年产30000吨聚乙烯醇精馏四塔系统的设计毕业设计
- 格式:doc
- 大小:2.28 MB
- 文档页数:63
乙醇精馏塔设计摘要乙醇是一种极重要的有机化工原料,也是一种燃料,在国民经济中占有十分重要的地位。
随着乙醇工业的迅速成熟,各种制乙醇的方法相继产生。
由于乙醇与水混合物的特殊性,即相对挥发度的不同且在一定浓度时生成共沸物,精馏操作一直是乙醇生产不可缺少的工序。
本设计的主要内容是根据20万吨乙醇生产工艺的需求,通过物料衡算和热量衡算以及板式浮阀塔设计的理论知识来设计浮阀塔,并由负荷性能图来进行校验。
此外,本设计遵循经济、资源综合利用、环保的原则,严格控制工业三废的排放,充分利用废热,降低能耗,提高工艺的可行性。
关键词:乙醇精馏;浮阀塔;塔附件设计AbstractEthanol is a very important organic chemical raw material, but also a fuel, in the national economy occupied a very important position. With the rapid ethanol industry matures, various methods have been found. As a characteristic of a mixture of ethanol and water, the difference of the relative volatility and is generated in a certain concentration azeotrope, distillation operation has been indispensable step of ethanol production.The design of the main content is based on 200,000 tons of ethanol production technology,which needs through material balance and energy balance and the plate valve column design theory to design the float valve column by load performance diagrams for verification. In addition, the design follows the economy, resource utilization, environmental protection principles, strictly control industrial waste emissions, the full use of waste heat, reduce energy consumption and improve the feasibility of the process.Keywords: Ethanol distillation,Valve column,Design目录摘要 (I)Abstract (II)第一章绪论 (1)1.1 设计的目的和意义 (1)1.2 产品的性质及用途 (1)1.2.1 物理性质 (1)1.2.2 化学性质 (2)1.2.3 乙醇的用途 (2)第二章工艺流程的选择和确定 (3)2.1 粗乙醇的精馏 (3)2.1.1 精馏原理 (3)2.1.2 精馏工艺和精馏塔的选择 (3)2.2 乙醇精馏流程 (5)第三章物料和能量衡算 (1)3.1 物料衡算 (1)3.1.1 粗乙醇精馏的物料平衡计算 (1)3.1.2 主塔的物料平衡计算 (2)3.2 主精馏塔能量衡算 (3)3.2.1 带入热量计算 (3)3.2.2 带出热量计算 (4)3.2.3 冷却水用量计算 (4)第四章精馏塔的设计 (5)4.1 主精馏塔的设计 (5)4.1.1 精馏塔全塔物料衡算及塔板数的确定 (5)4.1.2 求最小回流比及操作回流比 (6)4.1.3 气液相负荷 (6)4.2 求操作线方程 (6)4.3 图解法求理论板 (7)4.3.1 塔板、气液平衡相图 (7)4.3.2 板效率及实际塔板数 (8)4.4 操作条件 (8)4.4.1 操作压力 (8)4.4.2 混合液气相密度 (9)4.4.3 混合液液相密度 (10)4.4.4 表面张力 (11)4.5 气液相流量换算 (13)第五章塔径及塔的校核 (15)5.1 塔径的计算 (15)5.2 溢流装置 (17)5.2.1 堰长 (17)5.2.2 出口堰高 (17)5.2.3 弓形降液管的宽度和横截面积 (17)5.2.4 降液管底隙高度 (18)5.3 塔板布置 (18)5.4 浮阀数目与排列 (18)5.5 气相通过浮阀塔板的压降 (20)5.6 淹塔 (21)5.7 塔板负荷性能图 (22)5.7.1 雾沫夹带线 (22)5.7.2 液泛线 (23)5.7.3 液相负荷上限线 (24)5.7.4 漏液线 (25)5.7.5 液相负荷下限线 (25)第六章塔附件设计 (28)6.1 接管设计 (28)6.2 壁厚 (29)6.3 封头 (29)6.4 裙座 (29)6.5 塔高的计算 (29)6.5.1 塔的顶部空间高度 (29)6.5.2 塔的底部空间高度 (30)6.5.3 塔立体高度 (30)第七章总结 (31)致谢 (32)参考文献.......................................................................................... 错误!未定义书签。
PV A分子量对静电纺丝纤维的影响A.科斯基,K.严,美国shivkumar*机械工程系,伍斯特理工学院,学院路100,伍斯特郡,MA 01609,美国摘要研究了静电纺PVA纤维结构(PVA)对聚合物的重均分子量(MW)的影响。
PVA与一定程度的98–99%水解或分子量范围是从9000到186000克/摩尔的溶解水在浓度(C)的溶液中的聚合物是取决于分子量的变化。
在溶液电纺30 kV和收集得到的样品用扫描电子显微镜检查。
它是观察到的每个分子重量的纤维结构,稳定了上述的最小浓度,一般对应于[克] C > 5。
纤维平均直径250 nm和2点之间。
分子量和浓度的增加,纤维直径。
在低分子量和/或浓度([克] C<9),其纤维具有圆形横截面。
扁平纤维在高MW和观察到的浓度([克] C>9)。
2003 Elsevier B.V.保留所有权利。
关键词:静电纺PVA;聚合物;1.简介聚(乙烯醇)(PVA)是一种半结晶性,具有良好的化学稳定性和热稳定性,亲水聚合物。
[ 1 ]聚乙烯醇是无毒的,并且具有高度的生物相容性。
它加工容易,具有较高的水渗透性[ 2 ]。
很容易与不同的水溶性聚合物交联剂形成凝胶[ 3 ]。
PVA溶液可以作为不同类型的溶剂的物理凝胶。
这些特性导致的PVA在广泛使用应用在医疗,化妆品,食品,制药和包装行业。
PVA溶液已通过包括溶胶凝胶处理–众多技术处理,相分离和冻融循环–处理生产出各种结构。
最近,Ding等人[ 4 ]用静电纺丝纳米纤维状聚集体作为生产加工技术。
静电纺丝技术是在亚微米级聚合物粒子的过程中,纤维或多孔纤维网格可以使用的聚合物溶液的静电驱动喷墨[ 5 ]。
该技术在最近几年已经受到了很多的关注,由于相对简单,多孔结构可以宽范围内产生[ 6 ] .在这方面的贡献:分子量对产生的静电纺丝结构类型的影响进行了研究。
该聚合物的分子量有可能对流变性能[ 7 ]有显著影响[ 8 ],电导率,介电强度[ 9 ]和[ 10 ]在表面张力的解决方案。
成人高等教育毕业设计(论文)题目1Mt/a甲醇精馏装置工艺设计(节能流程)学生指导教师评阅人教学站彬县职业教育中心专业应用化工完成日期成人高等教育毕业设计(论文)任务书年月日1Mt/a甲醇精馏装置工艺设计(节能流程)摘要:本文提出两种新工艺,目的是使预塔使用二次蒸汽作为热源,通过运用计算机对现有工艺和新工艺进行稳态模拟和对比,证实了新工艺的可行性,同时得到了新工艺节能的定量数据,为进一步的工业应用提供依据。
关键词:甲醇精馏节能模拟目录1 概述……………………………………………………………………. ……………………………………………………………………………... ……………………………………………………………………..2 甲醇……………………………………………………………. ………………………………………………………………. ……………………………………………………………………………………………………………………………………..3 