8426S S -=,则9101112a a a a +++的最小值为_________.例题5、 等比数列{a n }的前n 项和为S n ,已知S 2,S 4,S 3成等差数列. (1)求数列{a n }的公比q ;(2)若a 1-a 3=3,问218是数列{a n }的前多少项和.随练1、 等比数列{a n }的前n 项和S n =2n -1,则a 12+a 22+…+a n 2=________.随练2、 已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和. (1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比为q 满足q 2-(a 4+1)q +S 4=0.求{b n }的通项公式及其前n 项和T n .随练3、 已知数列{}n a 的前n 项和为22n S n n =+. (1)求数列{}n a 的通项公式;(2)若等比数列{}n b 的通项公式为2()2n n n a k b n-=,求k 的值及此时数列{}n b 的前n 项和n T .等比数列的判定例题1、 已知数列{}n a 的前n 项和为n S ,且11n a +=131n a ++,265a S =,则=____.例题2、 设n n S T ,,分别为数列{}n a ,{}n b 的前n 项和,647227n n S a =﹣,()2819n n n n a b +=-+,则当n =____时,n T 最小.例题3、 已知数列是等差数列,;数列的前项和是,且. (1)求数列的通项公式;(2)求证:数列是等比数列.{}na 25=6,=18a a {}nb n n T 1n n T b +={}na{}nb例题4、 已知数列{}n a 中,首项15a =,()121n n a a n N *+=+∈. (1)求证:数列{}1n a +是等比数列;(2)求数列{}n a 的通项公式n a 以及前n 项和n S .例题5、 设n S 表示数列{}n a 的前n 项和.1()若{}n a 是等差数列,试证明:1()2n n n a a S +=; 2()若110a q =≠,,且对所有的正整数n ,有11nn q S q -=-,判断{}n a 是否为等比数列.例题6、 设数列{}n a 满足1421n n n a a a +-=+*()n N ∈ (Ⅰ)若13a =,21nn n a b a -=-*()n N ∈求证数列{}n b 是等比数列,并求{}n b 的通项公式n b ; (Ⅱ)若1n n a a +>对*n N ∀∈恒成立,求1a 的取值范围。
数 列一、高考要求理解数列的有关概念,了解递推公式是给出数列的一种方法,并能依据递推公式写出数列的前n 项.理解等差(比)数列的概念,把握等差(比)数列的通项公式与前n 项和的公式. 并能运用这些学问来解决一些实际问题.了解数学归纳法原理,把握数学归纳法这一证题方法,把握“归纳—猜想—证明”这一思想方法. 二、热点分析1.数列在历年高考中都占有较重要的地位,一般状况下都是一个客观性试题加一个解答题,分值占整个试卷的10%左右.客观性试题主要考查等差、等比数列的概念、性质、通项公式、前n 项和公式、极限的四则运算法则、无穷递缩等比数列全部项和等内容,对基本的计算技能要求比较高,解答题大多以考查数列内容为主,并涉及到函数、方程、不等式学问的综合性试题,在解题过程中通常用到等价转化,分类争辩等数学思想方法,是属于中高档难度的题目.2.有关数列题的命题趋势 (1)数列是特殊的函数,而不等式则是深刻生疏函数和数列的重要工具,三者的综合求解题是对基础和力气的双重检验,而三者的求证题所显现出的代数推理是近年来高考命题的新热点 (2)数列推理题是新毁灭的命题热点.以往高考常使用主体几何题来考查规律推理力气,近两年在数列题中也加强了推理力气的考查。
(3)加强了数列与极限的综合考查题3.娴熟把握、机敏运用等差、等比数列的性质。
等差、等比数列的有关性质在解决数列问题时应用格外广泛,且格外机敏,主动发觉题目中隐含的相关性质,往往使运算简洁秀丽 .如243546225a a a a a a ++=,可以利用等比数列的性质进行转化:从而有223355225a a a a ++=,即235()25a a +=. 4.对客观题,应留意寻求简捷方法 解答历年有关数列的客观题,就会发觉,除了常规方法外,还可以用更简捷的方法求解.现介绍如下: ①借助特殊数列. ②机敏运用等差数列、等比数列的有关性质,可更加精确 、快速地解题,这种思路在解客观题时表现得更为突出,很多数列客观题都有机敏、简捷的解法5.在数列的学习中加强力气训练 数列问题对力气要求较高,特殊是运算力气、归纳猜想力气、转化力气、规律推理力气更为突出.一般来说,考题中选择、填空题解法机敏多变,而解答题更是考查力气的集中体现,尤其近几年高考加强了数列推理力气的考查,应引起我们足够的重视.因此,在平常要加强对力气的培育。
