倍长中线法
- 格式:docx
- 大小:553.80 KB
- 文档页数:4
倍长中线法经典例题较难在说到倍长中线法,大家可能会觉得这是什么神秘的东西,其实并没有那么复杂。
想象一下,我们在课堂上,老师拿着一个三角形,指着那根中线,眼睛闪闪发光,像是在说:“看,这就是你们的未来!”这时的我们,或许有点懵,心里想着:“我能干嘛呢?”可这玩意儿就像一块儿美味的蛋糕,切开来让大家分享,越吃越觉得香。
倍长中线法的核心就像是我们生活中的很多道理,简单明了。
想象一个三角形,边边角角都各有千秋,老师告诉我们,长的那条中线就像是三角形的心脏,连接着两个顶点,恰到好处。
这时候,你可能会想:“这和我有什么关系?”可实际上,这就是几何的魅力所在!你看,学习数学就像是打怪升级,每个定理、每条公式都是你在游戏中的技能点,越多越好。
说到倍长中线,得先搞清楚中线是啥。
简单来说,三角形的中线是连接一个顶点和对边中点的线段。
它像个桥,把三角形的两边连成一体,真是个绝佳的搭档。
老师总爱用“中线”来解释一些深奥的道理,仿佛在说:“只要你找到这个点,生活就会变得简单。
”可这条中线可不止是个连接的角色,它还能让我们看见美丽的几何图形之舞,优雅而又有趣。
再说说倍长的意思。
倍长中线法的“倍长”其实就是中线的长度变成了原来的两倍。
这时候,想象一下我们平常买的衣服,如果腰围从30寸变成了60寸,那可就得赶紧去找裁缝了。
这种变化让我们不仅能观察到三角形的变化,更能思考背后隐藏的数学美感。
倍长中线法就像是一种魔法,把简单的三角形变成了充满可能的世界。
有人会问,倍长中线法到底有什么用呢?这就像问“为什么要吃水果”,答案是让我们更健康。
用倍长中线法,我们可以求得三角形的周长、面积,还能算出各种角度。
学会这招,就像拥有了打开数学大门的钥匙。
数学不仅仅是书本上的公式,更是我们生活中的每一个细节。
在解题时,倍长中线法也特别好用。
拿个简单的例子来说,给你个三角形,让你找出它的面积。
用倍长中线法,你只需简单几步,仿佛在解密一样,轻松搞定,心里那种成就感,简直就像是打通了一个难关,爽得不行。
中线倍长法
中线倍长法是指使用一组具备特定功能的几何形状,并把它们重复堆叠起来,形成空间结构的设计方式。
它是以传统中国建筑中拱形拱门为设计元素,融合了现代空间建筑技术,以达成建筑空间效果的独特技术。
它最初由中国老牌建筑设计师陆文厦在上世纪八十年代提出,他基于传统的中国建筑拱形结构,提出了一种使用若干倍长的中线构建空间结构的设计方案,以此来巧妙地解决复杂的建筑空间布局问题。
中线倍长法以中线作为基本框架,通过倍长来模拟建筑拱形结构,既可以满足复杂的建筑空间布局,又可以达到拱形的空间效果,使空间变得更加宽敞、完美,并使之有着舒适的感受。
中线倍长法在其设计方法上也有着一些特点,主要体现在通过中线的使用,可以实现把传统的圆形结构形状“堆叠”,从而形成一种
较为宽敞的“拱门”形状,使建筑空间布局更加自由,不受传统拱形结构的限制。
中线倍长法由于具有灵活、高效以及适用性强等特点,被广泛运用于现代建筑空间设计,尤其是在大型建筑中,由于高度和空间结构上的复杂,中线倍长法则成为解决空间布置问题的有效方式。
中线倍长法的应用也被越来越多的应用于工业制造和现代建筑
空间设计中,可以有效地降低工程施工时间,提高工作效率。
特别是在大型建筑项目中,则可以有效地使用中线倍长法的方式简化工作,提高建筑质量,节省建筑施工费用。
因此,中线倍长法在现代建筑空
间设计中,是一个非常有用的技术工具,可以帮助建筑设计师有效地实现空间效果。
总而言之,中线倍长法是一种特定的建筑空间设计方式,它既可以满足复杂的建筑空间布局,又可以实现空间效果的最佳展示,所以在现代建筑空间设计中,中线倍长法是非常有效的工具。
全等三角形辅助线之倍长中线法倍长中线法:遇中线,要倍长,倍长之后有全等.当倍长后,连接方式不一样,可以产生更多结论如下:与倍长中线法类似的辅助线作法AD E DE=AD BE ADC EDB AD=DE ADC=EDB BD=CDADC EDB(SAS)AC BE∆∆∠∠∆≅∆延长至使,连接在和中,,故与此相关的重要结论AD ABC ∆为的中线D CB AEAD ABC ∆为的中线DC BAEAD E AD=DE CE BE CE ABEC 延长至,使,当连接时,结论相似; 当连接、,则为平行四边形M ABCDEMD E MD=DE CE BDM CDE BM CE∆≅∆延长至,使,连接可证,举例:FE G FE=GE EGC ()EFD ∆≅∆延长至,使可证平行线夹中点F EDCBA G如图,在△ABC 中,AD 为BC 边上的中D CB AEAD E DE=AD BE ADC EDB AD=DE ADC=EDB BD=CDADC EDB(SAS)AB-BE AE AB+BE AE <AD<∆∆∠∠∆≅∆<<<<延长至使,连接在和中,,故即2814654321FAB C DE如图,CB 是△AEC 的中线,CD 是△ABC 的中线,且AB=AC . 