一-2命题逻辑等值演算(精选)
- 格式:ppt
- 大小:2.97 MB
- 文档页数:61
第二章作业评分要求:1. 每小题6分: 结果正确1分; 方法格式正确3分; 计算过程2分. 合计48分2. 给出每小题得分(注意: 写出扣分理由)3. 总得分在采分点1处正确设置.一. 证明下面等值式(真值表法, 解逻辑方程法, 等值演算法, 三种方法每种方法至少使用一次):说明证1. p ⇔(p ∧q)∨(p ∧¬q)解逻辑方程法设 p ↔((p ∧q)∨(p ∧¬q)) =0, 分两种情况讨论:⎩⎨⎧=⌝∧∨∧=0)()(1)1(q p q p p 或者 ⎩⎨⎧=⌝∧∨∧=1)()(0)2(q p q p p (1)(2)两种情况均无解, 从而, p ↔(p ∧q)∨(p ∧¬q)无成假赋值, 为永真式. 等值演算法(p ∧q)∨(p ∧¬q)⇔ p ∧(q ∨¬q)∧对∨的分配率⇔ p ∧1 排中律⇔ p 同一律 真值表法2. (p→q)∧(p→r)⇔p→(q∧r)等值演算法(p→q)∧(p→r)⇔ (¬p∨q)∧(¬p∨r)蕴含等值式⇔¬p∨(q∧r)析取对合取的分配律⇔ p→(q∧r)蕴含等值式3. ¬(p↔q)⇔(p∨q)∧¬(p∧q)等值演算法¬(p↔q)⇔¬( (p→q)∧(q→p) )等价等值式⇔¬( (¬p∨q)∧(¬q∨p) )蕴含等值式⇔¬( (¬p∧¬q)∨(p∧q) )合取对析取分配律, 矛盾律, 同一律⇔ (p∨q)∧¬(p∧q)德摩根律4. (p∧¬q)∨(¬p∧q)⇔(p∨q)∧¬(p∧q)等值演算法(p∧¬q)∨(¬p∧q)⇔ (p∨q)∧¬(p∧q)析取对合取分配律, 排中律, 同一律说明: 用真值表法和解逻辑方程法证明相当于证明为永真式.等值演算法证明时每一步后面最好注明理由以加深印象, 熟练后可以不写. 由于等值演算法证明具有较强的技巧性, 平时应注意总结心得.二. 求下列公式的主析取范式与主合取范式(等值演算法与用成真赋值或成假赋值求解都至少使用一次):1.2.3.4.1. (¬p→q)→(¬q∨p)解(¬p→q)→(¬q∨p)⇔ (p∨q)→(¬q∨p)蕴含等值式⇔ (¬p∧¬q)∨(¬q∨p)蕴含等值式, 德摩根律⇔ (¬p∧¬q)∨¬q ∨ p结合律⇔ p∨¬q吸收律, 交换律⇔ M1因此, 该式的主析取范式为m0∨m2∨m32. (¬p→q)∧(q∧r)解逻辑方程法设 (¬p→q)∧(q∧r) =1, 则¬p→q=1且 q∧r=1,解得q=1, r=1, p=0 或者 q=1, r=1, p=1, 从而所求主析取范式为 m3∨m7, 主合取范式为M0∧M1∧M2∧M4∧M5∧M6等值演算法(¬p→q)∧(q∧r)(p q)(q r) 蕴含等值式(p q r)(q r) 对分配律, 幂等律(p q r) (p q r)(p q r) 同一律, 矛盾律, 对分配律m7 m3主合取范式为M0∧M1∧M2∧M4∧M5∧M63. (p↔q)→r解逻辑方程法设 (p↔q)→r =0, 解得 p=q=1, r=0 或者 p=q=0, r=0, 从而所求主合取范式为M0∧M6, 主析取范式为m1∨m2∨m3∨m4∨m5∨m7等值演算法(p↔q)→r((p q)(q p))r 等价等值式((p q)(q p))r 蕴含等值式(p q)(q p)r 德摩根律, 蕴含等值式的否定(参见PPT)(p q r)(q p r) 对分配律, 矛盾律, 同一律M0 M6主析取范式为m1∨m2∨m3∨m4∨m5∨m74. (p→q)∧(q→r)解等值演算法(p→q)∧(q→r)(p q)(q r) 蕴含等值式(p q)(p r)(q r) 对分配律, 矛盾律, 同一律(p q r)(p q r) (p q r)(p q r)(p q r)(p q r)m1 m0 m3 m7主合取范式为M2 M4 M5 M6.