分离技术……………………………………………………………….. ………………………………………………………………. …………………………………………………………………………………………………………………………………………………….. …………………………………………………………………………. ………………………………………………………………………….4甲醇精馏装置工艺设计................................................................................................. ……………………………………………………………………………………………………………………………………….. …………………………………………………….5进行计算......................................................................................................... ......................................................................................................... ................................................................................................. ......................................................................................... ......................................................................................................... ........................................................................ ...................................................................................... .......................................................................................................... ............................................................................................................. ............................................................................................................. ..............................................................................................................6结论参考文献致谢前言甲醇是重要的化工原料,,甲醇制烯烃的技术最近也去得了一定进展,甲醇还是一种清洁的燃料,除了直接掺入汽、柴油作为燃料外,燃料电池技术正越来越受到人们的关注。
第一章概论1.1塔设备在化工生产中的作用和地位塔设备是化工、石油化工和炼油等生产中最重要的的设备之一。
它可使气(或汽)液或液液两相之间进行紧密接触,达到相际传质及传热的目的。
可在塔设备中完成的常见的单元操作有:精馏、吸收、解吸和萃取等。
此外,工业气体的冷却与回收、气体的湿法净制和干燥,以及兼有气液两相传质和传热的增湿、减湿等。
在化工厂、石油化工厂、炼油厂等中,塔设备的性能对于整个装置的产品产量、质量、生产能力和消耗定额,以及三废处理和环境保护等各个方面,都有重大的影响。
据有关资料报道,塔设备的投资费用占整个工艺设备投资费用的较大比例;它所耗用的钢材重量在各类工艺设备中也属较多。
因此,塔设备的设计和研究,受到化工、炼油等行业的极大重视。
1.2塔设备的分类及一般构造塔设备经过长期发展,形成了型式繁多的结构,以满足各方面的特殊需要。
为了便于研究和比较,人们从不同的角度对塔设备进行分类。
例如:按操作压力分为加压塔、常压塔和减压塔;按单元操作分为精馏塔、吸收塔、解吸塔、萃取塔、反应塔和干燥塔;按形成相际接触界面的方式分为具有固定相界面的塔和流动过程中形成相界面的塔;也有按塔釜型式分类的。
但是长期以来,最常用的分类是按塔的内件结构分为板式塔和填料塔两大类,还有几种装有机械运动构件的塔。