求证:△CE=2CD ;△CB 平分△DCE .E DCB A如图,在△ABC 中,D 是BC 的中点,E 是AD 上一点,BE=AC ,BE 的延长线交AC 于点F .求证:△AEF=△EAF .F EDCBA321MA BCD EF如图,在正方形ABCD 中,CD=BC ,△DCB=90°,点E 在CB 的延长线上,过点E 作EF △BE ,且EF=BE .连接BF ,FD ,取FD 的中点G ,连接EG ,CG .求证:EG=CG 且EG △CG .GF EDCB AM2134GFDA1. 如图,在△ABC 中,AD 为BC 边上的中线.(1)按要求作图:延长AD 到点E ,使DE =AD ;连接BE . (2)求证:△ACD ≌△EBD . (3)求证:AB +AC >2AD .(4)若AB =5,AC =3,求AD 的取值范围.2. 如图,在△ABC 中,AD 平分∠BAC ,且BD =CD .求证:AB =AC .3. 如图,CB 是△AEC 的中线,CD 是△ABC 的中线,且AB =AC .求证:①CE =2CD ;②CB 平分∠DCE .4. 如图,在△ABC 中,D 是BC 的中点,E 是AD 上一点,BE =AC ,BE 的延长线交AC 于点F . 求证:∠AEF =∠EAF .5. 如图,在△ABC 中,AD 交BC 于点D ,点E 是BC 的中点,EF ∥AD 交CA 的延长线于点F ,交AB 于点G ,BG =CF . 求证:AD 为△ABC 的角平分线.GFE DCB AE DCB AF E DBAGFEDCBAFED CBA6. 如图,在四边形ABCD 中,AD ∥BC ,点E 在BC 上,点F 是CD 的中点,且AF ⊥AB ,已知AD =2.7,AE =BE =5,求CE 的长.7. 如图,在正方形ABCD 中,CD =BC ,∠DCB =90°,点E 在CB 的延长线上,过点E 作EF ⊥BE ,且EF=BE .连接BF ,FD ,取FD 的中点G ,连接EG ,CG .求证:EG =CG 且EG ⊥CG .【参考答案】➢ 课前预习1. (1)相等,SSS ;夹角,SAS ;夹边,ASA ;对边,AAS ;直角,HL(2)全等,三,边 2. (1)证明:如图∵O 是AB 的中点 ∴AO =BO在△AOC 和△BOD 中AO BO AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩∴△AOC ≌△BOD (SAS ) (2)证明:如图 ∵O 是AB 的中点 ∴AO =BO ∵AC ∥BD ∴∠A =∠B在△AOC 和△BOD 中A B AO BOAOC BOD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AOC ≌△BOD (ASA )GF EDCBA➢ 典型题型1. 解:(1)如图,(2)证明:如图,∵AD 为BC 边上的中线 ∴BD =CD在△BDE 和△CDA 中12BD CD ED AD =⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△CDA (SAS ) (3)证明:如图, ∵△BDE ≌△CDA ∴BE =AC ∵DE =AD ∴AE =2 AD在△ABE 中,AB +BE >AE ∴AB +AC >2AD (4)在△ABE 中,AB -BE <AE <AB +BE由(3)得 AE =2AD ,BE =AC ∵AC =3,AB =5 ∴5-3<AE <5+3 ∴2<2AD <8 ∴1<AD <42. 证明:如图,延长AD 到E ,使DE =AD ,连接BE在△ADC 和△EDB 中CD BD ADC EDB AD ED =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EDB (SAS ) ∴AC =EB ,∠2=∠E ∵AD 平分∠BAC ∴∠1=∠2 ∴∠1=∠E ∴AB =BE∴AB =AC3. 