第三节 等比数列及其前n 项和[考点要求] 1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.4.了解等比数列与指数函数的关系.(对应学生用书第106页)1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的数学表达式为a n +1an =q (n ∈N *,q 为非零常数).(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项⇒a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式(1)通项公式:a n =a 1q n -1=a m q n -m .(2)前n 项和公式:S n =⎩⎨⎧na 1(q =1),a 1(1-q n)1-q =a 1-a n q 1-q (q ≠1).[常用结论]等比数列的常用性质1.在等比数列{a n }中,若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k .2.若数列{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍然是等比数列.3.等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n ,其中当公比为-1时,n 为偶数时除外.一、思考辨析(正确的打“√”,错误的打“×”)(1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( ) (2)G 为a ,b 的等比中项⇔G 2=ab .( )(3)若{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( ) (4)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.( )(5)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( ) [答案] (1)× (2)× (3)× (4)× (5)× 二、教材改编1.在等比数列{a n }中,a 3=2,a 7=8,则a 5等于( ) A .5 B .±5 C .4 D .±42.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A .13 B .-13 C .19 D .-193.在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________. 4.一种专门占据内存的计算机病毒开机时占据内存1 MB ,然后每3秒自身复制一次,复制后所占内存是原来的2倍,那么开机________秒,该病毒占据内存8 GB(1 GB =210 MB).(对应学生用书第106页)考点1 等比数列的基本运算等比数列基本量运算的解题策略(1)等比数列的通项公式与前n 项和公式共涉及五个量a 1,a n ,q ,n ,S n ,已知其中三个就能求另外两个(简称“知三求二”).(2)运用等比数列的前n 项和公式时,注意分q =1和q ≠1两类分别讨论.1.设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4-2,3S 2=a 3-2,则公比q =( ) A .3 B .4 C .5 D .62.(2019·全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 24=a 6,则S 5=________. 3.等比数列{a n }的各项均为实数,其前n 项和为S n ,已知a 3=32,S 3=92,则a 2=________. 4.(2018·全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和,若S m =63,求m .抓住基本量a 1, q ,借用方程思想求解是解答此类问题的关键,求解中要注意方法的择优. 考点2 等比数列的判定与证明判定一个数列为等比数列的常见方法(1)定义法:若a n +1a n =q (q 是不为零的常数),则数列{a n }是等比数列;(2)等比中项法:若a 2n +1=a n a n +2(n ∈N +,a n ≠0),则数列{a n }是等比数列; (3)通项公式法:若a n =Aq n -1(A ,q 是不为零的常数),则数列{a n }是等比数列.设数列{a n }中,a 1=1,a 2=53,a n +2=53a n +1-23a n ,令b n =a n +1-a n (n ∈N *) (1)证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式.[逆向问题] 已知数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值;(2)是否存在常数λ,使得{a n +λ}为等比数列?若存在,求出λ的值和通项公式a n ,若不存在,请说明理由.[解] (1)当n =1时,S 1=a 1=2a 1-3,解得a 1=3, 当n =2时,S 2=a 1+a 2=2a 2-6,解得a 2=9, 当n =3时,S 3=a 1+a 2+a 3=2a 3-9,解得a 3=21. (2)假设{a n +λ}是等比数列,则(a 2+λ)2=(a 1+λ)(a 3+λ), 即(9+λ)2=(3+λ)(21+λ),解得λ=3. 下面证明{a n +3}为等比数列:∵S n =2a n -3n ,∴S n +1=2a n +1-3n -3,∴a n +1=S n +1-S n =2a n +1-2a n -3,即2a n +3=a n +1, ∴2(a n +3)=a n +1+3,∴a n +1+3a n +3=2, ∴存在λ=3,使得数列{a n +3}是首项为a 1+3=6,公比为2的等比数列. ∴a n +3=6×2n -1,即a n =3(2n -1)(n ∈N *).