2020高中化学配位化学的基本概念
- 格式:ppt
- 大小:3.02 MB
- 文档页数:33
高中化学《配位化学和配合物的性质》教案本次教案主要介绍高中化学中的配位化学和配合物的性质。
首先,我们需要了解什么是配位化学。
配位化学是研究配位键的形成、结构、性质和反应的科学,而配合物是由中心金属离子和周围配体通过配位键结合而成的物质。
接下来,我们将从以下几个方面来介绍配位化学和配合物的性质。
一、配位化学和配合物的结构1. 配位键的形成在配位化学中,中心金属离子通过与周围配体形成配位键,从而形成配合物。
常见的配位键包括配位原子间的共价键、金属离子与配体间的离子键、氢键等。
2. 配合物的结构配合物的结构可以分为四种类型:线性型、平面型、立体型和高度立体型。
其中,线性型和平面型的配合物比较简单,而立体型和高度立体型则比较复杂。
二、配位化学和配合物的性质1. 配位化学和配合物的稳定性配合物的稳定性与其中心金属离子的电子构型、配体的种类和数量、配体与中心金属离子之间的配位键强度等因素有关。
一般来说,电子构型稳定、配体种类多、配体与中心金属离子之间的配位键强度大的配合物比较稳定。
2. 配位化学和配合物的颜色许多配合物具有鲜艳的颜色,这是由于它们中心金属离子的电子结构发生了变化。
一般来说,过渡金属离子在形成配合物时会吸收某些波长的光线,而反射其他波长的光线,从而呈现出不同的颜色。
3. 配位化学和配合物的磁性许多过渡金属离子具有磁性,而形成配合物后则会发生磁性变化。
具体来说,当过渡金属离子处于自由状态时,其磁矩比较大;而当其形成配合物后,则会发生磁矩减小或消失的现象。
三、实验操作在实验室中,可以通过以下几种方法来制备和检测配合物:1. 沉淀法沉淀法是一种常见的制备和检测配合物的方法。
具体来说,可以将两种溶液混合在一起,然后观察是否会生成沉淀。
如果生成了沉淀,则说明两种溶液中含有能够形成沉淀的离子或分子,从而可以进一步分析其是否为配合物。
2. 紫外-可见光谱法紫外-可见光谱法是一种常用于检测配合物颜色和稳定性的方法。
高中化学奥林匹克竞赛辅导配合物(配位化合物)化学基础一、配合物的基本概念1.配合物:由中心离子(或原子)和若干个配体分子(或离子)以配位键相结合而形成的复杂分子或离子,通常称为配位单元。
凡是含有配位单元的化合物都称作配位化合物,简称配合物,也叫络合物。
如[Co(NH3)6]3+、[Cr(CN)6]3-、Ni(CO)4都是配位单元,分别称作配阳离子、配阴离子、配分子。
判断物质是否是配合物的关键在于物质是否含有配位单元。
配合物和复盐的区别:前者一定含有配位键,后者没有配位键,如KCl·MgCl2·6H2O是复盐,不是配合物。
2.配合物的组成:(1)配合物的内界和外界:以[Cu(NH3)4]SO4为例,[Cu(NH3)4]2+为内界,SO42-为外界,内外界之间是完全电离的。
内界是配位单元,外界是简单离子。
又如K3[Cr(CN)6]之中,内界是[Cr(CN)6]3-,外界是K+。
配合物可以无外界,但不能没有内界,如Ni(CO)4。
(2)中心离子(原子)和配位体:a.中心离子(原子):又称配合物的形成体或中心体,多为过渡金属离子,如Fe3+、Fe2+、Co2+、Ni2+、Cu2+,也有电中性的原子为配合物的中心原子,如Ni(CO)4、Fe(CO)5中的Ni和Fe都是电中性的原子。
只要能提供接纳孤对电子的空轨道的离子或原子均可作配合物的中心体。
b.配位体:又称配体,是指含有孤对电子的阴离子或分子。