在板式塔中,塔内装有一定数量的塔盘,气体以鼓泡或喷射的形式穿过塔盘上的液层使两相密切接触,进行传质。
两相的组分浓度沿塔高呈阶梯式变化。
在填料塔中,塔内装填一定段数和一定高度的填料层,液体沿填料表面呈膜状向下流动,作为连续相的气体自下而上流动,与液体逆流传质。
两相的组分浓度沿塔高呈连续变化。
人们又按板式塔的塔盘结构和填料塔所用的填料,细分为多种塔型。
装有机械运动构件的塔,也就是有补充能量的塔,常被用来进行萃取操作,液有用于吸收、除尘等操作的,其中以脉动塔和转盘塔用得较多。
塔设备的构件,除了种类繁多的各种内件外,其余构件则是大致相同的。
化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 S1 期聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化李梦圆1,郭凡2,李群生1(1 北京化工大学化学工程学院,北京 100029;2 浙江华亿工程设计股份有限公司,浙江 绍兴 312300)摘要:聚乙烯醇(PVA )是一种性能优良的聚合物材料,其回收工段的主要目的是对上游产生的富含醋酸甲酯(MeOAC )、甲醇(MeOH )等化工原料的醇解废液进行回收处理。
其中回收工段第三精馏塔和第四精馏塔(以下简称TQ-603和TQ-604)主要分离任务是同时处理来自回收二塔TQ-602的塔釜液、来自回收一塔TQ-601的塔釜液及聚合工段第三精馏塔TQ-302的塔釜液,其物料的主要组成均为甲醇与水的混合物。
本文采用Aspen Plus 化工流程模拟软件对10万吨/年 PVA 回收工段中回收三塔和四塔进行模拟优化,针对所分离的主要体系MeOH-H 2O 体系进行了热力学方法的选择及参数回归,最终选用NRTL 模型进行了模拟与优化。
优化后得到单塔的最佳操作参数。
在此基础上将双效精馏技术用于原工艺流程的节能改造并开展模拟优化,构建多塔供热流程,实现深度节能。
关键词:聚乙烯醇;回收塔;双效精馏;模拟;优化中图分类号:TH3 文献标志码:A 文章编号:1000-6613(2023)S1-0113-11Simulation and optimization of the third and fourth distillation columnsin the recovery section of polyvinyl alcohol productionLI Mengyuan 1,GUO Fan 2,LI Qunsheng 1(1 College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China; 2 Zhejiang HuayiEngineering Design Co., Ltd., Shaoxing 312300, Zhejiang, China)Abstract: Polyvinyl alcohol (PVA) is a polymer material with excellent performance. The main purpose of the recycling section is to recycle the alcoholysis waste liquor rich in methyl acetate (MeOAC), methanol (MeOH) and other chemical materials generated upstream. The main separation task of the third and fourth distillation columns of the recycling section (TQ-603 and TQ-604) is to simultaneously process the column kettle liquor from the second column (TQ-602), the column kettle liquor from the first column (TQ-601) and the column kettle liquor from the third column of the polymerization section TQ-302. Their main composition is a mixture of methanol and water. In this article, Aspen Plus chemical process simulation software