(1)证明一个数列为等比数列常用定义法与通项公式法,其他方法只用于选择、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.(2)已知等比数列求参数的值,常采用特殊到一般的方法求解,如本例的逆向问题.[教师备选例题]设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式.(2019·全国卷Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n-a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列;(2)求{a n }和{b n }的通项公式. 考点3 等比数列性质的应用等比数列性质的应用可以分为3类 (1)通项公式的变形. (2)等比中项的变形.(3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(1)[一题多解]已知数列{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10等于( ) A .7 B .5 C .-5 D .-7 (2)设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( )A .2B .73C .310 D .1或2(3)已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________.在解决等比数列的有关问题时,要注意挖掘隐含条件,特别关注项a n 或和S n 的下角标数字间的内在关系,活用性质,减少运算量,提高解题速度.[教师备选例题]数列{a n }是一个项数为偶数的等比数列,所有项之和是偶数项之和的4倍,前三项之积为64,则此数列的通项公式a n =________.12×⎝ ⎛⎭⎪⎫13n -1 [设此数列{a n }的公比为q ,由题意,知S 奇+S 偶=4S 偶,所以S 奇=3S 偶,所以q =S 偶S 奇=13.又a 1a 2a 3=64,即a 1(a 1q )(a 1q 2)=a 31q 3=64,所以a 1q =4.又q =13,所以a 1=12,所以a n =a 1q n -1=12×⎝ ⎛⎭⎪⎫13n -1.]1.已知数列{a n }是等比数列,若a 2=1,a 5=18,则a 1a 2+a 2a 3+…+a n a n +1(n ∈N +)的最小值为( )A .83 B .1 C .2 D .32.等比数列{a n }满足a n >0,且a 2a 8=4,则log 2a 1+log 2a 2+log 2a 3+…+log 2a 9=________.。
第3讲 等比数列及其前n 项和一、知识梳理1.等比数列的有关概念 (1)定义:①文字语言:一个数列从第2项起,每一项与它的前一项的比都等于同一个常数(非零). ②符号语言:a n +1a n=q (n ∈N *,q 为非零常数).(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 2=ab . 2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的性质已知数列{a n }是等比数列,S n 是其前n 项和.(m ,n ,p ,q ,r ,k ∈N *) (1)若m +n =p +q =2r ,则a m ·a n =a p ·a q =a 2r ; (2)数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列;(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…仍是等比数列(此时{a n }的公比q ≠-1). 常用结论1.等比数列的单调性当q >1,a 1>0或0<q <1,a 1<0时,{a n }是递增数列; 当q >1,a 1<0或0<q <1,a 1>0时,{a n }是递减数列; 当q =1时,{a n }是常数列. 2.等比数列与指数函数的关系当q ≠1时,a n =a 1q ·q n,可以看成函数y =cq x ,是一个不为0的常数与指数函数的乘积,因此数列{a n }各项所对应的点都在函数y =cq x 的图象上.3.等比数列{a n }的前n 项和S n =A +B ·C n ⇔A +B =0,公比q =C (A ,B ,C 均不为零) 二、习题改编1.(必修5P53练习T3改编)对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列D .a 3,a 6,a 9成等比数列解析:选 D.设等比数列的公比为q ,则a 3=a 1q 2,a 6=a 1q 5,a 9=a 1q 8,满足(a 1q 5)2=a 1q 2·a 1q 8,即a 26=a 3·a 9.2.(必修5P53习题T1改编)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=54,a 2+a 4=52,则q = . 答案:23.