高中物理学习方法--模型
- 格式:pdf
- 大小:13.48 KB
- 文档页数:5
高中物理学习中的数学建模技巧在高中物理学习中,数学建模是一项重要的技巧。
通过数学建模,我们可以将物理问题转化为数学问题,并通过数学方法求解,从而更加深入地理解物理现象。
本文将介绍几种高中物理学习中常用的数学建模技巧,并探讨其应用。
一、单位换算与量纲分析在物理学习中,单位换算是一个基本的技巧。
对于不同的物理量,我们常常需要进行单位换算,以便于比较和计算。
例如,当我们需要将速度从米/秒转换为千米/小时时,就需要进行单位换算。
在进行单位换算时,我们需要注意保留正确的数量级,并仔细处理单位之间的关系。
量纲分析是另一个重要的数学建模技巧。
通过对物理量的量纲进行分析,我们可以推断出物理量之间的关系,并建立相应的数学模型。
例如,对于弹簧的周期,我们可以通过量纲分析得到与弹簧常数、质量和弹簧振幅有关的关系式。
通过单位换算与量纲分析,我们可以更好地理解和解决物理问题。
二、函数拟合与数据处理在实验中,我们常常需要通过测量和观察获得一系列数据,然后将这些数据进行处理和分析。
函数拟合是一种常用的数据处理技巧。
通过拟合实验数据与某个数学函数的关系,我们可以得到一个数学模型,从而预测和分析更多的数据。
例如,在光电效应实验中,我们可以通过对实验数据进行指数拟合,得到光电效应的定律,并用该定律解释更多的实验现象。
数据处理是与函数拟合密切相关的一项技巧。
在处理实验数据时,我们需要进行平均值计算、误差分析、线性回归等操作,以得到可靠的结果。
例如,在测量物体的重力加速度时,我们需要通过多次测量得到平均值,并计算出对应的标准差,以评估测量结果的精确度。
三、微分方程与动力学建模在研究物体的运动时,我们常常需要建立微分方程模型,以描述物体的运动规律。
微分方程是一种描述物体变化率的数学工具,通过建立微分方程,我们可以求解出物体的位置、速度和加速度之间的关系。
例如,在自由落体实验中,我们可以通过建立关于时间的二阶微分方程,求解出物体的高度随时间的变化规律。
高中物理学习如何培养物理模型建立能力高中物理学习是培养学生科学素养、提高科学思维能力的重要环节之一。
而物理模型建立能力作为物理学习的核心要素之一,对于学生的科学探究能力和问题解决能力具有重要作用。
本文将从培养物理模型建立能力的重要性、培养方法及实施策略等方面进行探讨。
一、物理模型建立能力的重要性物理模型建立能力是指学生能够通过物理学知识和科学思维,将实际问题转化为物理模型,并运用模型解决问题的能力。
物理模型建立能力的培养对于学生科学素养的培养具有重要意义。
首先,物理模型建立能力是学生科学探究能力的关键环节。
通过建立物理模型,学生能够抽象出问题的本质,将其转化为可计算的数学模型,从而进行科学求解。
这种科学探究的过程,培养了学生的逻辑思维能力、分析问题的能力以及实验设计的能力。
其次,物理模型建立能力有助于培养学生的问题解决能力。
现实生活中,我们面临各种复杂的问题和挑战,培养学生的物理模型建立能力,能够使他们能够通过科学方法解决实际问题,培养他们的解决问题的能力和创新思维。
最后,物理模型建立能力是培养学生科学素养的有效途径。
模型建立是经过科学思维的逻辑推理和实验验证,这对于培养学生的科学精神和科学素养具有重要意义。
通过模型建立的实践,学生能够更加深入地了解到科学是如何发展和演变的,从而增强他们对科学的兴趣和热爱。
二、培养物理模型建立能力的方法为了有效培养学生的物理模型建立能力,教师应该合理选择教学方法和策略,下面是几种常用的培养方法。
1.理论指导结合实际问题在教学中,教师可以通过引入实际问题,运用物理理论进行解释,引导学生思考和探究。
通过这种方式,学生可以将课堂所学的物理知识与实际问题相结合,形成对物理模型建立的直观感受和理解。
2.案例分析与讨论教师可以选择一些有代表性的案例或实验,并引导学生围绕这些案例进行分析和讨论。
在分析和讨论的过程中,学生可以深入了解问题的本质,思考建立合适的物理模型并解决问题的方法。
方法26 高中物理模型盘点(十六)类平抛运动模型物理模型盘点——类平抛运动模型[模型概述]带电粒子在电场中的偏转是中学物理的重点知识之一,在每年的高考中一般都与磁场综合,分值高,涉及面广,同时相关知识在技术上有典型的应用如示波器等,所以为高考的热点内容。
[模型要点]1、类平抛运动模型:初速度不为零,加速度恒定且垂直于初速度方向的运动,我们称之为类平抛运动.在解决这类运动时,方法完全等同于平抛运动的解法,即将类平抛运动分解为两个互相垂直、互相独立的运动,然后按运动的合成与分解的方法解题.即将平抛运动的解题方法推广到类平抛运动中去.2、类平抛运动与平抛运动的区别平抛运动的初速度水平,只受与初速度垂直的竖直向下的重力,a =g ;类平抛运动的初速度不一定水平,但合外力与初速度方向垂直且为恒力,a =F 合m。
3、求解方法(1)常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向(即沿合外力方向)的匀加速直线运动。
(2)特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度a 分解为ax 、ay ,初速度v0分解为vx 、vy ,然后分别在x 、y 方向上列方程求解。
4、求解类平抛运动问题的关键(1)对研究对象受力分析,找到合外力的大小、方向,正确求出加速度。
例题中,物体受重力、支持力作用,合外力沿斜面向下。
(2)确定是研究速度,还是研究位移。
(3)把握好分解的思想方法,例题中研究位移,把运动分解成沿斜面的匀加速直线运动和水平方向的匀速直线运动,然后将两个方向的运动用时间t 联系起来。
5、带电粒子的类平抛运动模型其总体思路为运动的分解(1)电加速:带电粒子质量为m ,带电量为q ,在静电场中静止开始仅在电场力作用下做加速运动,经过电势差U 后所获得的速度v0可由动能定理来求得。
即2012qU mv =。
(2)电偏转:垂直电场线方向粒子做匀速00x v v x v t ==,,沿电场线方向粒子做匀加速,有:220tan 2y y x v qU qUL v t y dm v dmv θ===,, (要求自行作图推导) 在交变电场中带电粒子的运动:常见的产生及变电场的电压波形有方行波,锯齿波和正弦波,对方行波我们可以采用上述方法分段处理,对于后两者一般来说题中会直接或间接提到“粒子在其中运动时电场为恒定电场”。
高中物理模型的建构及教学方法
高中物理模型的建构与教学方法是指在教学过程中,通过对物理现象进行观察、实验、分析等方式,构建出物理模型,并探究其规律和应用。
具体来说,包括以下几个方面:
一、物理模型建构的基本步骤:
1.观察物理现象,提出问题;
2.设计实验,收集数据,分析数据;
3.提出假设,构建物理模型;
4.验证假设,修正模型;
5.用模型预测新现象,检验模型的适用性。
二、高中物理模型教学的方法:
1.实验教学法:通过实验观察、测量等方式,帮助学生建立模型,提高学生的实验能力和科学思维。
2.探究式教学法:引导学生通过探究、发现、总结的方式,建立物理模型,激发学生的学习兴趣和动力。
3.问题导向教学法:通过提出问题、分析问题、解决问题的方式,引导学生建立模型,培养学生的自主学习能力。
4.案例教学法:通过引入实际案例,帮助学生建立模型,提高学生的应用能力。
结论:
高中物理模型的建构及教学方法对于学生的物理学习具有重要的意义,不仅可以提高学生的学习兴趣和动力,还可以培养学生的实
验能力、科学思维和应用能力,是高中物理教学中不可或缺的一部分。
高中物理常用的研究方法汇总一、理想模型法实际中的事物都是错综复杂的,在用物理的规律对实际中的事物进行研究时,常需要对它们进行必要的简化,忽略次要因素,以突出主要矛盾。
用这种理想化的方法将实际中的事物进行简化,便可得到一系列的物理模型。
有实体模型:质点、点电荷、轻杆、轻绳、轻弹簧、理想变压器、(3-3)液片、理想气体、(3-4)弹簧振子,单摆等;过程模型:匀速直线运动、匀变速直线运动、匀变速曲线运动、匀速圆周运动等。
采用模型方法对学习和研究起到了简化和纯化的作用.但简化后的模型一定要表现出原型所反映出的特点、知识。
每种模型有限定的运用条件和运用的范围。
二、控制变量法就是把一个多因素影响某一物理量的问题,通过控制某几个因素不变,只让其中一个因素改变,从而转化为多个单一因素影响某一物理量的问题的研究方法。
这种方法在实验数据的表格上的反映为:某两次试验只有一个条件不相同,若两次试验结果不同,则与该条件有关,否则无关。
反过来,若要研究的问题是物理量与某一因素是否有关,则应只使该因素不同,而其他因素均应相同。
控制变量法是中学物理中最常用的方法。
滑动摩擦力的大小与哪些因素有关;探究加速度、力和质量的关系(牛顿第二定律);导体的电阻与哪些因素有关(电阻定律 );电流的热效应与哪些因素有关(焦耳定律 );研究安培力大小跟哪些因素有关;研究理想气体状态变化(理想气体状态方程)等均应用了这种科学方法。
三、理想实验法(又称想象创新法,思想实验法)是在实验基础上经过概括、抽象、推理得出规律的一种研究问题的方法。
但得出的规律却又不能用实验直接验证,是科学家们为了解决科学理论中的某些难题,以原有的理论知识(如原理、定理、定律等)作为思想实验的"材料”,提出解决这些难题的设想作为理想实验的目标,并在想象中给出这些实验"材料"产生”相互作用”所需要的条件,然后,按照严格的逻辑思维操作方法去"处理”这些思想实验的”材料",从而得出一系列反映客观物质规律的新原理,新定律,使科学难题得到解决,推动科学的发展。
高中物理48个解题模型归纳高中物理是一门重视实践与应用的学科,其中许多概念可以通过解题模型的归纳总结来有效掌握。
以下是高中物理的48个解题模型,希望能对同学们的学习有所帮助。