解逻辑方程法设 (p q) (q r) = 1, 则p q =1 且 q r =1.前者解得: p=0, q=0; 或者 p=0, q=1; 或者 p=1, q=1.后者解得: q=0, r=0; 或者 q=0, r=1; 或者 q=1, r=1.综上可得成真赋值为 000, 001, 011, 111, 从而主析取范式为m0m1m3m7, 主合取范式为M2 M4 M5 M6.真值表法公式 (p q) (q r) 真值表如下:p q r(p q) (qr)00010011010001111000101011001111013724 M5 M6.。
命题公式等值演算命题公式等值演算(Propositional Formula Equivalence)是数理逻辑领域中的一个重要概念和技巧。
本文将介绍命题公式等值演算的基本思想和常用方法,并通过一些例子来详细说明。
一、命题公式等值关系的定义在逻辑学和计算机科学中,命题公式是由包含命题变量、逻辑运算符和括号构成的表达式。
而命题公式等值关系则是指两个命题公式具有相同的真值。
换句话说,当且仅当两个命题公式在每一个赋值下具有相同的真值时,它们才是等值的。
例如,对于命题变量p和q,表达式(p∧q)∨(¬p∧¬q)和(p∨¬q)∧(¬p∨q)是等值的,因为它们在每一个赋值下的真值相同。
二、命题公式等值演算的基本规则命题公式等值演算是通过一系列基本规则来推导等值式的过程。
下面是一些常用的基本规则:1. 交换律:p∧q ≡ q∧p,p∨q ≡ q∨p2. 结合律:(p∧q)∧r ≡ p∧(q∧r),(p∨q)∨r ≡ p∨(q∨r)3. 分配律:p∧(q∨r) ≡ (p∧q)∨(p∧r),p∨(q∧r) ≡ (p∨q)∧(p∨r)4. 吸收律:p∧(p∨q) ≡ p,p∨(p∧q) ≡ p5. 否定律:p∨¬p ≡ T,p∧¬p ≡ F6. 德摩根定律:¬(p∧q) ≡ ¬p∨¬q,¬(p∨q) ≡ ¬p∧¬q7. 双重否定律:¬(¬p) ≡ p三、命题公式等值演算的应用命题公式等值演算是数理逻辑中的一项基础技术,可以应用于证明命题的等价关系、简化复杂的命题公式以及构造等价的命题公式等领域。
1. 证明等价关系通过命题公式等值演算,可以证明两个命题公式之间的等价关系。
例如,要证明(p∨q)∧(¬p∨q) ≡ q,可以使用分配律、交换律和吸收律等基本规则进行推导。
2. 简化命题公式当给定一个复杂的命题公式时,可以利用命题公式等值演算的基本规则来简化它,使得它更加易于理解和计算。
第二章命题逻辑等值演算例1 . 设三元真值函数f为:f(0,0,0)=0,f(0,0,1)=1,f(0,1,0)=0,f(1,0,0)=1 f(0,1,1)=1,f(1,0,1)=1,f(1,1,0)=0,f(1,1,1)=1 试用一个仅含联结词→,⌝的命题形式来表示f 。