(必修5P54A 组T8改编)在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为 .解析:设该数列的公比为q ,由题意知, 243=9×q 3,得q 3=27,所以q =3.所以插入的两个数分别为9×3=27,27×3=81. 答案:27,81一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起每一项与它的前一项的比都是常数,则这个数列是等比数列.( )(2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( ) (3)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( )(4)如果{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( ) (5)等比数列中不存在数值为0的项.( ) 答案:(1)× (2)× (3)× (4)× (5)√ 二、易错纠偏常见误区(1)运用等比数列的前n 项和公式时,忽略q =1的情况; (2)“G 2=ab ”是“a ,G ,b 成等比数列”的必要不充分条件; (3)对等比数列项的符号不能作出正确判断.1.已知在等比数列{a n }中,a 3=7,前三项之和S 3=21,则公比q 的值是( ) A .1 B .-12C .1或-12D .-1或12解析:选C.当q =1时,a n=7,S 3=21,符合题意;当q ≠1时,⎩⎪⎨⎪⎧a 1q 2=7,a 1(1-q 3)1-q =21,得q =-12.综上,q 的值是1或-12,故选C.2.在等比数列{a n }中,a 3=2,a 7=8,则a 5= .解析:因数列{a n }为等比数列,则a 25=a 3a 7=16,又a 3>0,所以a 5=4. 答案:43.在等比数列{a n }中,a 2=4,a 10=16,则a 2和a 10的等比中项为 . 解析:设a 2与a 10的等比中项为G ,因为a 2=4,a 10=16,所以G 2=4×16=64,所以G =±8.答案:±8等比数列的基本运算(师生共研)(1)(一题多解)(2019·高考全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.若a 1=1,S 3=34,则S 4= .(2)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16.则a n = .【解析】 (1)通解:设等比数列{a n }的公比为q ,由a 1=1及S 3=34,易知q ≠1.把a 1=1代入S 3=a 1(1-q 3)1-q=34,得1+q +q 2=34,解得q =-12,所以S 4=a 1(1-q 4)1-q=1×⎣⎡⎦⎤1-⎝⎛⎭⎫-1241-⎝⎛⎭⎫-12=58. 优解一:设等比数列{a n }的公比为q ,因为S 3=a 1+a 2+a 3=a 1(1+q +q 2)=34,a 1=1,所以1+q +q 2=34,解得q =-12,所以a 4=a 1·q 3=⎝⎛⎭⎫-123=-18,所以S 4=S 3+a 4=34+⎝⎛⎭⎫-18=58. 优解二:设等比数列{a n }的公比为q ,由题意易知q ≠1.设数列{a n }的前n 项和S n =A (1-q n )(其中A 为常数),则a 1=S 1=A (1-q )=1 ①,S 3=A (1-q 3)=34 ②,由①②可得A =23,q =-12.所以S 4=23×⎣⎡⎦⎤1-⎝⎛⎭⎫-124=58.(2)设{a n }的公比为q ,由题设得 2q 2=4q +16,即q 2-2q -8=0. 解得q =-2(舍去)或q =4.因此{a n }的通项公式为a n =2×4n -1=22n -1. 【答案】 (1)58(2)22n -1解决等比数列有关问题的常见数学思想(1)方程思想:等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解.(2)分类讨论思想:因为等比数列的前n 项和公式涉及对公比q 的分类讨论,所以当某一参数为公比进行求和时,就要对参数是否为1进行分类讨论.(3)整体思想:应用等比数列前n 项和公式时,常把q n 或a 11-q当成整体进行求解.1.(一题多解)(2020·福州市质量检测)等比数列{a n }的各项均为正实数,其前n 项和为S n .若a 3=4,a 2a 6=64,则S 5=( )A .32B .31C .64D .63解析:选B.通解:设首项为a 1,公比为q ,因为a n >0,所以q >0,由条件得⎩⎪⎨⎪⎧a 1·q 2=4,a 1q ·a 1q 5=64,解得⎩⎪⎨⎪⎧a 1=1,q =2,所以S 5=31,故选B.优解:设首项为a 1,公比为q ,因为a n >0,所以q >0,由a 2a 6=a 24=64,a 3=4,得q =2,a 1=1,所以S 5=31,故选B.2.(2019·高考全国卷Ⅲ)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( )A .16B .8C .4D .2解析:选C.设等比数列{a n }的公比为q (q >0),由a 5=3a 3+4a 1,得a 1q 4=3a 1q 2+4a 1,得q 4-3q 2-4=0,令q 2=t ,则t 2-3t -4=0,解得t =4或t =-1(舍去),所以q 2=4,即q =2或q =-2(舍去).