1. 球体内空气质量变化模型2. 刚体动力学模型3. 热传导的计算模型4. 同向碰撞模型5. 初速度为零自由落体模型6. 电能守恒模型7. 电倾斜摆动力学模型8. 均匀运动变速运动模型9. 空气阻力的计算模型10. 磁感应强度计算模型11. 电容并联电路模型12. 力矩平衡计算模型13. 空气密度计算模型14. 能量守恒模型15. 碰撞动能守恒模型16. 热传导节气门口的芯片计算模型17. 弹性碰撞动能守恒模型18. 火箭发射速度计算模型19. 平衡态下弹性势能计算模型20. 马蹄星座引力模型21. 电容串联电路模型22. 机械功势能计算模型23. 动能定理模型24. 单摆摆动周期模型25. 反射镜物镜成像模型26. 反射镜像距离计算模型27. 平衡重力计算模型28. 波长计算模型29. 劳埃德镜像计算模型30. 电势差计算模型31. 姿态稳定模型32. 行星轨道计算模型33. 条纹间隔计算模型34. 单色光波长计算模型35. 反射镜像像距计算模型36. 振动级比计算模型37. 电阻并联电路模型38. 雷达初速度计算模型39. 棱镜折射率计算模型40. 弹簧振动周期计算模型41. 水面反射像距计算模型42. 剩余热能计算模型43. 能量转换计算模型44. 声波衍射计算模型45. 磁感应强度计算模型46. 叉丝仪利用计算模型47. 电源功率计算模型48. 静电力与距离计算模型以上是高中物理的48个解题模型,同学们可以针对不同的题目,选择合适的模型来理解和解决问题。
在学习的过程中,还要注重实践和应用,加强对物理知识的理解和掌握。
实际问题模型化物理模型是物理思想的产物,是科学地进行物理思维并从事物理研究的一种方法。
就中学物理中常见的物理模型,可归纳如下:1、物理对象模型化。
物理中的某些客观实体,如质点,舍去物体的形状、大小、转动等性能,突出它所处的位置和质量的特性,用一有质量的点来描绘,这是对实际物体的简化。
当物体本身的大小在所研究的问题中可以忽略,也能当作质点来处理。
类似质点的客观实体还有刚体、点电荷、薄透镜、弹簧振子、单摆、理想气体、理想电流表、理想电压表等等。
2、物体所处的条件模型化。
当研究带电粒子在电场中运动时,因粒子所受的重力远小于电场力,可以舍去重力的作用,使问题得到简化。
力学中的光滑面;热学中的绝热容器、电学中的匀强电场、匀强磁场等等,都是把物体所处的条件理想化了。
3、物理状态和物理过程的模型化。
例如,力学中的自由落体运动、匀速直线运动、简谐运动、弹性碰撞;电学中的稳恒电流、等幅振荡;热学中的等温变化、等容变化、等压变化等等都是物理过程和物理状态的模型化。
4、理想化实验。
在实验的基础上,抓住主要矛盾,忽略次要矛盾,根据逻辑推理法则,对过程进一步分析、推理,找出其规律。
例如,伽利略的理想实验为牛顿第一定律的产生奠定了基础。
5、物理中的数学模型。
客观世界的一切规律原则上都可以在数学中找到它们的表现形式。
在建造物理模型的同时,也在不断地建造表现物理状态及物理过程规律的数学模型。
当然,由于物理模型是客观实体的一种近似,以物理模型为描述对象的数学模型,也只能是客观实体的近似的定量描述。
例如,在研究外力一定时加速度和质量的关系实验中,认为小车受到实际 问题建立物 理模型 数学模型的解 实际问 题的解分析、联想、抽象概括、简化 推理演算还原说明 建立数 学模型 抽象、简化、转化 推 理 演 算的拉力等于砂和砂桶的重力,其实,小车受到的拉力不正好等于砂和砂桶的总重力。
只有砂和砂桶的总质量远小于小车和砝码的总质量时,才可近似地取砂和砂桶的总重力为小车所受的拉力,这是我们采取简化计算的一种数学模型。
高中物理最全模型归纳总结在高中物理学习过程中,我们掌握了众多物理模型,这些模型为我们解释自然现象提供了便利。
本文将对高中物理学习中最常用的模型进行归纳总结,旨在帮助同学们更好地理解和应用这些模型。
第一部分:力学模型1. 牛顿第一定律(惯性定律)牛顿第一定律表明物体在没有外力作用时保持静止或匀速直线运动。
这个模型可以解释为何我们在车上突然刹车时会向前倾斜。
2. 牛顿第二定律(运动定律)牛顿第二定律描述了力、质量和加速度之间的关系,即力等于质量乘以加速度。
这个模型可以帮助我们计算物体受到的合力以及其加速度。
3. 牛顿第三定律(作用-反作用定律)牛顿第三定律指出,任何两个物体之间的相互作用力大小相等、方向相反。
这个模型可以解释为何我们划船时推水就能向后移动。
4. 牛顿万有引力定律牛顿万有引力定律描述了两个物体之间的引力与它们的质量和距离的平方成正比,与引力的方向成反比。
这个模型可以帮助我们理解行星的椭圆轨道和天体之间的相互作用。
第二部分:热力学模型1. 理想气体状态方程理想气体状态方程描述了理想气体的压强、体积和温度之间的关系。
这个模型可以帮助我们在气体过程中计算温度、压强和体积的变化。
2. 热传导模型热传导模型用于描述热量在物体之间传递的过程。
它遵循热量自高温物体向低温物体传递的规律。
这个模型可以解释为何我们触摸金属杯时会感觉更冷。
3. 热辐射模型热辐射模型用于解释物体通过辐射的方式传递热量。
热辐射是指物体由于其温度而产生的电磁波辐射。
这个模型可以帮助我们理解太阳能的产生和传递。
第三部分:电磁学模型1. 静电模型静电模型用于描述带电物体之间的相互作用。
根据电荷的性质,带电物体可能相互吸引或者相互排斥。
这个模型可以解释为何我们的头发梳理之后会挑起纸片。
2. 电流模型电流模型用于描述电荷在导体中流动的现象。
根据导体的电阻和电压差,电流的大小和方向也会发生变化。
这个模型可以帮助我们计算电路中的电流和电压。
谈建立模型在物理学习中的重要性物理模型可以使复杂的问题简单化,有助于高中生物理的学习。
本文针对高中物理中的物理模型的建立进行分析,主要内容包括物理模型的类型和物理模型的作用,希望能给高中生们建立物理模型和应用模型提供借鉴和帮助,并使他们重视建立模型的重要性。
标签:高中物理建立模型抽象总结在高中物理的学习中,学生,尤其是高一学生,反映的普遍问题是:高中物理难学,课堂上老师讲的内容基本能够听懂,但是在解决物理问题的时候,感觉很茫然,无从下手。
究其原因还是不能够建立起物理模型,分析不清楚物理过程。
一、什么是物理模型物理模型(包括它的数学表达)是物理问题的高度抽象和概括,是认识主体对客观实际能动反映的一种变现,是认识主体由实践上升为理论的一个过程。
物理模型不仅是典型的物理问题,也是对物理基础知识的高度概括和总结[1]。
高中物理中常见的物理模型有如下几种:1.实物模型物理学研究的事物中有许许多多就是日常生活中的事物抽象出来的,突出了主要的、本质的特征,略去了次要的、非本质的因素,对实际物体做出了简化。
比如质点、光滑平面、单摆等,这些都是忽略了研究对象在运动过程中所受到的一些次要因素的影响,根据实物的基本规律和性质建立的一种物理模型。
2.模拟模型物理学研究的对象不仅仅有小球、滑块这类具体的事物,同样有电场、磁场这些看不到的物质。
这些抽象的研究对象的内容也有一定的具体性,根据这些规律可以建模拟模型进行学习。
例如电磁学中常提到的磁感线,这些线不是实际存在的,但是通过建立模拟模型,可以达到形象地表达这些模拟线的效果。
高中阶段的物理课程中最抽象的部分就是电磁学部分,如果不建立模拟模型,这部分的内容将难以理解,也就不能运用,更谈不上解题了。
3.过程模型建立过程模型的目的就是为了研究物理事件的发生过程,在分析的过程中忽视了如空气阻力、形变等次要因素,将抽象因素具体化,得到的模型是被研究物理过程的理想化,突出物体运动中的主要方面和规律,使学生学习的时候更加简单,容易掌握。
最好的物理学习方法最好的物理学习方法(篇1)方法一、模型解题法简单点说就是利用模型解决问题,模型的特点就是足够抽象,它去掉了实际情况中的所有次要因素,只保留了最主要核心要素,所以我们利用模型解决问题是就会变得非常简单。
很多物理问题本质上都是同一个物理模型,所以如果我们从解题模型下手学习物理不仅用起来方便,学起来也异常简单。
比如说在牛顿第二定律中有一类同学们最头疼的问题,板块传送带问题。
我在教学过程中通常会让同学们记住几种情况下的速度与摩擦力的关系,转化成图像去理解,这类问题最难的地方就在于多变和过程的复杂性,如果同学们能够记住这些模型,那么其他问题都会变得非常简单。
方法二、多做题,总结方法我们常说不建议题海战术,要跳出题海,但首先你要在题海里才行吧?很多同学跟我反映说上课能听懂就是不会做题,如果你只是明白了这个知识点,却从来没有实践过,不知道怎么用这个知识点解题,那么你当然不会做,实践出真知是有道理的,所以你至少要每个题型都做过几遍才能总结出解题方法,才会运用你课堂上的知识点。
在这里我建议大家可以先做几本练习册,当你觉得你的水平已经比较高的时候想做一些拔高的题目时,我建议你做五年高考三年模拟,有同步的练习册,里面的题目都非常经典,有一定难度,学有余力的同学可以挑战一下。
方法三、独立思考、不可替代很多同学感觉自己学习很努力就是成绩上不去,上课、听讲、笔记、作业样样不差,可就是成绩不好,就是因为你缺了最重要的一样东西:思考,还有的同学问我题,直接就把一道空题发过来了,自己一点也不思考就说我不会,这样的同学总结一个字就是懒,不独立思考,依赖性太强。
学习是高水平的智力活动,如果不融入自己的思考那就跟体力活没啥区别了,这是学习上的偷懒。
因为思考才是这个世界上最艰苦的工作。
所以无论什么问题多思考,多总结,脚踏实地才是学习的的境界。
最好的物理学习方法(篇2)1、重视课本基础定义、基础概念的理解记忆。
课本是基础,是全国物理特级老师多年教学经验的结晶。
高中物理力学模型教案
目标:学生能够掌握物理力学模型的基本概念和应用,能够运用力学模型解决实际问题。
一、导入(5分钟)
引导学生回顾上节课学习的内容,复习牛顿三定律等力学基础知识。
二、讲解力学模型的概念(15分钟)
1. 力学模型是什么?为什么需要力学模型?