证明:如图,延长CD 到F ,使DF =CD ,连接BF∴CF =2CD∵CD 是△ABC 的中线21EDCBA 21EBCDA在△BDF 和△ADC 中BD AD ADC BDF DF DC =⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△ADC (SAS ) ∴BF =AC ,∠1=∠F ∵CB 是△AEC 的中线 ∴BE =AB ∵AC =AB ∴BE =BF ∵∠1=∠F ∴BF ∥AC∴∠1+∠2+∠5+∠6=180° 又∵AC =AB ∴∠1+∠2=∠5 又∵∠4+∠5=180° ∴∠4=∠5+∠6 即∠CBE =∠CBF 在△CBE 和△CBF 中CB CB CBE CBF BE BF =⎧⎪∠=∠⎨⎪=⎩∴△CBE ≌△CBF (SAS ) ∴CE =CF ,∠2=∠3 ∴CE =2CD CB 平分∠DCE4. 证明:如图,延长AD 到M ,使DM =AD ,连接BM∵D 是BC 边的中点 ∴BD =CD在△ADC 和△MDB 中CD BD ADC MDB AD MD =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△MDB (SAS ) ∴∠1=∠M ,AC =MB ∵BE =AC ∴BE =MB ∴∠M =∠3321MA BCDEF∴∠1=∠2 即∠AEF =∠EAF5. 证明:如图,延长FE 到M ,使EM =EF ,连接BM∵点E 是BC 的中点 ∴BE =CE在△CFE 和△BME 中FE ME CEF BEM CE BE =⎧⎪∠=∠⎨⎪=⎩∴△CFE ≌△BME (SAS ) ∴CF =BM ,∠F =∠M ∵BG =CF ∴BG =BM ∴∠1=∠M ∴∠1=∠F ∵AD ∥EF∴∠3=∠F ,∠1=∠2 ∴∠2=∠3即AD 为△ABC 的角平分线6. 解:如图,延长AF 交BC 的延长线于点G∵AD ∥BC ∴∠3=∠G∵点F 是CD 的中点 ∴DF =CF在△ADF 和△GCF 中3G AFD GFC DF CF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△GCF (AAS )∴AD =CG ∵AD =2.7 ∴CG =2.7 ∵AE =BE ∴∠1=∠B ∵AB ⊥AF ∴∠1+∠2=90° ∠B +∠G =90°321MABCD EFG∴CE =EG -CG=5-2.7 =2.37. 证明:如图,延长EG 交CD 的延长线于点M由题意,∠FEB =90°,∠DCB =90°∴∠DCB +∠FEB =180° ∴EF ∥CD ∴∠FEG =∠M ∵点G 为FD 的中点 ∴FG =DG在△FGE 和△DGM 中1M FGE DGM FG DG ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△FGE ≌△DGM (AAS ) ∴EF =MD ,EG =MG ∵△FEB 是等腰直角三角形 ∴EF =EB ∴BE =MD在正方形ABCD 中,BC =CD ∴BE +BC =MD +CD 即EC =MC∴△ECM 是等腰直角三角形 ∵EG =MG∴EG ⊥CG ,∠3=∠4=45° ∴∠2=∠3=45° ∴EG =CG三角形全等之倍长中线(实战演练)1. 在△ABC 中,AC =5,中线AD =4,则边AB 的取值范围是_______________. 思路分析:①画出草图,标注条件:②根据题目条件,见_________,考虑_____________;添加辅助线是______________________________________;③倍长之后证全等:__________≌___________( ),证全等转移边:______=_______; ④全等转移条件后,利用三角形三边关系可以得到AB 的取值范围.2. 如图,在正方形ABCD 中,AD ∥BC ,E 为AB 边的中点,G ,F 分别为AD ,BC 边上的点,且AG =1,BF =2.若GE ⊥EF ,则GF 的长为多少?【参考答案】1. 