又S 4=a 1(1-q 4)1-q=15,所以a 1=1,所以a 3=a 1q 2=4.故选C.3.设等比数列{a n }的前n 项和为S n ,且满足a 6=8a 3,则( ) A .数列{a n }的公比为2 B .数列{a n }的公比为8 C.S 6S 3=8 D .S 6S 3=4解析:选A.因为等比数列{a n }的前n 项和为S n ,且满足a 6=8a 3,所以a 6a 3=q 3=8,解得q =2,所以S 6S 3=1-q 61-q 3=1+q 3=9.等比数列的判定与证明(典例迁移)(1)已知数列{a n }是等比数列,则下列命题不正确的是( ) A .数列{|a n |}是等比数列B .数列{a n a n +1}是等比数列C .数列⎩⎨⎧⎭⎬⎫1a n 是等比数列D .数列{lg a 2n}是等比数列 (2)已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2(n ∈N *),若b n =a n +1-2a n ,求证:{b n }是等比数列.【解】 (1)选D.因为数列{a n }是等比数列,所以a n +1a n =q .对于A ,|a n +1||a n |=⎪⎪⎪⎪⎪⎪a n +1a n =|q |,所以数列{|a n |}是等比数列,A 正确;对于B ,a n +1a n +2a n a n +1=q 2,所以数列{a n a n +1}是等比数列,B 正确;对于C ,1a n +11a n =a n a n +1=1q ,所以数列⎩⎨⎧⎭⎬⎫1a n 是等比数列,C 正确;对于D ,lg a 2n +1lg a 2n =2lg a n +12lg a n =lg a n +1lg a n,不一定是常数,所以D 错误. (2)证明:因为a n +2=S n +2-S n +1=4a n +1+2-4a n -2=4a n +1-4a n ,所以b n +1b n=a n +2-2a n +1a n +1-2a n =4a n +1-4a n -2a n +1a n +1-2a n =2a n +1-4a na n +1-2a n=2.因为S 2=a 1+a 2=4a 1+2,所以a 2=5. 所以b 1=a 2-2a 1=3.所以数列{b n }是首项为3,公比为2的等比数列.【迁移探究1】 (变问法)若本例(2)中的条件不变,试求{a n }的通项公式. 解:由(2)知b n =a n +1-2a n =3·2n -1, 所以a n +12n +1-a n 2n =34,故⎩⎨⎧⎭⎬⎫a n 2n 是首项为12,公差为34的等差数列.所以a n 2n =12+(n -1)·34=3n -14,所以a n =(3n -1)·2n -2.【迁移探究2】 (变条件)在本例(2)中,若c n =a n3n -1,证明:数列{c n }为等比数列.证明:由[迁移探究1]知,a n =(3n -1)·2n -2,所以c n =2n -2. 所以c n +1c n =2n -12n -2=2,又c 1=a 13×1-1=12,所以数列{c n }是首项为12,公比为2的等比数列.等比数列的判定方法(1)定义法:若a n +1a n =q (q 为非零常数)或a na n -1=q (q 为非零常数且n ≥2),则{a n }是等比数列.(2)中项公式法:若数列{a n }中a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列.(3)通项公式法:若数列的通项公式可写成a n =c ·q n -1(c ,q 均为不为0的常数,n ∈N *),则{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n -k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列.[提醒] (1)前两种方法是判定等比数列的常用方法,常用于证明;后两种方法常用于选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.1.(一题多解)已知等比数列{a n }的前n 项和为S n =a ·2n -1+16,则a 的值为( )A .-13B.13 C .-12D .12解析:选A.法一:当n ≥2时,a n =S n -S n -1=a ·2n -1-a ·2n -2=a ·2n -2,当n =1时,a 1=S 1=a +16,所以a +16=a 2,所以a =-13.法二:因为等比数列的前n 项和S n =k ×q n -k ,则12a =-16,a =-13.2.(2019·高考全国卷Ⅱ节选)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.证明:{a n +b n }是等比数列,{a n -b n }是等差数列.证明:由题设得4(a n +1+b n +1)=2(a n +b n ),即a n +1+b n +1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8,即a n +1-b n +1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列.等比数列的性质及应用(多维探究) 角度一 等比数列项的性质的应用(1)(2020·洛阳市第一次联考)在等比数列{a n }中,a 3,a 15是方程x 2+6x +2=0的两根,则a 2a 16a 9的值为( )A .