2. 介绍力学模型的建立和应用。
三、力学模型的应用(20分钟)
1. 通过实例讲解如何建立力学模型,例如自由落体、斜面上滑动等。
2. 引导学生实际操作,尝试建立自己的力学模型并进行实验验证。
四、力学模型的应用练习(15分钟)
1. 给出几个力学问题,要求学生运用所学的力学模型知识进行解答。
2. 学生在小组中讨论解答问题,老师进行点评。
五、总结与拓展(5分钟)
1. 总结本节课的重点知识,强调力学模型的重要性。
2. 提出拓展问题,鼓励学生进一步研究和思考。
六、作业布置(5分钟)
1. 布置作业:总结本节课学习内容,撰写力学模型的应用报告。
2. 提醒学生按时完成作业,并准备下节课的进一步学习。
.高三物理总复习专题高中物理常见的物理模型方法概述高考命题以《考试大纲》为依据,考查学生对高中物理知识的掌握情况,体现了“知识与技能、过程与方法并重”的高中物理学习思想.每年各地的高考题为了避免雷同而千变万化、多姿多彩,但又总有一些共性,这些共性可粗略地总结如下:(1)选择题中一般都包含3~4道关于振动与波、原子物理、光学、热学的试题.(2)实验题以考查电路、电学测量为主,两道实验小题中出一道较新颖的设计性实验题的可能性较大.(3)试卷中下列常见的物理模型出现的概率较大:斜面问题、叠加体模型(包含子弹射入)、带电粒子的加速与偏转、天体问题(圆周运动)、轻绳(轻杆)连接体模型、传送带问题、含弹簧的连接体模型.高考中常出现的物理模型中,有些问题在高考中变化较大,或者在前面专题中已有较全面的论述,在这里就不再论述和例举.斜面问题、叠加体模型、含弹簧的连接体模型等在高考中的地位特别重要,本专题就这几类模型进行归纳总结和强化训练;传送带问题在高考中出现的概率也较大,而且解题思路独特,本专题也略加论述.热点、重点、难点一、斜面问题在每年各地的高考卷中几乎都有关于斜面模型的试题.如2009年高考全国理综卷Ⅰ第25题、北京理综卷第18题、天津理综卷第1题、上海物理卷第22题等,2008年高考全国理综卷Ⅰ第14题、全国理综卷Ⅱ第16题、北京理综卷第20题、江苏物理卷第7题和第15题等.在前面的复习中,我们对这一模型的例举和训练也比较多,遇到这类问题时,以下结论可以帮助大家更好、更快地理清解题思路和选择解题方法.1.自由释放的滑块能在斜面上(如图9-1 甲所示)匀速下滑时,m与M之间的动摩擦因数μ=g tan θ.图9-1甲2.自由释放的滑块在斜面上(如图9-1 甲所示):(1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零;(2)加速下滑时,斜面对水平地面的静摩擦力水平向右;(3)减速下滑时,斜面对水平地面的静摩擦力水平向左.3.自由释放的滑块在斜面上(如图9-1乙所示)匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M对水平地面的静摩擦力依然为零(见一轮书中的方法概述).图9-1乙4.悬挂有物体的小车在斜面上滑行(如图9-2所示):图9-2(1)向下的加速度a=g sin θ时,悬绳稳定时将垂直于斜面;(2)向下的加速度a>g sin θ时,悬绳稳定时将偏离垂直方向向上;(3)向下的加速度a<g sin θ时,悬绳将偏离垂直方向向下.5.在倾角为θ的斜面上以速度v0平抛一小球(如图9-3所示):图9-3(1)落到斜面上的时间t=2v0tan θg;(2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tan α=2tan θ,与初速度无关;(3)经过t c=v0tan θg小球距斜面最远,最大距离d=(v0sin θ)22g cos θ.6.如图9-4所示,当整体有向右的加速度a=g tan θ时,m能在斜面上保持相对静止.图9-47.在如图9-5所示的物理模型中,当回路的总电阻恒定、导轨光滑时,ab棒所能达到的稳定速度v m=mgR sin θB2L2..图9-58.如图9-6所示,当各接触面均光滑时,在小球从斜面顶端滑下的过程中,斜面后退的位移s =m m +ML .图9-6●例1 有一些问题你可能不会求解,但是你仍有可能对这些问题的解是否合理进行分析和判断.例如从解的物理量单位,解随某些已知量变化的趋势,解在一些特殊条件下的结果等方面进行分析,并与预期结果、实验结论等进行比较,从而判断解的合理性或正确性.举例如下:如图9-7甲所示,质量为M 、倾角为θ的滑块A 放于水平地面上.把质量为m 的滑块B 放在A 的斜面上.忽略一切摩擦,有人求得B 相对地面的加速度a =M +mM +m sin 2 θg sin θ,式中g 为重力加速度.图9-7甲对于上述解,某同学首先分析了等号右侧的量的单位,没发现问题.他进一步利用特殊条件对该解做了如下四项分析和判断,所得结论都是“解可能是对的”.但是,其中有一项是错误..的,请你指出该项[2008年高考·北京理综卷]( )A .当θ=0°时,该解给出a =0,这符合常识,说明该解可能是对的B .当θ=90°时,该解给出a =g ,这符合实验结论,说明该解可能是对的C .当M ≫m 时,该解给出a ≈g sin θ,这符合预期的结果,说明该解可能是对的D .当m ≫M 时,该解给出a ≈gsin θ,这符合预期的结果,说明该解可能是对的【解析】当A 固定时,很容易得出a =g sin θ;当A 置于光滑的水平面时,B 加速下滑的同时A 向左加速运动,B 不会沿斜面方向下滑,难以求出运动的加速度.图9-7乙设滑块A 的底边长为L ,当B 滑下时A 向左移动的距离为x ,由动量守恒定律得:M x t =m L -x t解得:x =mLM +m当m ≫M 时,x ≈L ,即B 水平方向的位移趋于零,B 趋于自由落体运动且加速度a ≈g .选项D 中,当m ≫M 时,a ≈gsin θ>g 显然不可能.[答案] D【点评】本例中,若m 、M 、θ、L 有具体数值,可假设B 下滑至底端时速度v 1的水平、竖直分量分别为v 1x 、v 1y ,则有:v 1y v 1x =hL -x =(M +m )h ML 12m v 1x 2+12m v 1y 2+12M v 22=mgh m v 1x =M v 2解方程组即可得v 1x 、v 1y 、v 1以及v 1的方向和m 下滑过程中相对地面的加速度.●例2 在倾角为θ的光滑斜面上,存在着两个磁感应强度大小相同的匀强磁场,其方向一个垂直于斜面向上,一个垂直于斜面向下(如图9-8甲所示),它们的宽度均为L .一个质量为m 、边长也为L 的正方形线框以速度v 进入上部磁场时,恰好做匀速运动.图9-8甲(1)当ab 边刚越过边界ff ′时,线框的加速度为多大,方向如何?(2)当ab 边到达gg ′与ff ′的正中间位置时,线框又恰好做匀速运动,则线框从开始进入上部磁场到ab 边到达gg ′与ff ′的正中间位置的过程中,线框中产生的焦耳热为多少?(线框的ab 边在运动过程中始终与磁场边界平行,不计摩擦阻力)【解析】(1)当线框的ab 边从高处刚进入上部磁场(如图9-8 乙中的位置①所示)时,线框恰好做匀速运动,则有:mg sin θ=BI 1L此时I 1=BL vR当线框的ab 边刚好越过边界ff ′(如图9-8乙中的位置②所示)时,由于线框从位置①到位置②始终做匀速运动,此时将ab 边与cd 边切割磁感线所产生的感应电动势同向叠加,回路中电流的大小等于2I 1.故线框的加速度大小为:.图9-8乙a =4BI 1L -mg sin θm=3g sin θ,方向沿斜面向上.(2)而当线框的ab 边到达gg ′与ff ′的正中间位置(如图9-8 乙中的位置③所示)时,线框又恰好做匀速运动,说明mg sin θ=4BI 2L故I 2=14I 1由I 1=BL v R 可知,此时v ′=14v从位置①到位置③,线框的重力势能减少了32mgL sin θ动能减少了12m v 2-12m (v 4)2=1532m v 2由于线框减少的机械能全部经电能转化为焦耳热,因此有:Q =32mgL sin θ+1532m v 2.[答案] (1)3g sin θ,方向沿斜面向上 (2)32mgL sin θ+1532m v 2 【点评】导线在恒力作用下做切割磁感线运动是高中物理中一类常见题型,需要熟练掌握各种情况下求平衡速度的方法. 二、叠加体模型叠加体模型在历年的高考中频繁出现,一般需求解它们之间的摩擦力、相对滑动路程、摩擦生热、多次作用后的速度变化等,另外广义的叠加体模型可以有许多变化,涉及的问题更多.如2009年高考天津理综卷第10题、宁夏理综卷第20题、山东理综卷第24题,2008年高考全国理综卷 Ⅰ 的第15题、北京理综卷第24题、江苏物理卷第6题、四川延考区理综卷第25题等.叠加体模型有较多的变化,解题时往往需要进行综合分析(前面相关例题、练习较多),下列两个典型的情境和结论需要熟记和灵活运用.1.叠放的长方体物块A 、B 在光滑的水平面上匀速运动或在光滑的斜面上自由释放后变速运动的过程中(如图9-9所示),A 、B 之间无摩擦力作用.图9-92.如图9-10所示,一对滑动摩擦力做的总功一定为负值,其绝对值等于摩擦力乘以相对滑动的总路程或等于摩擦产生的热量,与单个物体的位移无关,即Q 摩=f ·s 相.