如NH3、Cl-、CN-等。
配位体中直接与中心原子配合的原子,叫做配位原子。
如[Cu(NH3)4]2+配阳离子中,NH3是配位体,其中N原于是配位原子。
配位原子经常是含有孤对电子的原子。
3.配位原子和配位数:配体中给出孤对电子与中心体直接形成配位键的原子,叫配位原子。
配位单元中,中心体周围与中心体直接形成配位键的配位原子的个数,叫配位数。
中心离子的配位数一般为2、4、6、8(配位数为8的较少见),如在[Pt(NH3)6]C14中,配位数为6,配位原子为NH3分子中的6个氮原子。
名词解释1,配位化合物:一类具有特征化学结构的化合物,由中心原子或离子(统称中心原子)和围绕它的称为配位体(简称配体)的分子或离子,完全或部分由配位键结合形成。
2,价键轨道理论:1.两个原子的成单电子若自旋相反则可两两配对形成共价键2.共价键的形成是原子轨道的重叠,重叠程度越大,共价键越稳定3.共价键有方向性和饱和性3,晶体场理论要点:1、中心离子与配体之间看作纯粹的静电作用2、中心离子d轨道在配体(场)作用下,发生能级分裂。
3、d电子在分裂后的d轨道上重排,改变了d电子的能量。
4,分子轨道理论:分子轨道理论从分子整体出发,考虑电子在分子内部的运动状态,是一种化学键的量子理论.该理论的要点有:1.在分子中电子不是属于某个特定的原子,电子不在某个原子轨道中运动,而是在分子轨道中运动.分子中每个运动状态则用波函数表示,即分子轨道;2.分子轨道是由分子中原子的原子轨道线性组合而成,组成后形成的分子轨道数目与结合前的原子轨道数目相等(轨道杂化则是同一原子的不同原子轨道的重新组合,而且分子轨道是多中心的,原子轨道只有一个中心);3.原子轨道线性组合得到分子轨道.其中能量高于原来原子轨道者成为反键分子轨道,能量低于原来原子轨道者称为成键分子轨道;4.每个分子轨道都有对应的图像.5,晶体场稳定化能:若d轨道不是处在全满或全空时,d电子分裂轨道后的总能量低于分裂前轨道的总能量。
这个总能量的降低值,称为晶体场稳定化能。
此能量越大,配合物越稳定。
6,姜泰勒效应:电子在简并轨道中的不对称占据会导致分子的几何构型发生畸变,从而降低分子的对称性和轨道的简并度,使体系的能量进一步下降,这种效应称为姜-泰勒效应。
7,电子组态:电子组态指原子内电子壳层排布的标示。
又称电子构型或核外电子排布。
8,微观态:如果使用分子数分布并且区分具体的分子来描写的系统状态叫热力学系统的微观态。
9,单重态:根据泡里不相容原理,在同一轨道上的两个电子的自旋方向要彼此相反,即基态分子的电子是自旋成对的,净自旋为零,这种电子都配对的分子电子能态称为单重态(singlet state),具有抗磁性。
绪论导课:配位化学一般是指金属和金属离子同其他分子或离子相互反应的化学。
它是在无机化学的基础上发展起来的一门独立的、同时也与化学各分支学科以及物理学、生物学等相互渗透的具有综合性的学科。
配位化学所涉及的化合物类型及数量之多、应用之广,使之成为许多化学分支的汇合口。
现代配位化学几乎渗透到化学及相关学科的各个领域,例如分析化学、有机金属化学、生物无机化学、结构化学、催化活性、物质的分离与提取、原子能工业、医药、电镀、燃料等等。
因此,配位化学的学习和研究不但对发展化学基础理论有着重要的意义,同时也具有非常重要的实际意义。
一、配位化学的任务配位化学是研究各类配合物的合成、结构、性质和应用的一门新型学科。
配合物的合成是重点,结构与性质研究是难点,研究方法是关键。
应用是落脚点。