-2+22B .- 2 C. 2D .-2或 2(2)等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5= .【解析】 (1)设等比数列{a n }的公比为q ,因为a 3,a 15是方程x 2+6x +2=0的两根,所以a 3·a 15=a 29=2,a 3+a 15=-6,所以a 3<0,a 15<0,则a 9=-2,所以a 2a 16a 9=a 29a 9=a 9=- 2.(2)由题意知a 1a 5=a 23=4,因为数列{a n }的各项均为正数,所以a 3=2.所以a 1a 2a 3a 4a 5=(a 1a 5)·(a 2a 4)·a 3=(a 23)2·a 3=a 53=25.所以log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2(a 1a 2a 3a 4a 5)=log 225=5.【答案】 (1)B (2)5角度二 等比数列前n 项和的性质的应用(1)已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q = .(2)设等比数列{a n }的前n 项和为S n ,若S 6S 3=12,则S 9S 3= .【解析】 (1)由题意,得⎩⎪⎨⎪⎧S 奇+S 偶=-240,S 奇-S 偶=80,解得⎩⎪⎨⎪⎧S 奇=-80,S 偶=-160,所以q =S 偶S 奇=-160-80=2.(2)设等比数列{a n }的公比为q ,因为S 6S 3=12,所以{a n }的公比q ≠1.由a 1(1-q 6)1-q÷a 1(1-q 3)1-q =12,得q 3=-12,所以S 9S 3=1-q 91-q 3=34. 【答案】 (1)2 (2)34等比数列性质应用问题的解题突破口等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项公式的变形,三是前n 项和公式的变形,根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.[提醒] 在应用相应性质解题时,要注意性质成立的前提条件,有时需要对性质进行适当变形.此外,解题时注意“设而不求”的运用.1.已知等比数列{a n }中,a 4+a 8=-2,则a 6(a 2+2a 6+a 10)的值为( ) A .4 B .6 C .8D .-9解析:选A.a 6(a 2+2a 6+a 10)=a 6a 2+2a 26+a 6a 10=a 24+2a 4a 8+a 28=(a 4+a 8)2,因为a 4+a 8=-2,所以a 6(a 2+2a 6+a 10)=4.2.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于( ) A .12 B .13 C .14D .15解析:选 C.因为数列{a n }是各项均为正数的等比数列,所以a 1a 2a 3,a 4a 5a 6,a 7a 8a 9,a 10a 11a 12,…也成等比数列.不妨令b 1=a 1a 2a 3,b 2=a 4a 5a 6,则公比q =b 2b 1=124=3.所以b m =4×3m -1.令b m =324,即4×3m -1=324,解得m =5, 所以b 5=324,即a 13a 14a 15=324. 所以n =14.3.在等比数列{a n }中,若a 7+a 8+a 9+a 10=158,a 8a 9=-98,则1a 7+1a 8+1a 9+1a 10= .解析:因为1a 7+1a 10=a 7+a 10a 7a 10,1a 8+1a 9=a 8+a 9a 8a 9,由等比数列的性质知a 7a 10=a 8a 9, 所以1a 7+1a 8+1a 9+1a 10=a 7+a 8+a 9+a 10a 8a 9=158÷⎝⎛⎭⎫-98=-53. 答案:-53思想方法系列11 分类讨论思想求解数列问题(2020·武汉市调研测试)已知正项等比数列{a n }的前n 项和为S n ,满足a 1=1,a 3-4a 1=0.(1)求S n ;(2)令b n =a n -15,求T =|b 1|+|b 2|+…+|b 10|的值.【解】 (1){a n }是正项等比数列,由a 3-4a 1=0,所以a 1q 2-4a 1=0 所以q =2,则a n 的前n 项和S n =1-2n1-2=2n -1.(2)由(1)知a n =2n -1,当n ≥5时,b n =2n -1-15>0,n ≤4时,b n =2n -1-15<0, 所以T =-(b 1+b 2+b 3+b 4)+(b 5+b 6+…+b 10)=-(a 1+a 2+a 3+a 4-15×4)+(a 5+a 6+…+a 10-15×6)=-S 4+S 10-S 4+60-90 =S 10-2S 4-30=(210-1)-2×(24-1)-30 =210-25-29 =1 024-32-29 =963.分类讨论思想在数列中应用较多,常见的分类讨论有: (1)已知S n 与a n 的关系,要分n =1,n ≥2两种情况. (2)等比数列中遇到求和问题要分公比q =1,q ≠1讨论. (3)项数的奇、偶数讨论.(4)等比数列的单调性的判断注意与a 1,q 的取值的讨论.1.