图9-10●例3 质量为M 的均匀木块静止在光滑的水平面上,木块左右两侧各有一位拿着完全相同的步枪和子弹的射击手.首先左侧的射击手开枪,子弹水平射入木块的最大深度为d 1,然后右侧的射击手开枪,子弹水平射入木块的最大深度为d 2,如图9-11所示.设子弹均未射穿木块,且两子弹与木块之间的作用力大小均相同.当两颗子弹均相对木块静止时,下列说法正确的是(注:属于选修3-5模块)( )图9-11A .最终木块静止,d 1=d 2B .最终木块向右运动,d 1<d 2C .最终木块静止,d 1<d 2D .最终木块静止,d 1>d 2【解析】木块和射出后的左右两子弹组成的系统水平方向不受外力作用,设子弹的质量为m ,由动量守恒定律得:m v 0-m v 0=(M +2m )v 解得:v =0,即最终木块静止设左侧子弹射入木块后的共同速度为v 1,有: m v 0=(m +M )v 1Q 1=f ·d 1=12m v 02-12(m +M )v 12解得:d 1=mM v 022(m +M )f对右侧子弹射入的过程,由功能原理得:Q 2=f ·d 2=12m v 02+12(m +M )v 12-0解得:d 2=(2m 2+mM )v 022(m +M )f即d 1<d 2. [答案] C【点评】摩擦生热公式可称之为“功能关系”或“功能原理”的公式,但不能称之为“动能定.理”的公式,它是由动能定理的关系式推导得出的二级结论.三、含弹簧的物理模型纵观历年的高考试题,和弹簧有关的物理试题占有相当大的比重.高考命题者常以弹簧为载体设计出各类试题,这类试题涉及静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能问题等,几乎贯穿了整个力学的知识体系.为了帮助同学们掌握这类试题的分析方法,现将有关弹簧问题分类进行剖析.对于弹簧,从受力角度看,弹簧上的弹力是变力;从能量角度看,弹簧是个储能元件.因此,弹簧问题能很好地考查学生的综合分析能力,故备受高考命题老师的青睐.如2009年高考福建理综卷第21题、山东理综卷第22题、重庆理综卷第24题,2008年高考北京理综卷第22题、山东理综卷第16题和第22题、四川延考区理综卷第14题等.题目类型有:静力学中的弹簧问题,动力学中的弹簧问题,与动量和能量有关的弹簧问题.1.静力学中的弹簧问题(1)胡克定律:F =kx ,ΔF =k ·Δx .(2)对弹簧秤的两端施加(沿轴线方向)大小不同的拉力,弹簧秤的示数一定等于挂钩上的拉力. ●例4 如图9-12甲所示,两木块A 、B 的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,两弹簧分别连接A 、B ,整个系统处于平衡状态.现缓慢向上提木块A ,直到下面的弹簧对地面的压力恰好为零,在此过程中A 和B 的重力势能共增加了()图9-12甲A .(m 1+m 2)2g 2k 1+k 2B .(m 1+m 2)2g 22(k 1+k 2)C .(m 1+m 2)2g 2(k 1+k 2k 1k 2)D .(m 1+m 2)2g 2k 2+m 1(m 1+m 2)g 2k 1【解析】取A 、B 以及它们之间的弹簧组成的整体为研究对象,则当下面的弹簧对地面的压力为零时,向上提A 的力F 恰好为:F =(m 1+m 2)g设这一过程中上面和下面的弹簧分别伸长x 1、x 2,如图9-12乙所示,由胡克定律得:图9-12乙x 1=(m 1+m 2)g k 1,x 2=(m 1+m 2)g k 2故A 、B 增加的重力势能共为: ΔE p =m 1g (x 1+x 2)+m 2gx 2 =(m 1+m 2)2g 2k 2+m 1(m 1+m 2)g 2k 1.[答案] D【点评】①计算上面弹簧的伸长量时,较多同学会先计算原来的压缩量,然后计算后来的伸长量,再将两者相加,但不如上面解析中直接运用Δx =ΔFk进行计算更快捷方便.②通过比较可知,重力势能的增加并不等于向上提的力所做的功W =F ·x 总=(m 1+m 2)2g 22k 22+(m 1+m 2)2g 22k 1k 2.2.动力学中的弹簧问题(1)瞬时加速度问题(与轻绳、轻杆不同):一端固定、另一端接有物体的弹簧,形变不会发生突变,弹力也不会发生突变.(2)如图9-13所示,将A 、B 下压后撤去外力,弹簧在恢复原长时刻B 与A 开始分离.图9-13●例5 一弹簧秤秤盘的质量m 1=1.5 kg ,盘内放一质量m 2=10.5 kg 的物体P ,弹簧的质量不计,其劲度系数k =800 N/m ,整个系统处于静止状态,如图9-14 所示.图9-14现给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在最初0.2 s 内F 是变化的,在0.2 s 后是恒定的,求F 的最大值和最小值.(取g =10 m/s 2)【解析】初始时刻弹簧的压缩量为: x 0=(m 1+m 2)g k=0.15 m设秤盘上升高度x 时P 与秤盘分离,分离时刻有:k (x0-x)-m1gm1=a又由题意知,对于0~0.2 s时间内P的运动有:12at2=x解得:x=0.12 m,a=6 m/s2故在平衡位置处,拉力有最小值F min=(m1+m2)a=72 N分离时刻拉力达到最大值F max=m2g+m2a=168 N.[答案] 72 N168 N【点评】对于本例所述的物理过程,要特别注意的是:分离时刻m1与m2之间的弹力恰好减为零,下一时刻弹簧的弹力与秤盘的重力使秤盘产生的加速度将小于a,故秤盘与重物分离.3.与动量、能量相关的弹簧问题与动量、能量相关的弹簧问题在高考试题中出现频繁,而且常以计算题出现,在解析过程中以下两点结论的应用非常重要:(1)弹簧压缩和伸长的形变相同时,弹簧的弹性势能相等;(2)弹簧连接两个物体做变速运动时,弹簧处于原长时两物体的相对速度最大,弹簧的形变最大时两物体的速度相等.●例6如图9-15所示,用轻弹簧将质量均为m=1 kg的物块A和B连接起来,将它们固定在空中,弹簧处于原长状态,A距地面的高度h1=0.90 m.同时释放两物块,A与地面碰撞后速度立即变为零,由于B压缩弹簧后被反弹,使A刚好能离开地面(但不继续上升).若将B物块换为质量为2m的物块C(图中未画出),仍将它与A固定在空中且弹簧处于原长,从A距地面的高度为h2处同时释放,C压缩弹簧被反弹后,A也刚好能离开地面.已知弹簧的劲度系数k=100 N/m,求h2的大小.图9-15【解析】设A物块落地时,B物块的速度为v1,则有:12m v12=mgh1设A刚好离地时,弹簧的形变量为x,对A物块有:mg=kx从A落地后到A刚好离开地面的过程中,对于A、B及弹簧组成的系统机械能守恒,则有:12m v12=mgx+ΔEp换成C后,设A落地时,C的速度为v2,则有:12·2m v22=2mgh2从A落地后到A刚好离开地面的过程中,A、C及弹簧组成的系统机械能守恒,则有:12·2m v22=2mgx+ΔEp联立解得:h2=0.5 m.[答案] 0.5 m【点评】由于高中物理对弹性势能的表达式不作要求,所以在高考中几次考查弹簧问题时都要用到上述结论“①”.如2005年高考全国理综卷Ⅰ第25题、1997年高考全国卷第25题等.●例7用轻弹簧相连的质量均为2 kg 的A、B两物块都以v=6 m/s的速度在光滑的水平地面上运动,弹簧处于原长,质量为4 kg的物块C静止在前方,如图9-16 甲所示.B与C碰撞后二者粘在一起运动,则在以后的运动中:图9-16甲(1)当弹簧的弹性势能最大时,物体A的速度为多大?(2)弹簧弹性势能的最大值是多少?(3)A的速度方向有可能向左吗?为什么?【解析】(1)当A、B、C三者的速度相等(设为v A′)时弹簧的弹性势能最大,由于A、B、C三者组成的系统动量守恒,则有:(m A+m B)v=(m A+m B+m C)v A′解得:v A′=(2+2)×62+2+4m/s=3 m/s.(2)B、C发生碰撞时,B、C组成的系统动量守恒,设碰后瞬间B、C两者的速度为v′,则有:m B v=(m B+m C)v′解得:v′=2×62+4=2 m/sA的速度为v A′时弹簧的弹性势能最大,设其值为E p,根据能量守恒定律得:E p=12(m B+m C)v′2+12m Av2-12(m A+m B+m C)v A′2=12 J.(3)方法一A不可能向左运动.根据系统动量守恒有:(m A+m B)v=m A v A+(m B+m C)v B设A向左,则v A<0,v B>4 m/s则B、C发生碰撞后,A、B、C三者的动能之和为:E′=12m Av2A+12(m B+m C)v2B>12(m B+m C)v2B=48 J..实际上系统的机械能为:E =E p +12(m A +m B +m C )v A ′2=12 J +36 J =48 J根据能量守恒定律可知,E ′>E 是不可能的,所以A 不可能向左运动.方法二 B 、C 碰撞后系统的运动可以看做整体向右匀速运动与A 、B 和C 相对振动的合成(即相当于在匀速运动的车厢中两物块相对振动)由(1)知整体匀速运动的速度v 0=v A ′=3 m/s图9-16乙取以v 0=3 m/s 匀速运动的物体为参考系,可知弹簧处于原长时,A 、B 和C 相对振动的速率最大,分别为:v AO =v -v 0=3 m/s v BO =|v ′-v 0|=1 m/s由此可画出A 、B 、C 的速度随时间变化的图象如图9-16乙所示,故A 不可能有向左运动的时刻.