was used to simulate and optimize the 100kt/a PVA recovery section in the third and fourth towers. The thermodynamic method was selected, and the parameter regression wasconducted for the main MeOH-H 2O system. The optimal operating parameters of the single tower were obtained after optimization. On this basis, the double-effect distillation technology was implemented for研究开发DOI :10.16085/j.issn.1000-6613.2023-0926收稿日期:2023-06-05;修改稿日期:2023-06-17。
前言这次毕业设计是学生在大学期间的最后一次运用4年所学的知识,进行的一个综合性设计。
作为过程装备与控制工程专业的本科生,不仅需要牢固掌握基本的理论知识,还要在设计,实践的过程中学会应用。
正因为如此,认真地去做设计肯定对将来的工作的一次练兵,为今后的发展起到铺垫作用。
课题题目是Φ4500mm常压塔机械设计。
工作介质是原油,地点武汉,最高工作温度360℃,最高工作压力为0.15Mpa。
此常压蒸馏塔应用于炼油工艺过程中期,是最常用的一种单元设备之一。
由于原油具有其独特性,因此在设计时也很有必要去注意一些实际问题。
本设计说明书介绍了设计的主要过程,包括设计的思路。
从材料的选取,结构参数设计和选型,厚度计算,强度与稳定性校核,开孔补强设计,以及主要零部件的制造工艺等,都有基本的叙述。
为做到设计的正确性,合理性,就要严格按照设计原则进行,所有数据必须经过查表和计算得到,同时要考虑实际中存在的问题,比如安装吊运、检修等。
考虑到设备和生产的经济性,设计中遵循最优原则,即在满足基本要求的前提下最大限度地提高经济性和效率。
此书是对整个设计过程的记录以及整合。
全书分为五章,与装配图紧密相连,互成整体。
这次设计工作是由陈世民同学在何家胜副教授的指导以及同学的帮助合作下完成的,在此对提供过帮助的老师和同学表示谢意!但是由于设计者水平有限,肯定会有不妥甚至错误之处,如有发现,请读者指正为谢!编者2010.06.01摘要原油常压蒸馏作为原油加工的一次加工工艺,在原有加工流程中占有举足轻重的作用,其运行的好坏直接影响到整个原有加工的过程。
而在蒸馏加工的过程中最重要的分离设备就是常压塔。
因此,常压塔的设计好坏对能否获得高收益,搞品质的成品油油着直接的影响。
本次设计的常压塔是原油炼制工艺过程的中期塔设备。
设计时要考虑实际要求,遵循塔设备的设计原则,要经历需求分析、目标界定、总体结构设计、零部件结构设计、参数设计和设计实施这几个过程。
毕业设计题目:年产30万吨甲醇精馏提纯的工段设计院(系):化学化工学院专业:化学工程与工艺学号:姓名:指导教师:完成日期:2014.6目录第一章文献综述 (4)1.1 甲醇生产工艺进展及国内发展前景 (4)1.1.1甲醇简介 (4)1.1.2甲醇的用途 (8)1.1.3甲醇的安全性 (9)1.1.4甲醇国内外合成技术现状 (10)1.3影响精馏操作的因素与调节 (12)1.3.1影响精馏操作的主要因素简析 (12)1.3.2精馏塔的产品质量控制和调节 (13)1.4 Aspen Plus工艺流程模拟 (14)第二章物料衡算和能量衡算 (16)2.1操作条件 (16)2.2物料衡算 (16)2.2.1 预塔物料衡算 (17)2.2.2 加压塔的物料衡算 (18)2.2.3 常压塔的物料衡算 (29)2.2.4 回收塔的物料衡算 (37)2.2.5 四塔实际模拟 (45)2.4整个四塔甲醇的回收率 (55)2.5加压塔、常压塔、回收塔采出甲醇的浓度 (55)第三章预精馏塔工艺设计及其附件选型 (55)3.1 设计依据 (55)3.1.1 预精馏塔设计已知条件 (55)3.1.2 塔板工艺条件计算 (56)3.1.3 塔径计算 (57)3.1.4 塔高计算 (58)3.1.5 塔板的工艺尺寸 (60)3.1.6 塔板流体力学验算 (64)3.2 预精馏塔附件选型 (71)3.2.1 管口设计 (71)3.2.2 设备管口表 (73)参考文献 (74)附录 (74)致谢 (75)年产30万吨甲醇精馏提纯的工段设计学生:xxx 指导老师:xxx摘要:本设计是关于甲醇精馏的工段及其预塔设备的设计,文中着重介绍了四塔流程。