3<AB <13①图略②中线AD 倍长中线 延长AD 到点E ,使DE =AD ,连接CE ③△ADC △EDB SAS AC EB ④略2. AD ∥BC ,E 为AB 边的中点,平行夹中点;AG =BH ,GE =HE ;到线段两端点的距离相等,FH ,AG +BF 解:如图,延长GE 交CB 的延长线于点H ∵AD ∥BC ∴∠GAE =∠HBE ∵E 为AB 边的中点 ∴AE =BE在△AGE 和△BHE 中,AEG BEH AE BEGAE HBE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AGE ≌△BHE (ASA ) ∴BH =AG ,HE =GE ∵GE ⊥EF ∴GF =HF ∵BF =2,AG =1 ∴GF =HF =BF +BH =BF +AG =2+1 =3G FEAD BC三角形全等之倍长中线(作业)➢ 例题示范例1:已知:如图,在△ABC 中,AB ≠AC ,D ,E 在BC 上,且DE =EC ,过D 作DF ∥BA 交AE 于点F ,DF =AC . 求证:AE 平分∠BAC .【思路分析】读题标注:见中线,要倍长,倍长之后证全等.结合此题,DE =EC ,点E 是DC 的中点,考虑倍长,有两种考虑方法: ①考虑倍长FE ,如图所示: ②考虑倍长AE ,如图所示:(这个过程需要考虑倍长之后具体要连接哪两个点)倍长中线的目的是为了证明全等:以方法①为例,可证△DEF ≌△CEG ,由全等转移边和角,重新组织条件证明即可. 【过程书写】证明:如图,延长FE 到G ,使EG =EF ,连接CG .A D CE FA B DCE FGFE CD B A FE CD B AA B DCE FG在△DEF 和△CEG 中,ED EC DEF CEG EF EG =⎧⎪∠=∠⎨⎪=⎩∴△DEF ≌△CEG (SAS ) ∴DF =CG ,∠DFE =∠G ∵DF =AC ∴CG =AC ∴∠G =∠CAE ∴∠DFE =∠CAE ∵DF ∥AB ∴∠DFE =∠BAE ∴∠BAE =∠CAE ∴AE 平分∠BAC➢ 巩固练习1. 已知:如图,在△ABC 中,AB =4,AC =2,点D 为BC 边的中点,且AD 是整数,则AD =________.2. 已知:如图,BD 平分∠ABC 交AC 于D ,点E 为CD 上一点,且AD =DE ,EF ∥BC 交BD 于F .求证:AB =EF .3. 已知:如图,在△ABC 中,AD 是BC 边上的中线,分别以AB ,AC 为直角边向外作等腰直角三角形,AB =AE ,AC =AF ,∠BAE =∠CAF =90°. 求证:EF =2AD .4. 如图,在△ABC 中,AB >AC ,E 为BC 边的中点,AD 为D CBAF E DCBAFED CBA G FE D CBA∠BAC 的平分线,过E 作AD 的平行线,交AB 于F ,交CA 的延长线于G . 求证:BF =CG .5. 如图,在四边形ABCD 中,AD ∥BC ,点E 在BC 上,点F是CD 的中点,连接AF ,EF ,AE ,若∠DAF =∠EAF ,求证:AF⊥EF .➢ 思考小结1. 如图,在△ABC 中,AD 平分∠BAC ,且BD =CD .求证:AB =AC .比较下列两种不同的证明方法,并回答问题. 方法1:如图,延长AD 到E ,使DE =AD ,连接BE 在△BDE 和△CDA 中BD CD BDE CDA DE DA =⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△CDA (SAS ) ∴AC =BE ,∠E =∠2 ∵AD 平分∠BAC ∴∠1=∠2 ∴∠1=∠E ∴AB =BE ∴AB =AC 方法2:如图,过点B 作BE ∥AC ,交AD 的延长线于点E ∵BE ∥AC ∴∠E =∠2在△BDE 和△CDA 中FE DB CA21ECDB A 21ECDBA DBA2E BDE CDA BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△CDA (AAS ) ∴BE =AC ∵AD 平分∠BAC ∴∠1=∠2 ∴∠1=∠E ∴AB =BE ∴AB =AC 相同点:两种方法都是通过辅助线构造全等,利用全等转移条件进而解决问题.方法1是看到中点考虑通过___________构造全等,方法2是通过平行夹中点构造全等. 