[答案] (1)3 m/s (2)12 J (3)不可能,理由略【点评】①要清晰地想象、理解研究对象的运动过程:相当于在以3 m/s 匀速行驶的车厢内,A 、B 和C 做相对弹簧上某点的简谐振动,振动的最大速率分别为3 m/s 、1 m/s .②当弹簧由压缩恢复至原长时,A 最有可能向左运动,但此时A 的速度为零.●例8 探究某种笔的弹跳问题时,把笔分为轻质弹簧、内芯和外壳三部分,其中内芯和外壳质量分别为m 和4m .笔的弹跳过程分为三个阶段:图9-17①把笔竖直倒立于水平硬桌面,下压外壳使其下端接触桌面(如图9-17甲所示);②由静止释放,外壳竖直上升到下端距桌面高度为h 1时,与静止的内芯碰撞(如图9-17乙所示);③碰后,内芯与外壳以共同的速度一起上升到外壳下端距桌面最大高度为h 2处(如图9-17丙所示).设内芯与外壳的撞击力远大于笔所受重力,不计摩擦与空气阻力,重力加速度为g .求: (1)外壳与内芯碰撞后瞬间的共同速度大小.(2)从外壳离开桌面到碰撞前瞬间,弹簧做的功.(3)从外壳下端离开桌面到上升至h 2处,笔损失的机械能. [2009年高考·重庆理综卷]【解析】设外壳上升到h 1时速度的大小为v 1,外壳与内芯碰撞后瞬间的共同速度大小为v 2. (1)对外壳和内芯,从撞后达到共同速度到上升至h 2处,由动能定理得:(4m +m )g (h 2-h 1)=12(4m +m )v 22-0 解得:v 2=2g (h 2-h 1).(2)外壳与内芯在碰撞过程中动量守恒,即: 4m v 1=(4m +m )v 2 将v 2代入得:v 1=542g (h 2-h 1)设弹簧做的功为W ,对外壳应用动能定理有:W -4mgh 1=12×4m v 21将v 1代入得:W =14mg (25h 2-9h 1).(3)由于外壳和内芯达到共同速度后上升至高度h 2的过程中机械能守恒,只有在外壳和内芯的碰撞中有能量损失,损失的能量E 损=12×4m v 21-12(4m +m )v 22 将v 1、v 2代入得:E 损=54mg (h 2-h 1).[答案] (1)2g (h 2-h 1) (2)14mg (25h 2-9h 1)(3)54mg (h 2-h 1) 由以上例题可以看出,弹簧类试题的确是培养和训练学生的物理思维、反映和开发学生的学习潜能的优秀试题.弹簧与相连物体构成的系统所表现出来的运动状态的变化,为学生充分运用物理概念和规律(牛顿第二定律、动能定理、机械能守恒定律、动量定理、动量守恒定律)巧妙解决物理问题、施展自身才华提供了广阔空间,当然也是区分学生能力强弱、拉大差距、选拔人才的一种常规题型.因此,弹簧试题也就成为高考物理题中的一类重要的、独具特色的考题.四、传送带问题从1990年以后出版的各种版本的高中物理教科书中均有皮带传输机的插图.皮带传送类问题在现代生产生活中的应用非常广泛.这类问题中物体所受的摩擦力的大小和方向、运动性质都具有变化性,涉及力、相对运动、能量转化等各方面的知识,能较好地考查学生分析物理过程及应用物理规律解答物理问题的能力.如2003年高考全国理综卷第34题、2005年高考全国理综卷Ⅰ第24题等.对于滑块静止放在匀速传动的传送带上的模型,以下结论要清楚地理解并熟记: (1)滑块加速过程的位移等于滑块与传送带相对滑动的距离;(2)对于水平传送带,滑块加速过程中传送带对其做的功等于这一过程由摩擦产生的热量,即传送装置在这一过程需额外(相对空载)做的功W =m v 2=2E k =2Q 摩.●例9 如图9-18甲所示,物块从光滑曲面上的P 点自由滑下,通过粗糙的静止水平传送带后落到地面上的Q 点.若传送带的皮带轮沿逆时针方向匀速运动(使传送带随之运动),物块仍从P.点自由滑下,则()图9-18甲A .物块有可能不落到地面上B .物块仍将落在Q 点C .物块将会落在Q 点的左边D .物块将会落在Q 点的右边【解析】如图9-18乙所示,设物块滑上水平传送带上的初速度为v 0,物块与皮带之间的动摩擦因数为μ,则:图9-18乙物块在皮带上做匀减速运动的加速度大小a =μmgm =μg物块滑至传送带右端的速度为: v =v 02-2μgs物块滑至传送带右端这一过程的时间可由方程s =v 0t -12μgt 2解得.当皮带向左匀速传送时,滑块在皮带上的摩擦力也为: f =μmg物块在皮带上做匀减速运动的加速度大小为:a 1′=μmg m =μg则物块滑至传送带右端的速度v ′=v 02-2μgs =v物块滑至传送带右端这一过程的时间同样可由方程s =v 0t -12μgt 2 解得.由以上分析可知物块仍将落在Q 点,选项B 正确. [答案] B【点评】对于本例应深刻理解好以下两点:①滑动摩擦力f =μF N ,与相对滑动的速度或接触面积均无关;②两次滑行的初速度(都以地面为参考系)相等,加速度相等,故运动过程完全相同. 我们延伸开来思考,物块在皮带上的运动可理解为初速度为v 0的物块受到反方向的大小为μmg 的力F 的作用,与该力的施力物体做什么运动没有关系.●例10 如图9-19所示,足够长的水平传送带始终以v =3 m/s 的速度向左运动,传送带上有一质量M =2 kg 的小木盒A ,A 与传送带之间的动摩擦因数μ=0.3.开始时,A 与传送带之间保持相对静止.现有两个光滑的质量均为m =1 kg 的小球先后相隔Δt =3 s 自传送带的左端出发,以v 0=15 m/s 的速度在传送带上向右运动.第1个球与木盒相遇后立即进入盒中并与盒保持相对静止;第2个球出发后历时Δt 1=13s 才与木盒相遇.取g =10 m/s 2,问:图9-19(1)第1个球与木盒相遇后瞬间,两者共同运动的速度为多大? (2)第1个球出发后经过多长时间与木盒相遇?(3)在木盒与第1个球相遇至与第2个球相遇的过程中,由于木盒与传送带间的摩擦而产生的热量是多少?【解析】(1)设第1个球与木盒相遇后瞬间,两者共同运动的速度为v 1,根据动量守恒定律得: m v 0-M v =(m +M )v 1解得:v 1=3 m/s ,方向向右.(2)设第1个球与木盒的相遇点离传送带左端的距离为s ,第1个球经过时间t 0与木盒相遇,则有:t 0=s v 0设第1个球进入木盒后两者共同运动的加速度大小为a ,根据牛顿第二定律得: μ(m +M )g =(m +M )a解得:a =μg =3 m/s 2,方向向左设木盒减速运动的时间为t 1,加速到与传送带具有相同的速度的时间为t 2,则:t 1=t 2=Δva =1 s故木盒在2 s 内的位移为零依题意可知:s =v 0Δt 1+v (Δt +Δt 1-t 1-t 2-t 0) 解得:s =7.5 m ,t 0=0.5 s .(3)在木盒与第1个球相遇至与第2个球相遇的这一过程中,设传送带的位移为s ′,木盒的位移为s 1,则:s ′=v (Δt +Δt 1-t 0)=8.5 m s 1=v (Δt +Δt 1-t 1-t 2-t 0)=2.5 m故木盒相对于传送带的位移为:Δs =s ′-s 1=6 m 则木盒与传送带间因摩擦而产生的热量为: Q =f Δs =54 J .[答案] (1)3 m/s (2)0.5 s (3)54 J【点评】本题解析的关键在于:①对物理过程理解清楚;②求相对路程的方法..能力演练一、选择题(10×4分)1.图示是原子核的核子平均质量与原子序数Z 的关系图象,下列说法正确的是()A .若D 和E 结合成F ,结合过程中一定会吸收核能B .若D 和E 结合成F ,结合过程中一定会释放核能C .若A 分裂成B 和C ,分裂过程中一定会吸收核能D .若A 分裂成B 和C ,分裂过程中一定会释放核能【解析】D 、E 结合成F 粒子时总质量减小,核反应释放核能;A 分裂成B 、C 粒子时,总质量减小,核反应释放核能.[答案] BD2.单冷型空调器一般用来降低室内温度,其制冷系统与电冰箱的制冷系统结构基本相同.某单冷型空调器的制冷机从低温物体吸收热量Q 2,向高温物体放出热量Q 1,而外界(压缩机)必须对工作物质做功W ,制冷系数ε=Q 2W.设某一空调的制冷系数为4,若制冷机每天从房间内部吸收2.0×107J 的热量,则下列说法正确的是( )A .Q 1一定等于Q 2B .空调的制冷系数越大越耗能C .制冷机每天放出的热量Q 1=2.5×107 JD .制冷机每天放出的热量Q 1=5.0×106 J 【解析】Q 1=Q 2+W >Q 2,选项A 错误;ε越大,从室内向外传递相同热量时压缩机所需做的功(耗电)越小,越节省能量,选项B 错误;又Q 1=Q 2+Q 2ε=2.5×107 J ,故选项C 正确.[答案] C 3.图示为一列简谐横波的波形图象,其中实线是t 1=0时刻的波形,虚线是t 2=1.5 s 时的波形,且(t 2-t 1)小于一个周期.由此可判断()A .波长一定是60 cmB .波一定向x 轴正方向传播C .波的周期一定是6 sD .