二、配位化学的学科基础配位化学的学科基础是无机化学,分析化学、有机化学、物理化学和结构化学。
配位化学已成为许多化学分支的汇合口。
配位化学是许多新兴化学学科的基础。
如:超分子化学,酶化学,蛋白质化学,生物无机化学,材料化学,化学生物学,药物化学,高分子化学等。
三、配位化学的研究方法1、合成方法:要求掌握有机和无机化学的合成技术,特别是现今发展起来的水热技术、微波技术、微乳技术、超临界技术等。
2、结构研究:元素分析、紫外光谱、红外光谱、质谱、核磁共振、荧光光谱、X-衍射等。
3、性质研究:电位滴定、循环伏安、磁天平、变温磁化率、交流磁化率、电子顺磁共振、光电子能谱、E-扫描、催化性质、凝胶电泳、园二色谱、核磁共振研究与细胞及DNA 的作用。
4、应用:催化反应用于有机合成、金属酶的模拟、分子识别、金属药物、非线性光学材料、分子磁体、介孔材料、分子机器等。
四、配位化学的学习方法1、课前预习:在上课以前,把下一次课的内容先粗略的看一次,把自己看不懂的内容做上记号,有时间再认真的看一次,如果仍看不懂,做好记录,等待课堂解决。
2、上课:根据课前预习的难度,对较难理解的部分认真听讲,理解教师的分析思路,学习思考问题和解决问题的方法。
高中化学选修3知识点归纳总结高中化学选修3是高中化学课程的一部分,它主要讲解了物质的结构、性质和变化内在的原理,涉及化学反应、化学平衡、化学动力学、氧化还原反应、配位化学、有机化学等方面知识。
下面是高中化学选修3知识点的归纳总结。
一、化学反应1. 化学反应的基本概念和类型化学反应指的是物质之间由于电子重新组合而产生的化学变化。
化学反应的类型包括酸碱反应、氧化还原反应、置换反应、加和反应等。
2. 化学反应中的能量变化吸热反应和放热反应是化学反应中的能量变化表现形式。
化学反应的反应热和平衡常数与反应速率有密切关系。
3. 化学反应的平衡化学反应达到平衡的条件包括浓度、温度、压力等因素。
受影响的因素越多,化学反应就越难达到平衡状态。
二、化学平衡1. 化学平衡的基本概念和例子化学平衡指的是相反反应速率相等,各物质浓度不再发生变化的状态。
酸碱平衡、水解平衡、溶解度平衡等均为化学平衡。
2. 平衡常数和酸碱解离常数平衡常数代表了在平衡状态下各反应物和生成物的浓度比值。
酸碱解离常数代表了在平衡状态下酸或碱解离程度大小的测度,两者具有密切关系。
3. 影响化学平衡的因素温度、浓度、压力、催化剂等因素均可影响化学平衡的位置和速率。
三、氧化还原反应1. 氧化还原反应的基本概念氧化还原反应就是电子转移的反应,还原剂失去电子,氧化剂得到电子。
氧化还原反应是很多反应的基础,应用很广泛。
2. 电化学反应中的重要参数电浓度、电位、电解质浓度、电流密度等是电化学反应中需要考虑的重要参数。
3. 氧化还原反应中的应用氧化还原反应可以应用于生产过程、电池技术、防腐蚀等多个领域,其广泛应用给工业生产带来了新的创新和方便。
四、配位化学1. 配位化学的基本概念化学配位指分子间的元素、分子、离子配合成化合物的情况,如水合物、络合物等。
配体对中心离子的配位形式、配位数、形成常数等是配位化学中的关键概念。
2. 配位化合物的性质配位化合物具有很多特殊性质,如光谱学、磁性、反应性等,为化学研究提供了很多重要实验数据。
化学中的配位化合物理论在化学中,配位化合物是指由一个中心原子或离子和一些其他原子或离子通过共价键或离子键组成的复合物。
鉴于这些原子或离子占据了中心原子或离子周围的特定空间,它们被称为配位体。
配位化合物的形成和性质一直是化学界探索研究的一个中心问题。