(2020·福建厦门模拟)设等比数列{a n }的前n 项和为S n ,若S n =2n +1+λ,则λ=( ) A .-2 B .-1 C .1D .2解析:选A.法一:当n =1时,a 1=S 1=4+λ. 当n ≥2时,a n =S n -S n -1=(2n +1+λ)-(2n+λ)=2n,此时a n +1a n =2n +12n =2.因为{a n }是等比数列,所以a 2a 1=2,即44+λ=2,解得λ=-2.故选A. 法二:依题意,a 1=S 1=4+λ,a 2=S 2-S 1=4,a 3=S 3-S 2=8,因为{a n }是等比数列,所以a 22=a 1·a 3,所以8(4+λ)=42,解得λ=-2.故选A.2.已知等比数列{a n }中a 2=1,则其前3项的和S 3的取值范围是( ) A .(-∞,-1]B .(-∞,0)∪[1,+∞)C .[3,+∞)D .(-∞,-1]∪[3,+∞)解析:选D.设等比数列{a n }的公比为q , 则S 3=a 1+a 2+a 3=a 2⎝⎛⎭⎫1q +1+q =1+q +1q . 当公比q >0时,S 3=1+q +1q≥1+2q ·1q=3,当且仅当q =1时,等号成立; 当公比q <0时,S 3=1-⎝⎛⎭⎫-q -1q ≤1-2 (-q )·⎝⎛⎭⎫-1q =-1,当且仅当q =-1时,等号成立.所以S 3∈(-∞,-1]∪[3,+∞).[基础题组练]1.(2020·广东六校第一次联考)等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4=( )A .16B .15C .8D .7解析:选B.设公比为q ,由题意得4a 2=4a 1+a 3,即4a 1q =4a 1+a 1q 2,又a 1≠0,所以4q =4+q 2,解得q =2,所以S 4=1×(1-24)1-2=15,故选B.2.(2020·辽宁五校联考)各项为正数的等比数列{a n }中,a 4与a 14的等比中项为22,则log 2a 7+log 2a 11的值为( )A .1B .2C .3D .4解析:选C.由题意得a 4a 14=(22)2=8,由等比数列的性质,得a 4a 14=a 7a 11=8,所以log 2a 7+log 2a 11=log 2(a 7a 11)=log 28=3,故选C.3.(2020·辽宁部分重点高中联考)已知数列{a n }的前n 项和为S n ,满足S n =2a n -1,则{a n }的通项公式a n =( )A .2n -1B .2n -1 C .2n -1D .2n +1解析:选B.当n =1时,S 1=2a 1-1=a 1,所以a 1=1, 当n ≥2时,a n =S n -S n -1=2a n -2a n -1,所以a n =2a n -1, 因此a n =2n -1,故选B.4.(2020·长春市质量监测(一))已知S n 是等比数列{a n }的前n 项和,若公比q =2,则a 1+a 3+a 5S 6=( ) A.13 B.17 C.23D .37解析:选A.法一:由题意知a 1+a 3+a 5=a 1(1+22+24)=21a 1,而S 6=a 1(1-26)1-2=63a 1,所以a 1+a 3+a 5S 6=21a 163a 1=13,故选A.法二:由题意知S 6=a 1+a 2+a 3+a 4+a 5+a 6=a 1+a 3+a 5+(a 2+a 4+a 6)=a 1+a 3+a 5+2(a 1+a 3+a 5)=3(a 1+a 3+a 5),故a 1+a 3+a 5S 6=13,故选A.5.(2020·宁夏中卫一模)中国古代数学著作《算法统宗》中有这一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为( )A .24里B .12里C .6里D .3里解析:选C.记该人每天走的路程里数为{a n },可知{a n }是公比q =12的等比数列,由S 6=378,得S 6=a 1⎝⎛⎭⎫1-1261-12=378,解得a 1=192,所以a 6=192×125=6,故选C.6.(2019·高考全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 24=a 6,则S 5= .解析:通解:设等比数列{a n }的公比为q ,因为a 24=a 6,所以(a 1q 3)2=a 1q 5,所以a 1q =1,又a 1=13,所以q =3,所以S 5=a 1(1-q 5)1-q =13×(1-35)1-3=1213.优解:设等比数列{a n }的公比为q ,因为a 24=a 6,所以a 2a 6=a 6,所以a 2=1,又a 1=13,所以q =3,所以S 5=a 1(1-q 5)1-q=13×(1-35)1-3=1213.答案:12137.(2020·陕西第二次质量检测)公比为2的等比数列{a n }的各项都是正数,且a 2a 12=16,则log 2a 15= .解析:等比数列{a n }的各项都是正数,且公比为2,a 2a 12=16,所以a 1qa 1q 11=16,即a 21q 12=16,所以a 1q 6=22,所以a 15=a 1q 14=a 1q 6(q 2)4=26,则log 2a 15=log 226=6. 答案:68.已知{a n }是递减的等比数列,且a 2=2,a 1+a 3=5,则{a n }的通项公式为 ;a 1a 2+a 2a 3+…+a n a n +1(n ∈N *)= .