波速可能是0.1 m/s ,也可能是0.3 m/s 【解析】由题图知λ=60 cm 若波向x 轴正方向传播,则可知:波传播的时间t 1=T 4,传播的位移s 1=15 cm =λ4故知T =6 s ,v =0.1 m/s若波向x 轴负方向传播,可知: 波传播的时间t 2=34T ,传播的位移s 2=45 cm =3λ4故知T =2 s ,v =0.3 m/s .[答案] AD4.如图所示,在水平桌面上叠放着质量均为M 的A 、B 两块木板,在木板A 的上面放着一个质量为m 的物块C ,木板和物块均处于静止状态.A 、B 、C 之间以及B 与地面之间的动摩擦因数都为μ.若用水平恒力F 向右拉动木板A ,使之从C 、B 之间抽出来,已知重力加速度为g ,则拉力F 的大小应该满足的条件是(已知最大静摩擦力的大小等于滑动摩擦力)()A .F >μ(2m +M )gB .F >μ(m +2M )gC .F >2μ(m +M )gD .F >2μmg【解析】无论F 多大,摩擦力都不能使B 向右滑动,而滑动摩擦力能使C 产生的最大加速度为μg ,故F -μmg -μ(m +M )g M>μg 时,即F >2μ(m +M )g 时A 可从B 、C 之间抽出.[答案] C5.如图所示,一束单色光a 射向半球形玻璃砖的球心,在玻璃与空气的界面MN 上同时发生反射和折射,b 为反射光,c 为折射光,它们与法线间的夹角分别为β和θ.逐渐增大入射角α,下列说法中正确的是()A .β和θ两角同时增大,θ始终大于βB .b 光束的能量逐渐减弱,c 光束的能量逐渐加强C .b 光在玻璃中的波长小于b 光在空气中的波长D .b 光光子的能量大于c 光光子的能量【解析】三个角度之间的关系有:θ=α,sin βsin α=n >1,故随着α的增大,β、θ都增大,但是θ<β,选项A 错误,且在全反射前,c 光束的能量逐渐减弱,b 光束的能量逐渐加强,选项B 错误;又由n =sin βsin α=c v =λλ′,b 光在玻璃中的波长小于在空气中的波长,但光子的能量不变,选项C 正确、D 错误. [答案] C6.如图所示,水平传送带以v =2 m/s 的速度匀速前进,上方漏斗中以每秒50 kg 的速度把煤粉竖直抖落到传送带上,然后一起随传送带运动.如果要使传送带保持原来的速度匀速前进,则传送带的电动机应增加的功率为( )。
高中物理学习中的物理模型建立与应用物理学是一门研究物质和能量之间相互关系的科学学科。
在高中物理学习中,学生需要掌握的一个重要能力就是建立和应用物理模型。
物理模型是对现实世界进行简化和抽象的描述,能够帮助我们理解物理现象并进行预测和解释。
本文将探讨高中物理学习中的物理模型建立与应用。
一、什么是物理模型物理模型是对现实世界的一种理想化描述。
它通过对物理量之间的关系进行简化和抽象,将复杂的物理现象转化为更易理解和计算的数学表达式或图像。
物理模型可以是一种物理定律、公式,也可以是一个图表或图像,甚至可以是一个实物模型。
二、物理模型的建立过程物理模型的建立过程是一个不断观察、实验、推理和修正的过程。
首先,我们需要通过观察和实验来收集数据。
例如,在研究物体自由落体时,我们可以使用实验设备测量不同高度下物体下落的时间,并记录相关数据。
然后,我们需要对数据进行整理和分析,寻找数据中的规律和关联。
通过绘制图表或图像,我们可以更直观地观察和比较数据之间的关系。
例如,在自由落体实验中,我们可以将物体下落距离与下落时间的关系绘制成一条直线。
接下来,我们可以尝试用数学表达式或公式来描述数据之间的关系。
通过拟合数据,我们可以获得一条更精确的直线。
对于自由落体实验,我们可以得到下落距离与下落时间的关系式为:s = 0.5 * g * t^2,其中s代表下落距离,g代表重力加速度,t代表时间。
最后,我们需要验证模型的可靠性并进行修正。
通过进一步实验和比对实验结果与模型预测结果的差异,我们可以判断模型的准确性并对其进行修正和改进。
三、物理模型的应用物理模型的应用涉及到解决实际问题和预测物理现象的能力。
在解决实际问题方面,物理模型可以帮助我们预测和分析物理现象。
例如,根据电路中的欧姆定律可以建立电阻和电流之间的模型,通过模型可以计算出电路中的电压和功率。
在工程实践中,我们可以利用这些模型来设计和优化电路。
在预测物理现象方面,物理模型可以帮助我们预测和解释未知的物理现象。
高三物理板块模型总结1. 简介在高中物理学习中,板块模型是一种将物理知识组织成具有逻辑结构的方法。
它将物理知识按照不同的板块进行分类和归纳,使得学生能够更加深入地理解物理概念和理论,建立起系统的物理知识框架。
2. 板块模型的优势板块模型的应用在高中物理学习中具有许多优势。
首先,它能够帮助学生更好地理解物理知识的内在逻辑,将各个知识点之间的关系清晰地展现出来。
其次,板块模型可以帮助学生快速理解和记忆物理知识,因为它能够将复杂的知识内容简化成易于理解和记忆的模块。
最后,板块模型能够引导学生进行系统性的学习,从而提高学习效果。
3. 物理板块模型的内容物理板块模型包括以下几个主要板块:3.1 动力学板块动力学板块主要涉及物体运动的基本原理和公式,包括速度、加速度、力、质量等概念。
学生需要掌握牛顿第一定律、牛顿第二定律和牛顿第三定律等重要理论,并能够使用这些理论解决各种与物体运动相关的问题。
3.2 力学板块力学板块主要研究力的作用和力的效果。
学生需要学习和掌握静力学和动力学相关的知识,包括平衡条件、摩擦力、弹力等概念,并能够运用这些知识分析和解决各类力学问题。
3.3 电磁学板块电磁学板块主要研究电荷、电流、电场和磁场等电磁现象。
学生需要学习和理解库仑定律、安培定律、电场强度和电势差等重要概念,并能够运用这些知识解决电磁学问题。
3.4 光学板块光学板块主要研究光的传播和光的性质。
学生需要学习光的反射、折射、干涉和衍射等基本理论,并能够应用这些理论解答光学问题。
3.5 热学板块热学板块主要研究热量的传递和热力学规律。
学生需要学习和掌握热量传递、热力学定律、热容和热平衡等概念,并能够应用这些知识解决与热学相关的问题。
4. 学习物理板块模型的方法学习物理板块模型需要学生掌握一些方法和技巧。
首先,学生应该合理安排学习时间,将物理板块模型作为一个整体来学习。
其次,学生应该注重理解和记忆物理知识的关键概念和公式,而不是仅仅死记硬背。
方法15 高中物理模型盘点(五)轻杆、轻绳和轻弹簧模型物理模型盘点——轻杆、轻绳、轻弹簧模型1.三种模型的相同点(1)“轻”——不计质量,不受重力。
(2)在任何情况下,沿绳、杆和弹簧伸缩方向的弹力处处相等。
2.三种模型的不同点轻杆轻绳轻弹簧形变 特点 只能发生微小形变,不能弯曲只能发生微小形变,各处弹力大小相等,能弯曲发生明显形变,可伸长,也可压缩,不能弯曲方向 特点 不一定沿杆,可以是任意方向只能沿绳,指向绳收缩的方向 一定沿弹簧轴线,与形变方向相反 作用效 果特点 可提供拉力、推力只能提供拉力可以提供拉力、推力能否 突变能发生突变 能发生突变 一般不能发生突变如图所示,水平轻杆的一端固定在墙上,轻绳与竖直方向的夹角为37°,小球的重力为12 N ,轻绳的拉力为10 N ,水平轻弹簧的拉力为9 N ,则轻杆对小球的作用力的大小及其方向与竖直方向夹角θ为( )A .12 N 53°B .6 N 90°C .5 N 37°D .1 N 90°解析: 本题考查轻绳、轻杆、轻弹簧中力的方向及大小的特点,解题时要结合题意及小球处于平衡状态的受力特点。
以小球为研究对象,受力分析如图所示,小球受四个力的作用:重力、轻绳的拉力、轻弹簧的拉力、轻杆的作用力,其中轻杆的作用力的方向和大小不能确定,重力、弹簧的弹力二者的合力的大小为F =G 2+F 21=15 N 。
设F 与竖直方向夹角为α,sin α=F 1F =35,则α=37°。
所以杆对小球的作用力方向与F 2方向相同,大小为F 1-F 2=5 N 。
故选项C 正确。
答案: C如图所示,一重为10 N的球固定在支杆AB的上端,用一段绳子水平拉球,使杆发生弯曲。
已知绳的拉力为7.5 N,则AB杆对球的作用力()A.大小为7.5 NB.大小为10 NC.方向与水平方向成53°角斜向右下方D.方向与水平方向成53°角斜向左上方解析:对小球进行受力分析可得,AB杆对球的作用力和绳子的拉力与小球的重力的合力等值反向,由平衡条件知:F=102+7.52 N=156.25 N,故A、B均错。