不同点:倍长中线的方法在证明全等时,利用的判定是________,实质是构造了一组对应边相等;利用平行夹中点证明全等时,利用的判定是_____,实质是利用平行构造了一组_____相等.2. 利用“倍长中线”我们就可以证明直角三角形中非常重要的一个定理:直角三角形斜边中线等于斜边的一半.请你尝试进行证明.已知:如图,在Rt △ABC 中,∠BCA =90°,CD 是斜边AB 的中线.求证:CD 12=AB .【参考答案】➢ 巩固练习 1. 22. 证明略(提示:延长FD 到点G ,使得DG =DF ,连接AG ,证明△ADG ≌△EDF ,转角证明AB =EF )3. 证明略(提示:延长AD 到点G ,使得GD =AD ,连接CG ,证明△ABD ≌△GCD ,△EAF ≌△GCA )4. 证明略(提示:延长FE 到点H ,使得EH =FE ,连接CH ,证明△BFE ≌△CHE ,转角证明BF =CG )5. 证明略(提示:延长AF 交BC 的延长线于点G ,证明△ADF ≌△GCF ,转角证明AF ⊥EF ) ➢ 思考小结 1. 倍长中线 SAS AAS 角2. 证明略DCB A。
倍长中线法知识网络详解:中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.倍长中线法的过程:延长某某到某点,使某某等于某某,使什么等于什么(延长的那一条),用SAS证全等(对顶角)倍长中线最重要的一点,延长中线一倍,完成SAS全等三角形模型的构造。
【方法精讲】常用辅助线添加方法——倍长中线△ABC中方式1:延长AD到E,AD是BC边中线使DE=AD,连接BE方式2:间接倍长作CF⊥AD于F,延长MD到N,作BE⊥AD的延长线于使DN=MD,连接BE 连接CN经典例题讲解:例1:△ABC中,AB=5,AC=3,求中线AD的取值范围例2:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE例3:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF例4:已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠BABFDEC例5:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE自检自测:1、如图,△ABC 中,BD=DC=AC,E 是DC 的中点,求证,AD 平分∠BAE.2、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。
试探究线段AB 与AF 、CF 之间的数量关系,并证明你的结论.E D ABF EAB C3、如图,AD 为ABC ∆的中线,DE 平分BDA ∠交AB 于E ,DF 平分ADC ∠交AC 于F. 求证:EF CF BE >+4、已知:如图,∆ABC 中,∠C=90︒,CM ⊥AB 于M ,AT 平分∠BAC 交CM 于D ,交BC 于T ,过D 作DE//AB 交BC 于E ,求证:CT=BE.第 14 题图DF CBEADABCMTE。
倍长中线法口诀用法
倍长中线法是一种用于解决数学中直角三角形中线问题的方法,它的口诀用法可以帮助我们更快速地应用该方法。
倍长中线法的口诀用法如下:
首先,我们需要了解倍长中线法的原理。
直角三角形中,以直角边为底,连接斜边的中点,并向斜边的另一侧延长,再连接直角边与延长线的交点,得到一条中线。
倍长中线法的核心思想是,通过延长中线,将三角形转化为四边形,借助四边形的性质求解。
接下来,我们通过口诀用法来应用倍长中线法。
口诀为“倍中长乖隔离,解四算九找斜。
”下面逐句解释该口诀的用法:
1. 倍中长:将直角边向两侧延长成等长线段。
2. 乖隔离:将延长线与中线进行乖离,使它们不重合。
3. 解四:将四边形的四个顶点标记为A、B、C、D。
4. 算九:计算四边形的两个对角线之和AB+CD的数值。
5. 找斜:找到线段AC或BD上的交点E,该点即为直角三角形斜边的中点。
通过以上步骤,我们成功应用了倍长中线法,并求解出直角三角形中线问题。
总结起来,倍长中线法是一种能够帮助我们解决直角三角形中线问题的方法。
它的口诀用法通过清晰的步骤让我们能够更加快速准确
地使用该方法。
无论是解题还是应用倍长中线法,理解口诀的用法都是非常重要的。