解析:由a 2=2,a 1+a 3=5,{a n }是递减的等比数列,得a 1=4,a 3=1,a n =4×⎝⎛⎭⎫12n -1,则a 1a 2+a 2a 3+…+a n a n +1是首项为8,公比为14的等比数列的前n 项和.故a 1a 2+a 2a 3+…+a n a n +1=8+2+12+…+8×⎝⎛⎭⎫14n -1=8×⎣⎡⎦⎤1-⎝⎛⎭⎫14n1-14=323×⎣⎡⎦⎤1-⎝⎛⎭⎫14n .答案:a n =4×⎝⎛⎭⎫12n -1323×⎣⎡⎦⎤1-⎝⎛⎭⎫14n 9.(2018·高考全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m . 解:(1)设{a n }的公比为q ,由题设得a n =q n -1. 由已知得q 4=4q 2,解得q =0(舍去),q =-2或q =2. 故a n =(-2)n -1或a n =2n -1.(2)若a n =(-2)n -1,则S n =1-(-2)n3.由S m =63得(-2)m =-188,此方程没有正整数解. 若a n =2n -1,则S n =2n -1.由S m =63得2m =64,解得m =6. 综上,m =6.10.已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a nn .(1)求b 1,b 2,b 3的值;(2)判断数列{b n }是否为等比数列,并说明理由. 解:(1)由条件可得a n +1=2(n +1)na n .将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4, 将n =2代入得,a 3=3a 2,所以,a 3=12, 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列.由条件可得a n +1n +1=2a nn ,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列.[综合题组练]1.(2020·河南郑州三测)已知数列{a n },{b n }满足a 1=b 1=1,a n +1-a n =b n +1b n=3,n ∈N *,则数列{ba n }的前10项和为( )A.12×(310-1) B.18×(910-1) C.126×(279-1) D .126×(2710-1)解析:选D.因为a n +1-a n =b n +1b n=3,所以{a n }为等差数列,公差为3,{b n }为等比数列,公比为3,所以a n =1+3(n -1)=3n -2,b n =1×3n -1=3n -1,所以ba n =33n -3=27n -1,所以{ba n }是以1为首项,27为公比的等比数列,所以{ba n }的前10项和为1×(1-2710)1-27=126×(2710-1),故选D.2.(2020·陕西榆林二模)已知数列{a n }满足a 1=2,na n +1-(n +1)a n =2(n 2+n ),若b n =22a n ,则{b n }的前n 项和S n = .解析:由na n +1-(n +1)a n =2(n 2+n ),得a n +1n +1-a n n =2,又a 1=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为2,公差为2的等差数列,所以a nn =2+2(n -1)=2n ,即a n =2n 2,所以b n =22a n =4n ,所以数列{b n }是首项为4,公比为4的等比数列,所以S n =4-4n +11-4=4n +1-43.答案:4n +1-433.(2020·昆明市诊断测试)已知数列{a n }是等比数列,公比q <1,前n 项和为S n ,若a 2=2,S 3=7.(1)求{a n }的通项公式;(2)设m ∈Z ,若S n <m 恒成立,求m 的最小值.解:(1)由a 2=2,S 3=7得⎩⎪⎨⎪⎧a 1q =2,a 1+a 1q +a 1q 2=7,解得⎩⎪⎨⎪⎧a 1=4,q =12或⎩⎪⎨⎪⎧a 1=1,q =2.(舍去)所以a n =4·⎝⎛⎭⎫12n -1=⎝⎛⎭⎫12n -3.(2)由(1)可知,S n =a 1(1-q n)1-q =4⎝⎛⎭⎫1-12n 1-12=8⎝⎛⎭⎫1-12n <8. 因为a n >0,所以S n 单调递增. 又S 3=7,所以当n ≥4时,S n ∈(7,8). 又S n <m 恒成立,m ∈Z ,所以m 的最小值为8.4.(2020·山西长治二模)S n 为等比数列{a n }的前n 项和,已知a 4=9a 2,S 3=13,且公比q >0.(1)求a n 及S n ;(2)是否存在常数λ,使得数列{S n +λ}是等比数列?若存在,求λ的值;若不存在,请说明现由.解:(1)由题意可得⎩⎪⎨⎪⎧a 1q 3=9a 1q ,a 1(1-q 3)1-q =13,q >0,解得a 1=1,q =3,所以a n =3n -1,S n =1-3n 1-3=3n -12.(2)假设存在常数λ,使得数列{S n +λ}是等比数列, 因为S 1+λ=λ+1,S 2+λ=λ+4,S 3+λ=λ+13,所以(λ+4)2=(λ+1)(λ+13),解得λ=12,此时S n +12=12×3n ,则S n +1+12S n +12=3,故存在常数λ=12,使得数列⎩⎨⎧⎭⎬⎫S n +12是等比数列.。