解:则根据真值表法可以求出f的主合取范式为:(⌝P∨⌝Q∨R)∧(P∨⌝Q∨R)∧(P∨Q∨R)而:(⌝P∨⌝Q∨R)∧(P∨⌝Q∨R)∧(P∨Q∨R)⇔(⌝P∨⌝Q∨R)∧(P∨R)⇔((⌝P∨⌝Q)∧P)∨R⇔(P∧⌝Q)∨R又由于:P∧Q⇔⌝(P→⌝Q) P∨Q⇔⌝P→Q所以,(P∧⌝Q) ∨R⇔⌝( P∧⌝Q)→R⇔⌝(⌝(P→Q))→R所以,f可以用仅含→,⌝的命题⌝(⌝(P→Q))→R来表示。
例2 . 不用真值表判断下列公式是永真式、永假式还是其它。
(1)(P∨Q)→(P∧Q) ;(2)⌝((Q→P)∨⌝P)∧(P∨R) ;(3)((⌝P∨Q)→R)→((P∨⌝Q)∨R) .解:(1)(P∨Q)→(P∧Q) ⇔⌝(P∨Q)∨(P∧Q) ⇔(⌝P∧⌝Q)∨(P∧Q) 所以,(P∨Q)→(P∧Q)既非永真式也非永假式。
(2)⌝((Q→P)∨⌝P)∧(P∨R) ⇔⌝((⌝Q∨P)∨⌝P)∧(P∨R)⇔⌝T∧(P∨R) ⇔F∧(P∨R) ⇔F所以,⌝((Q→P)∨⌝P)∧(P∨R)为永假式。
(3)((⌝P∨Q)→R)→((P∨⌝Q)∨R) ⇔(⌝(⌝P∨Q)∨R)→((P∨⌝Q)∨R) ⇔((P∨⌝Q)∨R)→((P∨⌝Q)∨R) ⇔T所以,((⌝P∨Q)→R)→((P∨⌝Q)∨R)为永真式。
例3 .证明下列等价式。
(1)(P→Q)∧(P→R) ⇔P→Q∧R ;(2)P∧Q∧(⌝P∨⌝Q) ⇔⌝P∧⌝Q∧(P∨Q) .解:说明: 这两道题看似麻烦,但是如果不采用直接推导的方法,而是利用范式或是左右夹击推导的方法,会起到事半功倍的效果。
1命题逻辑的等值演算这一讲讨论命题公式之间的等值关系,其中一些重要的等值关系将用于对命题公式进行等值运算和设计推理规则。
1. 等值式定义1.1 若命题公式A 和B 是恒等的布尔代数式,即在任何赋值下二者的值总相等,则称二者是等值的,记为A B A B ≡⇔或者称为等值式。
注意,等值式不是逻辑公式,而是逻辑学的公式。
显然,A ≡B 当且仅当A B ↔是永真公式。
等值关系的性质:(1) 自反性:对任何公式A ,都有 A A ≡。
(2) 对称性:若 A B ≡,则 B A ≡。
(3) 传递性:若 A B ≡且若 B C ≡,则 A C ≡。
例1.2 试证明下列等值式。
a a ⌝⌝≡证明:当a =1时,左式=101⌝⌝=⌝==右式。
当a =0时,左式=010⌝⌝=⌝==右式。
因此,左式恒等于右式。
依定义,该等值式成立。
例1.3试证明下列等值式。
()()() a b c a b a c ∧∨≡∧∨∧证明:当a =1时,左式=b c ∨,右式=b c ∨,两边相等。
当a =0时,左式=0,右式=0,两边相等。
因此,该等值式成立。
2上述两例中的证明方法可以称为代数分析法。
还有一种演算方法,可以将将左式等值地变形为右式。
这种保持公式真值的演算称为等值演算。
2. 等值演算规则:替换等值演算是将当前公式中的某个子公式替换为与之等值的公式。
替换在课本中称为置换,与抽象代数中的置换(permutation )是不同的概念。
替换的定义如下。
定义3.1 设[] A Φ是一个命题公式,A 是出现在其中某处的一个子公式。
若用另外一个公式B 替换[] A Φ中的A ,则可得一个新公式,记为[] A Φ。
我们称这种公式变形为替换(replacement )。
注意,这里A 是指[] A Φ中某一处出现的子公式,不是[] A Φ中所有与A 相同的子公式。
例如,将()()p q p r ⌝⌝→∨⌝⌝→中第二次出现的子公式p ⌝⌝替换为p ,得()()p q p r ⌝⌝→∨→定理3.2(替换原理)若 A B ≡,则[][] A B Φ≡Φ。