倍长中线法总结1. 引言倍长中线法(The Doubling Midline Method)是一种用来解决数学问题的方法,它主要应用于图形和数列的问题。
该方法通过找出中线并将其倍增来寻找问题的解。
本文将详细介绍倍长中线法的思想和应用,并通过示例展示其实际运用。
2. 思想和原理倍长中线法的思想源于对图形和数列的观察和分析。
当遇到需要找到图形或数列的某个特定点或者结果时,我们可以通过找出中线并将其倍增来逐步逼近目标。
该方法的原理是基于中线的特性,即中线两侧长度相等。
通过不断倍增中线的长度,我们可以逐步逼近目标点或结果。
3. 应用步骤倍长中线法的应用可以分为以下几个步骤:步骤一:观察问题首先,我们需要观察和分析问题,确定需要找到的目标点或结果。
这可以帮助我们确定使用倍长中线法的运算方式和步骤。
步骤二:确定初始中线然后,我们需要确定初始中线。
中线的选择要尽可能接近目标点或结果,以提高计算的准确性和效率。
步骤三:倍增中线长度接下来,我们将中线的长度倍增。
具体的倍增倍数可以根据实际情况而定。
每次倍增后,我们检查新的中线是否更接近目标点或结果。
如果是,我们继续倍增中线的长度,直到达到预定的精度要求。
步骤四:确定最终结果最后,我们确定最终结果。
根据具体的问题,我们可以根据中线的位置和长度计算出目标点的坐标或者得出数列的结果。
4. 实际应用示例为了更好地理解倍长中线法的应用,以下是一个实际示例:问题描述在平面直角坐标系中,有一条直线L通过点A(2, 3)和点B(5, 9)。
现在需要确定直线L和Y轴的交点C的坐标。
解决步骤1.观察问题,确定需要找到交点C的坐标。
2.初始中线的选择可以是线段AB的中点M,即M(3.5, 6)。
3.根据倍长中线法,将线段AM的长度倍增,得到线段CM。
4.假设线段CM的长度为d,当d接近垂直距离MC时,我们可以认为目标点C的坐标已经确定。
5.通过不断倍增线段AM的长度,我们最终确定了线段CM的长度为2.5,即MC的长度为2.5。
倍长中线最全总结。
例题+练习(附答案)中线是三角形中的重要线段之一。
在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线。
倍长中线指的是延长三角形中线,使得延长后的线段是原中线的2倍。
其目的是为了构造一对8字型全等三角形(SAS),从而实现边角的转移。
以三角形ABC为例,延长中线AD至点E,使得DE=AD,连接BE。
根据三角形的SAS全等条件,可以得出结论:△ACD≌△BED,AC=BE,∠CAD=∠BED,AC∥BE。
同样地,延长中线CD至点F,使得DE=DF,连接CF。
根据三角形的SAS全等条件,可以得出结论:△BED≌△CFD,CF=BE,∠CFD=∠BED,CF∥BE。
在利用倍长中线法时,需要注意延长哪一条线段或者类中线。
倍长之后,需要考虑连接哪一条线段从而构造全等,实现所需的线段进行转移。
举例来说,如图所示,在三角形ABC中,需要证明AB+AC>2AD。
延长中线AD至点E,使得DE=AD,构造△ADC和△EDB,根据三角形的三边关系可得AB+AC>2AD。
另外,还有一道题目是需要求解AD的取值范围。
在三角形ABC中,D为BC的中点。
根据三角形的三边关系可得5-3<2AD<5+3,即AD的取值范围为1<AD<4.证明:延长AD到F,使DF=AD,连接BF(如图)。
因为AD是中线,所以BD=DC=AC,又因为DF=AD,所以BD=BF,所以AB>BF。
由三角形的三边关系,在三角形ABF中,有AB+BF>AF,即2AD<AB+AC,证毕。
2)因为AD是中线,所以BD=DC=AC,又因为DF=AD,所以BD=BF,所以AB>BF。
由相似三角形ADC和FDB,得到∠CAD=∠F,由边的大小关系可得到∠BAD>∠DAC,证毕。
3)同(2),由相似三角形ADC和FDB,得到AE/AD=BF/BD<1,即AE<AD,证毕。
初中数学倍长中线法
在初中数学中,倍长中线法是一种求解三角形面积的方法。
它基于中线的性质:连接三角形两边中点的线段叫做中线,且中线的长度等于这两边之和的一半。
因此,对于任意三角形ABC,可以先求出它的三条中线长度,分别记为m<sub>a</sub>、m<sub>b</sub>、m<sub>c</sub>。
然后,用海龙公式:
s = √[s(s-a)(s-b)(s-c)]
其中,s 是三角形的半周长,a、b、c是三边长度。
而半周长 s 可以用三条中线的长度求出:
s = 1/2(m<sub>a</sub> + m<sub>b</sub> + m<sub>c</sub>) 这样,就可以用倍长中线法求出任意三角形的面积了。
需要注意的是,倍长中线法只适用于求解面积,不能用来求解三角形的其他属性。
但在一些实际问题中,求解面积就足够了。
- 1 -。
专题05 倍长中线问题【要点提炼】一、【倍长中线法】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.倍长中线法的过程:延长某某到某点,使某某等于某某,使什么等于什么(延长的那一条),用SAS证全等(对顶角)+倍长中线最重要的一点,延长中线一倍,完成SAS全等三角形模型的构造。
二、【倍长中线法拓展;两次全等】通常,在倍长中线后的第一组全等只是一个基础,往往还需证明第二组全等,但是难点就在于如何去倍长中线,倍长中线后去连接什么线,这是问题的关键。
这时一般需要去试错,尤其是当有两个中点时,一般是倍长中线后大概率会有另一组的全等。
三、【倍长中线的常见类型】1.基本型如图1,在中,为边上的中线.延长至点E,使得.若连结,则;若连结,则;若连结则四边形是平行四边形.2.中点型如图2, C为AB的中点.若延长EC 至点F ,使得CF EC =,连结AF ,则BCE ACF ∆≅∆;若延长DC 至点G ,使得CG DC =,连结BG ,则ACD BCG ∆≅∆.总结:在线段AB 外,与中点C 连结的点有E 和D .事实上,EC 和DC 分别是ABE ∆和ABD ∆的中线,只不过是三角形不完整罢了,本质就是隐蔽的“基本型”3.中点+平行线型如图3, //AB CD ,点E 为线段AD 的中点.延长CE 交AB 于点F (或交BA 延长线于点F ),则EDC EAF ∆≅∆.小结 若按“中点型”来倍长,则需证明点F 在AB 上,为了避免证明三点共线,点F 就直接通过延长相交得到.因为有平行线,内错角相等,故根据“AAS ”或“ASA ”证明全等.这里“中点+平行线型”可以看做是“中点型”的改良版.【专题训练】一、解答题(共14小题)1.小明遇到这样一个问题,如图1,△ABC 中,AB =7,AC =5,点D 为BC 的中点,求AD 的取值范围.小明发现老师讲过的“倍长中线法”可以解决这个问题,所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法,他的做法是:如图2,延长AD到E,使DE=AD,连接BE,构造△BED≌△CAD,经过推理和计算使问题得到解决.请回答:(1)小明证明△BED≌△CAD用到的判定定理是:(用字母表示)(2)AD的取值范围是小明还发现:倍长中线法最重要的一点就是延长中线一倍,完成全等三角形模型的构造.参考小明思考问题的方法,解决问题:如图3,在正方形ABCD中,E为AB边的中点,G、F分别为AD,BC边上的点,若AG=2,BF=4,∠GEF=90°,求GF的长.【答案】【第1空】SAS【第2空】1<AD<6【解答】解:(1)如图2中,延长AD到E,使DE=AD,连接BE.在△BED和△CAD中,,∴△BED≌△CAD(SAS).(2)∵△BED≌△CAD,∴BE=AC=5,∵AB=7,∴2<AE<12,∴2<2AD<12,∴1<AD<6.故答案分别为SAS,1<AD<6.解决问题:如图3中,解:延长GE交CB的延长线于M.∵四边形ABCD是正方形,∴AD∥CM,∴∠AGE=∠M,在△AEG和△BEM中,,∴△AEG≌△BEM,∴GE=EM,AG=BM=2,∵EF⊥MG,∴FG=FM,∵BF=4,∴MF=BF+BM=2+4=6,∴GF=FM=6.【知识点】四边形综合题2.自主学习,学以致用先阅读,再回答问题:如图1,已知△ABC中,AD为中线.延长AD至E,使DE=AD.在△ABD 和△ECD中,AD=DE,∠ADB=∠EDC,BD=CD,所以,△ABD≌△ECD(SAS),进一步可得到AB=CE,AB∥CE等结论.在已知三角形的中线时,我们经常用“倍长中线”的辅助线来构造全等三角形,并进一步解决一些相关的计算或证明题.解决问题:如图2,在△ABC中,AD是三角形的中线,F为AD上一点,且BF=AC,连结并延长BF交AC于点E,求证:AE=EF.【解答】证明:延长AD到G,使DF=DG,连接CG,∵AD是中线,∴BD=DC,在△BDF和△CDG中∴△BDF≌△CDG,∴BF=CG,∠BFD=∠G,∵∠AFE=∠BFD,∴∠AFE=∠G,∵BF=CG,BF=AC,∴CG=AC,∴∠G=∠CAF,∴∠AFE=∠CAF,∴AE=EF.