模型法 在高中物理力学学习中的使用许有强(云南省红河州第一中学㊀733399)摘㊀要: 模型法 顾名思义是以建立模型使大脑更加清晰的方法ꎬ因为这种方法的有效性ꎬ常常被用于高中物理的解题方法中.老师通过在教学中传授这种方法ꎬ可以帮助同学们思维更加清晰.本文主要研究 模型法 在高中物理力学中的应用ꎬ主要从 使用 模型法 的问题 培养 模型法 的方法 两方面进行阐述.关键词:高中物理ꎻ 模型法 ꎻ力学学习ꎻ学习方法中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2020)24-0055-02收稿日期:2020-05-25作者简介:许有强(1979.9-)ꎬ男ꎬ云南省蒙自人ꎬ中学高级教师ꎬ从事高中物理教学研究.㊀㊀物理是当代社会中占重要地位的学科ꎬ高中又是同学们对物理的接触更加全面更加深刻的阶段.笔者在采访物理学习的过程中发现ꎬ难 是同学们反映的普遍现象ꎬ无法看清物理现象本质ꎬ建立适合自己的学习方法和逻辑思维.在力学方面的学习ꎬ使用 模型法 可以降低题目难度ꎬ所以老师在平时授课时ꎬ要着重培养学生的建模意识.在对物体进行分析时ꎬ可以使同学的思维更加流畅清晰.所以ꎬ本文会探究 模型法 对物理力学的应用以及应如何进行合理有效的建立ꎬ使同学们的物理成绩更上一层楼.㊀㊀一㊁使用 模型法 的问题1. 模型法 应用意识匮乏在物理力学的学习中ꎬ要想应用 模型法 来解决力学问题ꎬ可以帮助我们认知物理现象ꎬ理解物理原理ꎬ启发我们的物理思维.首先要有 模型法 的应用意识.而什么是 模型法 的应用意识ꎬ即在读完题目后ꎬ大脑会根据题目要求来简化并建立相应模型ꎬ也就是所谓的思维惯性ꎬ这是在同学们进行多次思考后达到熟练程度所形成的.因为在学习物理的过程中ꎬ大量的物理概念㊁物理公式㊁物理定理被涵盖其中ꎬ抽象性和逻辑性非常强ꎬ同学们无法将题目转化为易理解模式.模型是将探究的抽象内容实际化ꎬ并建立相应的便于理解的内容ꎬ使同学们物理的学习更加具体化ꎬ不再局限于抽象㊁无法想象.例如:两个物体叠在一起ꎬ对其进行受力分析ꎬ老师们不妨先让学生自主思考ꎬ可以适当对学生进行提示和思维引导.但现实是ꎬ本该留给学生自己思考去解决问题ꎬ由于繁重的学习任务和紧张的时间并不允许他们这样做ꎬ一般情况下都是由老师为其讲解ꎬ给出相应简化模型ꎬ而学生本身只需要将老师给出的答案进行理解分析即可.但是在这过程中ꎬ没有学生的自主思考ꎬ而是消化老师 嚼好的 东西ꎬ是不会真正建立这种应用能力致使同学们的 模型法 应用能力匮乏.2. 模型法 应用能力不强在教学中使用 模型法 的目的是为了更加方便清晰的解决实际问题ꎬ但是建立了模型并不代表着可以使用它来解决问题.因为问题的解决需要理论与实际情况相结合ꎬ即使学生们学会模仿其他类型的题目来进行建模ꎬ但由于每道题的真实情况不同ꎬ得到的答案也不同.所以在老师培养了学生的应用意识后ꎬ也要主要加强学生的应用能力ꎬ这就需要从实际情况进行分析.但是学生在应用模型法进行解题时ꎬ只从模仿来建立模型ꎬ而没有实际理解模型本身ꎬ致使应用能力不强.这就需要老师在教学过程中多注重对学生的自主应用能力的培养.而老师教会同学们合理地正确地使用 模型法 ꎬ可以帮助同学们55Copyright©博看网 . All Rights Reserved.更好的认识物理现象ꎬ从而透过现象清晰的了解物理原理.在建立合适的模型基础上ꎬ对物理现象的正确认知和物理原理的灵活运用ꎬ会使学习达到事半功倍的效果.例如:在受力分析过程中ꎬ要想正确建立模型ꎬ就要求其清晰的与本题实际相结合.比如绳子的模型和杆的模型就容易混淆ꎬ而两者的解题思路也存在较大差别.绳子的模型在应用中力的方向总是沿绳子方向.而对于杆来说ꎬ力的方向可以是任意的.所以ꎬ想要正确得出答案就要正确的对模型进行分析归类.作为老师ꎬ也应该给学生独立思考的机会ꎬ自己思考出来的结果印象才最深刻ꎬ记忆才最牢固.㊀㊀二㊁培养 模型法 的方法在教学中ꎬ使用 模型法 是一个普遍且有效的解决办法ꎬ通过认识物理现象ꎬ运用物理原理去解决物理问题.但是老师只有将书本上的知识与实际情况相结合传授给学生ꎬ才能达到更好的教学效果.1.培养物理模型应用意识老师在教授学生使用 模型法 解决问题时ꎬ要帮助学生建立应用意识.就是再碰到相关物理力学知识的时候ꎬ引导学生的思维惯性ꎬ思考这道题的解决办法ꎬ能使用什么方法来方便简单的找到答案.在传授知识的过程中ꎬ老师要培养学生要对物理知识㊁物理原理㊁物理现象进行归纳总结ꎻ对物理公式进行活学活用ꎻ多对物理习题进行整理ꎬ并从中归纳物理模型的建立.以便思维惯性发挥作用ꎬ节约同学们的解题时间ꎬ提高学习㊁做题效率.例如:同学们在进行受力分析时ꎬ主要是对物体受到的力的分析ꎬ考虑重力㊁摩擦力㊁弹力的存在因素ꎬ解决一系列的受力问题.这时老师就可以运用力学知识及原理来建立力学模型ꎬ帮助学生进行细致的受力分析.同时老师也应引导学生思考多个物体间存在的相互作用力.在分析多个物体的相互作用力时可以采用隔离法ꎬ通过对单个物体的受力分析ꎬ为达到受力平衡来对另一个物体进行分析.运用整体法来建立模型也是一个好方法ꎬ在忽略多个物体的内力因素时ꎬ考虑外力对物体的影响.在分析问题时可能会遇到数学问题ꎬ运用例如三角函数来解决.模型建立后的受力分析会变得相对简单ꎬ搭配上机械能守恒定律㊁动能定理㊁动量守恒定律等ꎬ可以使问题得到解决.老师在教学过程中不仅仅要传授学生知识ꎬ更重要的是对学习方法的培养ꎬ引导学生一步步养成自主思考㊁自主学习的好习惯.2.培养模型应用能力当对问题进行一系列分析后ꎬ如果使用模型法解决问题ꎬ即使将模型完整的建立好ꎬ但也可能不是正确㊁适用于此道题目的模型ꎬ可能只是对于别的题目的模仿.再结合了实际情况来看ꎬ这种模型并不能用来解决问题.这是因为应用能力的建立是需要日积月累的经验ꎬ在日常学习的总结归纳里吸取教训和方法.而现实中学生缺乏模型应用能力ꎬ对模型理解不够ꎬ无法与实际相联系ꎬ从而导致错误的模型被建立.正确的建立模型会使问题得到简化ꎬ提高学习效率.所以在平时学习中要让同学多多积累ꎬ归纳总结.对各类题型做到心中有数ꎬ启发物理思维ꎬ慢慢培养模型应用能力.例如:通过公式也可以探究模型的建立方法ꎬF合t=mVᶄ-mVꎬ关于动量定理ꎬ物体所受合外力的冲量等于它的动量变化ꎬ可以从物理量上入手ꎬ建立模型培养学生在日常学习中的归纳总结ꎬ对题型的概括以及平时的认真学习ꎬ细心纠错.通过对物理力学知识的整理ꎬ对各类模型也进行总结ꎬ使其逐步形成思维惯性.并对模型中可能出现的情况ꎬ有灵活运用能力.要想模型可以建立的准确ꎬ在老师平时教学的基础上要付出加倍努力.在教学中使用 模型法 解决物理力学知识时ꎬ要着重于建立模型应用意识ꎬ提高模型应用能力.从物理现象入手ꎬ对基础知识进行全面了解和把握ꎻ对于物理公式ꎬ它作为解题的钥匙ꎬ同学们更加应该熟练运用ꎬ不仅要熟练运用ꎬ还要灵活代入.在让同学反复练习过程中ꎬ找到一套适合他们自己的学习方法ꎬ来找寻解决问题的突破口.使他们能够达到合理且能正确运用 模型法 来解决物理问题ꎬ以此提高学习效率㊁提升学习成绩.㊀㊀参考文献:[1]杨锐宇.关于高中物理力学实验学习的思考[J].赤子ꎬ2018(34):220.[2]殷鹏程.从生活现象中探究高中物理力学概念的学习[J].神州ꎬ2018(35):173.[3]高俣.高中物理力学学习经验分析[J].神州ꎬ2018(27):172.[责任编辑:李㊀璟]65Copyright©博看网 . All Rights Reserved.。
高中物理模型法教案
课题:光的折射与透镜成像
教学目标:
1. 了解折射和透镜成像的基本原理;
2. 掌握光的折射定律和透镜成像规律;
3. 能够运用模型法解决与光的折射和透镜成像相关的问题。
教学重点和难点:
重点:折射定律的理解和透镜成像规律的掌握;
难点:理解折射角与入射角的关系,运用模型法解决具体问题。
教学过程:
一、导入(5分钟)
教师介绍光的折射和透镜成像的基本概念,引出本节课的学习内容。
二、知识讲解(15分钟)
1. 折射定律的表达式和含义;
2. 透镜成像的规律和分类;
3. 演示实验:透镜成像示意图。
三、模型法解题(20分钟)
1. 通过一些具体例题,引导学生掌握运用模型法解决光的折射和透镜成像问题的方法;
2. 练习时间,让学生自主完成若干相关练习。
四、思维拓展(10分钟)
提出一些思维拓展题目,让学生通过拓展思考,进一步巩固知识点。
五、课堂讨论(5分钟)
学生就思维拓展题进行讨论,及时解答疑惑。
六、作业布置(5分钟)
布置相关作业,包括练习题和思考题,巩固本节课内容。
教学案例及评价:
本课以折射和透镜成像为主要内容,通过模型法教学方法,加深学生对这两个概念的理解和掌握。
学生在课堂上能够积极参与讨论和练习,对知识点的掌握效果较好。
(注:以上为一份高中物理模型法教案范本,具体教学过程和内容可根据实际课堂情况做适当调整。
)。
目录高中物理学习方法 (2)高中物理学习方法总结 (17)高中物理37模型 (29)高中物理学习方法高一物理学习问答在今后的物理学习中,学生应该怎样去预习和复习?高一学生最不适应高中物理学习的是物理现象的分析,尤其是一些喜爱记忆物理结论的同学,他们忽视物理知识的形成过程,课堂上感觉“听得懂”,解决一些套用公式的题目也挺简单,但是解决一些实际物理问题时则无从下手,这是大部分同学感觉物理难学的根本原因。
因此提高分析能力是高中物理学习的核心,物理思维能力的提高必定源于对物理现象的分析与思考,因此我建议同学们在预习物理的时候,尽可能多看“实验”、多说“说一说”,多做“做一做”,尝试着将课本作为指导我们发现物理奥秘的说明书,不要急于去看书上的结论,更不要急于去做练习册,试着将物理现象中的规律寻找出来,找不出来时要问几个“为什么”,这样带着问题去听课必然收获较大。
复习工作则强调对课堂学习的梳理和消化,有些物理现象课堂上没有及时想透彻的,课后与同学讨论,向老师讨教,或查阅资料,或上互联网发个贴子,这都是好的复习方法,总之物理的复习贵在思考,而不是记忆。
学生在物理的课堂学习中有哪些注意事项?课堂是物理学习的主阵地,是师生共同探究物理现象,寻找物理规律的活动过程,因此同学们首先要注意观察实验,分析现象产生的条件和原因,掌握实验研究的基本方法,学会从实验中寻找规律。