19世纪末期,阿尔弗雷德·维尔纳在他的博士论文中提出了配位理论,它是研究和理解配位化合物形成的基础。
配位理论建立在一个基本概念上,即“配位键”是由于一个原子或离子“捐赠”其上未成对电子(又称作孤对电子)形成的。
通过这种方式,配位体与中心原子或离子形成了一种新的化学键,而中心原子或离子被称为大配位离子(或配位中心)。
多数情况下,大配位离子包含过渡金属离子,但它们也可以是某些非金属离子。
同样的,配位体也可以含有金属或非金属原子或离子。
所谓的“配位数”是指可以与大配位离子形成化学键的配位体数。
例如,在六配位络合物中,其中有6个配位体附着于配位中心。
根据维尔纳的配位理论,配位体的种类和数目决定了特定化合物的结构以及化学和物理性能。
最简单的例子是六氨合铜离子([Cu(NH3)6]2+),其中铜离子是六配位的,六个氨分子是配位体。
这种复杂结构可以很好地解释化合物的形成以及其性质和行为。
除了基本的配位理论外,还发现了其他理论,例如强场弱场理论和晶体场理论。
这些理论解释了配位体和配位中心之间的相互作用,从而更好地解释了配位化合物的性质和性质变化。
另一个有趣和实际应用的方面是亲电性和酸化度等相关属性的研究。
例如,在生物化学中,一种名为“辅因子”的分子(例如维生素B12)、性质和活性如何受到空间排列的影响的研究,以及修饰和改变这些分子的方法是该领域中很重要的课题。
最后,配位化合物的理论是一个令人着迷和有趣的研究领域。
随着新的工具和技术的发展,我们将能够理解更多与这些分子的性质和行为相关的细节。
第一节配位化合物的基本概念一.知识储备1.配合物的定义1.定义由中心体(原子或离子)和配位体(阴离子或分子)以配位键的形式结合而形成的具有特定组成和形状的分子,称为配位化合物,简称配合物。
[Ag(NH3)2]Cl、[Cu(NH3)4]SO4、[Ni(CO)4]等皆为配合物,其中[Ag(NH3)2]+、[Cu(NH3)4]2+称为配离子,[Ni(CO)4]称为配分子。
2.配合物特征(1)含有配位键(中心体与配位体间以配位键相结合);(2)配离子或配分子是不可分割的整体(存在于固体或溶液中)。
2.配合物的组成[Ni(CO)4]——只有内界1.中心体(离子或原子):大多数是带正电的阳离子,也有中性原子,甚至是金属阴离子,其必备的条件是具有空轨道。
(1)多数为副族金属离子:(2)中性原子:如Ni(CO)4、Fe(CO)5等中的Ni、Fe原子。
(3)金属阴离子:如Fe(CO)42-中的Fe2-。
(4)高氧化态的金属(主族金属元素)和非金属元素的离子:如[AlF6]3-中的Al3+,[SiF6]2-中的Si(Ⅳ),PF6-中的P(Ⅴ)等。
碱金属和碱土金属的离子作为中心体的能力要比副族金属离子弱得多。
2.配位体(简称配体):含有孤对电子或π键电子对以及多个不定域电子的分子或离子。
如:阴离子X-、OH-、SCN-、CN-等和中性分子H2O、NH3、CO、醇、胺、醚等都含有至少一对孤电子,它们都可作为配体;乙烯C2H4、苯C6H6、环戊二烯C5H5等都含有π键电子对或多个不定域电子,它们也可以作为配体,称为π配体。
(1)配位原子:配体中直接同中心离子(或原子)配合的原子。
例如:NH3中的N原子、CO和CN-中的C原子等。
常见的配位原子是位于周期表中p区的非金属元素的原子——ⅣA、ⅤA、ⅥA、ⅦA,如C、N、P、O、S、F、Cl、Br、I等。
(2)配体的类型:①单齿配体:只含有一个配位原子的配体,如:NH3、H2O、X-、CO等。