按照课程设计任务书上的要求,文中具体内容包括:甲醇及精馏的相关内容;甲醇精馏流程介绍;精馏全流程的物料衡算和能量衡算;Aspen对全流程的模拟及分析以及Radfrac模块中的Tray Sizing对加压、常压、回收塔的尺寸设计;预精馏塔的塔设备计算及塔附件选型等。
前言石油是发展国民经济和建设的主要物质,产品种类繁多,用途极广。
精细化工的产生和发展与人们的生活和生产活动紧密相关,近十几年来,随着生产和科学技术的不断提高,发展精细化工已成为趋势。
我国的有机化工原料工业起步较晚,全国解放前除有少量炼焦苯和发酵酒精外,大量有机原料依靠进口。
在解放初期的有机化工原料工业,只能在煤炭和农副产品基础上起步,随着新油田的相继幵发和新炼油厂的陆续建设,与此同时,对天然气资源的利用,也取得了长足进展。
以石油为原料生产化工产品,并非起源于近代,在第二次世界大战以后,石油化学工业发展非常迅速,以石油为原料可以得到三烯、一炔、一萘及其他化工基础有机原料,进而制得醛、酮、酸、酐等基本有机产品和原料,再制得合成纤维、合成塑料、合成橡胶、合成洗涤剂、涂料、炸药、农药、染料、化学肥料等重要的化工产品。
目前,全世界每年生产的石油虽然仅有5%左右用于化学工业,但石油化工的总产值却占化学工业总产值的60%左右,某些国家甚至达到80%,由此可见,石油在化工领域中占有重要的地位。
丙烯是重要的化工原料,美国将生产量的二分之一用于制造化工产品,余下的大部分则与异丁烷反应制造汽油中所需要的烷化物。
由丙烯可以得到大量的化工产品,如聚丙烯、丙烯酸、丙烯腈、环氧丙烷、丙酮等。
当前各炼厂的气体分离装置大部分仍然采用精馏分离。
化工生产中所处理的原料中间产物和粗产品等几乎都是由若干组分组成的混合物,蒸馏是分离液体混合物的典型单元操作。
低沸点烃类混合物是利用精馏方法使混合物得到分离的,其基本原理是利用被分离的各组分具有不同的挥发度,即各组分在同一压力下具有不同的沸点将其分离的。
其实质是不平衡的汽液两相在塔盘上多次逆向接触,多次进行部分汽化和部分冷凝,传质、传热,使气相中轻组分浓度不断提高,液相中重组分浓度不断提高,从而使混合物得到分离。
塔设备是能够实现蒸馏的气液传质设备,广泛应用于化工、石油化工、石油等工业中,其结构形式基本上可以分为板式塔和填料塔两大类。
年产 30000 吨聚乙烯醇聚合精馏一塔系统工艺设计第一章 聚乙烯醇综述1.1 聚乙烯醇性质和用途1.1.1 聚乙烯醇性质简介 聚乙烯醇树脂是以乙烯法生产的醋酸乙烯为原料,经溶液聚合、无水低碱醇解得。
工艺具有物耗低、能耗低、污染小的特点,是一种环保型产品,聚乙烯醇主要有完主 醇解型和部分醇解型两大类。
1.1.1.1 聚乙烯醇的化学结构聚乙烯醇的端基较复杂,除了羟基外,还有羧基、羰基和二甲基乙氰基等。
这些 基团表现了复杂的行为。
它们除了影响到维尼维纤维的着色、染色性能、吸湿性能, 并促使聚乙烯醇溶解部分的增加。
根据羟基空间分布的位置,可分为全同结构聚乙烯醇(I-PVA)、间位结构聚乙 烯醇(S-PVA)和无规结构聚乙烯醇(A-PVA)。
以下就是这三种结构的构象:I-PVA结构最规整,S-PVA结构规整性差些,A-PVA结构最不规整。
聚乙烯醇的优优 QQ510852074第1页共 62 页2010-9-25安徽建筑工业学院本科生毕业设计结构愈规整,大分子之间结合就越紧密,分子间的羟基和氢愈容易形成氢键,它们的 结晶度就愈高,制成纤维耐热水性就高。
低温聚合生产的聚乙烯醇全同结构占的比例 大,规整性高,用它制成的纤维,不经过缩醛化处理耐热水性也很高。
1.1.1.2 聚乙烯醇的化学性质 聚乙烯醇的化学性质在于它的仲醇基的存在,它在一定程度上类似纤维素,例如它的羟基含量与纤维素中羟基的含量相差不大。
它能进行多元醇典形的化学反应,能 够酯化和醚化,能与碱金属、醛反应。
也能与二硫化碳和氢氧化钠反应生成黄原酸盐。
其水溶液有很好的粘接性和成膜性;能耐油类、润滑剂和烃类等大多数有机溶剂;具 有长链多元醇酯化、醚化、缩醛化等化学性质。
溶于水,为了完全溶解一般需加热到 65~75℃。
不溶于汽油、煤油、植物油、苯、甲苯、二氯乙烷、四氯化碳、丙酮、醋 酸乙酯、甲醇、乙二醇等。
微溶于二甲基亚砜。
120~l50℃可溶于甘油.但冷至室温时 成为胶冻。
年产10000吨PVA的TQ-205结构参数计算示例一、五塔物料平衡计算方法基准:年产10000吨聚乙烯醇。