其次要积极参与物理概念和规律的建构过程,要想准确地理解概念和规律,就应明白它们从哪里来?怎么得来?为什么要有?如何应用?教材突出了科学探究的学习方法,就是要同学们沿着科学家研究的足迹,在老师的指导下探索物理现象,得出物理规律,这个过程获得的不仅仅是一条规律,而是科学研究的能力。
再次要在规律的运用过程中提高分析问题的能力,物理规律是在运用中不断深化理解的,不可一味套用公式,要分析为什么要用这条规律?怎样运用?有无限制条件?当然还要注意解题的规范,用准确的物理语言表达题意,提高用物理图形表达题意的能力。
高一物理学习方法刚刚步入高一的学生又开始了新一轮的学习与生活。
当我个面对这些学生时,应该怎样去把高中物理知识教授给他们,让他们从容面对新的挑战?一、做好初、高中物理的衔接高中物理难学,难就难在初中与高中衔接中出现的“台阶”。
这个台阶存在于物理教材内容、教学方法和学生的学习能力、思维方法与心理特点上。
初中物理学习的物理现象和物理过程,大多是“看得见,摸得着”,而且常常与日常生活现象有着密切的联系。
学生在学习过程中的思维活动,大多属于生动的自然现象和直观实验为依据的具体的形象思维,较少要求应用科学概念和原理进行逻辑思维等抽象思维方式。
初中物理练习题,要求学生解说物理现象的多,计算题一般直接用公式就能得出结果。
高中物理学习的内容在深度和广度上比初中有了很大的增加,研究的物理现象比较复杂,且与日常生活现象的联系也不象初中那么紧密。
分析物理问题时不仅要从实验出发,有时还要从建立物理模型出发,要从多方面、多层次来探究问题。
在物理学习过程中抽象思维多于形象思维,动态思维多于静态思维,需要学生掌握归纳理,类比推理和演绎推理方法,特别要具有科学想象能力。
刚从初中升上高中的学生普遍不能一下子适应过来,都不,觉得高一物理难学。
如何搞好初中物理教学的衔接,降低高初中的物理学习台阶;如何使学生尽快适应高中物理教学特点,渡过学习物理的难关,就成为我们高一物理教师的首要任务。
1.注意新旧知识的同化与顺应同化是把新学习的物理概念和物理规律整合到原有认知结构的模式之中,认知结构得到丰富和扩展。
顺应是认知结构的更新或重建,新学习的物理概念和规律已不能为原有认知结构的模式所容纳,需要改变原有模工或另建新模式。
教师在教学过程中,帮助学生以旧知识同化新知识,使学生掌握新知识,顺利达到知识的迁移。
高中教师应了解学生在初中已掌握了哪些知识,并认真分析学生已有的知识。
把高中教材研究的问题与初中教材研究的问题在文字表述、研究方法、思维特点等方面进行对比,明确新旧知识之间的联系与差异。
选择恰当的教学方法,使学顺利地利用旧知识来同化新知识,就降低了高物理学习的台阶。
许多事例表明,学生能够比较自觉地同化新知识,但往往不能自觉地采用顺应的认知方式。
在需要更新或重建认知结构的物理新知识学习中,应及时顺应新知识更新认知结构。
例如:初中物理中描述物体运动状态的物理量有速度(速率)、路程和时间;高中物理描述物体运动状态的物理量有速度、位移、时间、加速度等,其中速度位移和加速度除了有大小还有方向,是矢量。
教师应及时指导学生顺应新知识,辨析速度和速率、位移和路程的区别,指导学生掌握建立坐标系选取正方向,然后再列运动学方程的研究方法。
用新的知识和新的方法来调整、替代原有的认知结构。
避免人为的“走弯路”加高学习物理的台阶。
2.加强直观教学高中物理在研究复杂的物理现象时,为了使问题简单化,经常只考虑其主要因素,而忽略次要因素,建立物理现象的模型,使物理概念抽象化。
初中学生进入高中学习,往往感到模型抽象,不可以想象。
针对这种情况,应尽量采用直观形象的教学方法,多做一些实验,多举一些实例,使学生能够通过具体的物理现象来建立物理概念,掌握物理概念,设法使他们尝到“成功的喜悦”2.加强解题方法和技巧的指导具体的物理问题,有时必须掌握一些特殊的解决问题的方法和技巧。
例如:解决力学中连接体的问题时,常用到:“隔离法”;对于不涉及系统内力,系统内各部分运动状态相同的物理问题,用“整体法”简便。
刚从初中升上高中的学生,常常是上课听得懂、课本看得明,但一解题就错,这主要是因为学生对物理知识理解不深,综合运用知识解决问题的能力较弱。
针对这种情况,教师应加强解题方法和技巧指导。
高中物理题目类型多,方法灵活,用到初等数学的知识较多。
教师在强化概念的同时,应精心准备每一节习题课,为提高习题课的效率,在上习题课前可先将题目布置下去,先让学生做,并让他们争先恐后地想办法解题。
每想好一种办法便拿给大家看,实在想不出,就相互讨论。
一些有难度的题目上,学生常常争论得面红耳赤,互不相让,到上习题课时,学生们就特别专心,应算一些题目课前没有做出来,但由于课前他们已经将题目思考多次,所以上课也特别容易理解和听得懂。
还要引导学生归纳和总结,把课堂上的知识和方法消化吸收。
另外,对学生作业的批改要认真、仔细,批改作业时,一看学生是否会做;二看学生是否认真做,书写是否规范、作图是否准确。
对普遍存在的问题要集体更正,个别存在的问题个别更正,不合格的作业一定要重做。
通过严格规范的批改作业,使学生形成良好的书写习惯和严密的思维过程;通过精心准备的习题讨论、讲解以及运用各种各样的解题方法,使学生在由简单模仿到运用自如、由运用自如再到自我创造的发展过程中,逐步掌握一定的解题方法和技巧,提高解决问题的能力。
二、提高学生学习的物理兴趣浓厚的兴趣将是人们刻苦钻研、勇于攻关的强大动力。
孔子曰:知之者不如好知者,好之者不如乐之者。
爱因斯坦说:“兴趣是最好的教师”。
杨振宁博士也说过:“成功的真正秘决是兴趣”。
一旦对学习发生兴趣。
就会充分发挥自已的积极性和主动性。
学生只有对物理感兴趣,才想学、爱学、才能学好。
从而用好物理。
因此,如何激发学生学习物理的兴趣,是提高教学质量的关键。
1.加强和改革实验教学,激发学生学习物理的兴趣通过趣味新奇的物理实验演示,激发学生的好奇心理,从而激发他们思索的谷望。
用实验导入新课的方法,可以使学生产生悬念,然后通过授课解决悬念。
每节课的前十几分钟,学生情绪高昂,精神健旺,注意力集中,如果教师能抓住这个有利时机,根据欲讲内容,做一些随手可做的实验,就能激发他们的学习兴趣,使学生的注意力集中起来,如在讲动量和冲量时,让两支相同的粉笔分别从同一高度直接到桌面上和落到有厚毛巾铺垫的桌面上,可以发现直接落到桌面上的粉笔断了,落到厚毛巾垫上的另一支却完好无损,老师由此引入动量和冲量知识的讲授。
又如在讲圆周运动的向心力时,可用易拉罐做成“水流星”实验,按照常规认识,当易拉罐运动到最高时,水必往下洒,但从实验结果看却出乎意料之外,水并没有下落。
接着使转速慢下来,学生们会发现慢到一定程度后水会洒出,接着提出问题:要使水不洒落下来,必须满足什么条件?三、加强学生的解题规范化要求物理规范化我认为主要体现在三个方面:思想、方法的规范化,解题过程的规范化,物理语言和书写规范化。
对此高考也有明确的要求。
如在要求计算题时:“解答应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位。
”因此从高考的角度看高中物理的规范化要求应当从高一时就严格抓起。
具体的来说应抓好以下几点:1.力学中要求画完整的受力分析图。
运动学中要有画运动图景的习惯力学问题中必须画出完整的受力分析图。
这是至关重要的。
是正确解决力学问题的关健。
有的同学认为问题很简单,画图不完整,或根本就不画受力图。
正确的结果往往难以得出。
即使一时能得出正确的答案,但这种不良的习惯慢慢就会养成。
当遇到较为复杂的问题时,就不知道如何下手了。
我有时甚至会宣传一种观点:力学问题当你不理解习题,难以下手时,对物体受力分析,往往会收到意想不到效果,正所谓柳暗花明。
运动学中画运动图景辅助解题,有时作用也是不可替代的。
我想我们在教学中深有体会,我们自己不画运动图景有时解题都不太容易。
2.字母、符号的规范化书写一些易混的字母从一开始就要求能正确书写。
如u、v、μ、ρ、p,m与M等,认真书写,我在教学中就发现有不少同学m与M不分,那么表达式就变味了。
受力分析图中,力较多时,如要求用大写的F加下标来表示弹力,用小写的f加下标来表示摩擦力,用F 与F′来表示一对弹力的作用力与反作用力。
力F正交分解时的两个分力Fx、Fy,初末速度V0、Vt等等。
3.必要的文字说明“必要的文字说明”是对题目完整解答过程中不可缺少的文字表述,它能使解题思路表达得清楚明了,解答有根有据,流畅完美。
比如,有的同学在力学问题中,常不指明研究对象,一上来就是一些表达式,让人很难搞清楚这个表达式到底是指向哪个物体的,有的则是没有根据,即没有原始表达式,一上来就是代入一组数据,让人也不清楚这些数据为什么这样用。
同时有的同学的一些表达式中用到一些题设中没有的字母,如果不指明这些字母的意义也是让人摸不着头脑。
很显然这些都是不符合要求的。
4.方程式和重要的演算步骤方程式是主要的得分依据,写出的方程式必须是能反映出所依据的物理规律的基本式,不能以变形式、结果式代替方程式。
同时方程式应该全部用字母、符号来表示,不能字母、符号和数据混合,数据式同样不能代替方程式。
演算过程要求比较简洁,不要求把大量的运算化简写到卷面上。