1、精馏送出醋酸乙烯量:已知皖维采用低碱法生产的聚乙烯醇平均纯度为94%,按照年生产时间8000小时计算,收率为99.5%,聚合转化率为50%,则10000×1000÷8000×0.94÷44=精馏送出醋酸乙烯量÷86×99.5%精馏送出醋酸乙烯量=2308kg/h。
2、一塔加料即反应液中各组成的含量:已知反应液的组成为:则根据一塔加料中醋酸乙烯×99.8%=精馏送出醋酸乙烯量:(假定收率99.8%)3、假定醋酐、二醋酸亚乙酯和水反应产生的醋酸和由ZF-208釜排出系统的醋酸及系统醋酸消耗相当,可认为五塔中采送出的醋酸为一塔进料中的醋酸含量。
(不考虑乙醛氧化产生的醋酸或假定乙醛经TQ209提纯后作为一个产品外售)则:五塔中采送出的醋酸=3152.9 kg/h。
已知原皖维公司某生产线侧线采出精醋酸的组成和本设计如下表。
(比例系数:3152.9÷4137.9=0.762)表3 侧线采出精醋酸表4 进料注:塔内加水51公斤/小时.表5 馏出液表6 排出釜残液二、操作条件和物料平衡表7 操作条件表8 物性数据汇总表三、气液负荷计算因为该塔中分子汽化潜热不等,所以不能用恒分子流的方法计算气液负荷。
本计算用热量平衡与物料平衡联立的方法计算气液负荷。
(一)通过全塔热平衡计算再沸器的热负荷Q s图1 全塔热平衡Q F=0.473×3509.53×80=132800千卡/小时Q R=0.581×327.02×6×45=51299千卡/小时Q P=0.581×327.02×(6+1)+188.18×327.02×(6+1)=432100千卡/小时Q m=(0.473×3177.36×126)+(98.42×3177.36)=502080千卡/小时Q W=0.475×74.71×126=4471千卡/小时假设全塔热损失为:Q E=0.03Q S全塔热平衡:Q S+Q F+Q R=Q P+Q m+Q W+Q EQ S-0.03Q S=( Q P+Q m+Q W)-(Q F+Q R)∴97.0)51299 132800()4471502080432100(+-++=SQ=777888千卡/小时(二)由第2块板以下的热量平衡和物料平衡,求提馏段上升汽量SV'和下降液体量SL'用C代表比热千卡/公斤〃℃H i 代表汽化潜热 千卡/公斤 热量平衡Q L +Q S =Q V +Q W +Q m (1) 物料平衡L'=V'+m+W (2)Q L =C L'T=C (V'+m+W)T=CV'T+CmT+CWT (3) Q V = V'H i +CV'T (4) Q W =CWT (5) Q m =mH i +CmT (6)图1 热量平衡(千卡/小时) 图2 物料平衡(公斤/小时) 将式(3)(4)(5)(6)代入式(1),得: CV'T +CmT +CWT +Q S = V'H i +CV'T +CWT +mH i +CmT 消去两边同类项,得: Q S =V'H i +mH i ∴iiS H mH Q V -=' (7)将有关数据代入式(7),得:42.9842.98*36.3177777888-='V =4726.4公斤3/小时19.236004.4726⨯='s V =0.599米3/秒将有关数据代入式(2),得:L'=V'+m+W=4726.4+3177.36+74.71=7978.5公斤/小时∴104636005.7978⨯='s L =0.0021米3/秒(三)求精馏段气液负荷18.117.10017.100)80118(473.0=+-=δ进料板以上第一块板的气相负荷V s1 ∵Fs s F V V γδ3600)1(1-+='Fs s F V V γδ3600)1(1--'=19.23600)118.1(53.3509599.0⨯--==0.519米3/秒精馏段顶板气相负荷V s21、由于回流液温度低产生的内回流量()塔顶汽化潜热馏出液温度塔顶温度馏出液比热回流比馏出量-⨯⨯=∆18.188)45108(602.327518.0-⨯⨯==340.3公斤/小时2、p s R V γ3600)1(2∆++=馏出量3.136003.340)16(02.327⨯++==0.562米3/秒精馏段平均气相负荷221s s s V V V +=2562.0519.0+==0.541米3/秒 进料板上一块板的液相负荷L s1∵F s sFL L γδ36001+='∴Fss FL L γδ36001-'=1047360053.350918.10021.0⨯⨯-==0.00100 米3/秒精馏段顶板液相负荷L s2Rs L γ36002∆++=工艺水回流量102736003.34051602.327⨯++⨯==0.00064米3/秒精馏段平均液相负荷L s221s s s L L L +=200064.000100.0+==0.00082米3/秒 (下面请你按照公式自己完成) 四、精馏段计算(一)塔径计算设板间距H T =0.4米,Lh '=0.07米 则H T -Lh '=0.4-0.07=0.33米2121)775.11037(838.000135.0)(=V L s s V L γγ=0.0389 查史密斯图,得C 20=0.072.020)20(σσC C ==0.069 最大允许空塔速度VV L C W γγγσ-=max 775.1775.11037069.0-==1.67米/秒W'取(0.6~0.8)W max 之间,取0.6W max W'=0.6×1.67=1.002米/秋 D'=21785.0838.0⨯=1.033米取塔径D 为1.4米,则实际空塔速度为: W=2785.0D V s =24.1785.0838.0⨯=0.546米/秒(二)溢流堰及降液管的设计 堰长L W 一般取(0.6~0.8)D ,取下限 L W =0.6×1.4=0.84米 堰上液流高度h 0W :5.25.284.000135.0810810⨯=WsL L =1.68查图得E=1.0283/20)3600(100084.2W s W L L E h =3/2)84.000135.03600(028.100284.0⨯⨯==0.0094米 液面梯度△: 1、鼓泡层高度h fh f =2.5L h '=2.5×0.07=0.175米2、弓形降液管的宽度W d W d =0.14米3、内外堰之间的距离Z 1 Z 1=D -2W d =1.4-2×0.14=1.12米4、平均液流长度b2D L b W +=24.184.0+==1.14米 Lf s f bh Z L h b γμ312)1000(3600)1000250(215.0+=∆1037)175.014.11000(1037)175.014.11000(12.10013.036004.0)175.0100014.1250(215.0332⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯+⨯==0.0000116米水柱液面梯度很小,可以略去。
设计任务书1.设计题目:年产2万吨乙醇--水精馏塔的工艺设计2.设计条件生产能力:年产4102 吨85% (mol%)乙醇设备型式:浮阀塔操作压力:常压原料液:乙醇的摩尔百分含量为35%,50℃进料乙醇的纯度:塔顶不低于85%(mol%,下同),塔底不高于1%。
每年按330天计,每天24小时连续生产建厂地址:兰州地区要求单板压降都不大于103Pa,3.设计步骤及要求3.1确定设计方案(1)流程的选择(2)塔板类型的选择,例如浮阀的类型、降液管、溢流装置等的选择(3)压力的选择(4)进料热状况的选择(5)加热方式的选择3.2查阅物料的物性数据(1)乙醇-水的相平衡数据(2)确定精馏段和提馏段的定性温强度和压强(3)分别确定精馏段和提馏段的气相和液相的平均密度、液相的平均表面张力、液体的平等均粘度3.3塔的工艺计算3.3.1塔设计方案的确定(1)全塔的物料衡算(2)绘制相平衡图(t-x-y和x-y相图)(3)确定回流比(4)确定理论塔板数(5)确定全塔效率(6)分别确定精馏段和提馏段的实际塔板数和进料板位置(7)分别确定精馏段和提馏段的气液两相的负荷3.3.2精馏段塔板主要工艺结构尺寸的计算(1)塔径(初选板间距、求取空塔气速和泛点气速)(2)塔高的计算(3)溢流装置的设计(包括溢流堰的型式、堰长、堰高、降液管的宽度和面积、降液管内流体的停留时间、降液管的底隙高度)(4)塔板上各区域的布置(包括塔板的开孔区、降液区、安定区和边缘区的分布)(5)浮阀的个数以及排列方式(包括阀孔直径、个数、排列和开孔率等)(6)精馏段塔板的流体力学计算级校核(包括溢流堰上清液层的高度、塔板的压降、降液管内清液层的高度、降液管内液体的停留时间、雾沫夹带量、漏液点等)(7)绘制塔板的气液负荷性能图,要求操作弹性不小于2.(8)如果不符合上述要求重新进行以上计算3.3.3提馏段塔板主要工艺结构尺寸的计算(步骤同精馏段)3.3.4塔附件的工艺设计包括封头、筒体、法兰、补强圈接管、除沫器、裙座手孔或人孔、吊柱等3.3.5计算结果列表4.设计成果4.1设计说明书(A4纸)(1)内容包括封面、任务书、目录、正文、参考文献、附录(2)格式必须严格按照兰州交通大学毕业设计的格式打印。