【知识点】全等三角形的判定与性质3.阅读并解答问题.如图,已知:AD为△ABC的中线,求证:AB+AC>2AD.证明:延长AD至E使得DE=AD,连接EC,则AE=2AD ∵AD为△ABC的中线∴BD=CD在△ABD和△CED中,∴△ABD≌△CED∴AB=EC在△ACE中,根据三角形的三边关系有AC+EC AE而AB=EC,AE=2AD∴AB+AC>2AD这种辅助线方法,我们称为“倍长中线法”,请利用这种方法解决以下问题:(1)如图,已知:CD为Rt△ABC的中线,∠ACB=90°,求证:CD=;(2)把(1)中的结论用简洁的语言描述出来.【答案】>【解答】解:(1)证明:延长CD至E使DE=CD,连接EB,AE.∵CD为Rt△ABC的中线,∴AD=CD,∵CD=DE,∠ADC=∠EDB,∴△ADC≌△EDB,∴∠ACD=∠DEB,AC=BE,∴AC∥BE,∴四边形ACBE是平行四边形,又∵∠ACB=90°,∴平行四边形ACBE是矩形,∴AB=CE,CD=DE=AD=BD,∴CD=AB;(2)直角三角形斜边上的中线等于斜边的一半.【知识点】直角三角形斜边上的中线、全等三角形的判定与性质4.我们定义:如图1,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△AB'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠D=150°,BC=12,CD=2,AB=2.在四边形内部是否存在点P,使△PDC是△P AB的“旋补三角形”?若存在,给予证明,并求△P AB的“旋补中线”长;若不存在,说明理由.【解答】解:(1)①如图2中,∵△ABC是等边三角形,∴AB=BC=AC=AB′=AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=AB′=BC,故答案为.②如图3中,∵∠BAC=90°,∠BAC+∠B′AC′=180°,∴∠B′AC′=∠BAC=90°,∵AB=AB′,AC=AC′,∴△BAC≌△B′AC′,∴BC=B′C′,∵B′D=DC′,∴AD=B′C′=BC=4,故答案为4.(2)结论:AD=BC.理由:如图1中,延长AD到M,使得AD=DM,连接B′M,C′M∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴AC′=B′M=AC,∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,∴∠BAC=∠MB′A,∵AB=AB′,∴△BAC≌△AB′M,∴BC=AM,∴AD=BC.(3)存在.理由:如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接P A、PD、PC,作△PCD的中线PN.连接DF交PC于O.∵∠ADC=150°,∴∠MDC=30°,在Rt△DCM中,∵CD=2,∠DCM=90°,∠MDC=30°,∴CM=2,DM=4,∠M=60°,在Rt△BEM中,∵∠BEM=90°,BM=14,∠MBE=30°,∴EM=BM=7,∴DE=EM﹣DM=3,∵AD=6,∴AE=DE,∵BE⊥AD,∴P A=PD,PB=PC,在Rt△CDF中,∵CD=2,CF=6,∴tan∠CDF=,∴∠CDF=60°∴∠ADF=90°=∠AEB,∴∠CBE=∠CFD,∵∠CBE=∠PCF,∴∠CFD=∠PCF,∵∠CFD+∠CDF=90°,∠PCF+∠CPF=90°,∴∠CPF=∠CDF=60°=∠CDF易证△FCP≌△CFD,∴CD=PF,∵CD∥PF,∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC﹣∠CDP=60°,∴△ADP是等边三角形,∴∠ADP=60°,∵∠BPF=∠CPF=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC是△P AB的“旋补三角形”,∵AB=2.∴△P AB的“旋补中线”长=AB=.【知识点】四边形综合题5.我们定义:如果两个三角形的两组对应边相等,且它们的夹角互补,我们就把其中一个三角形叫做另一个三角形的“夹补三角形”,同时把第三边的中线叫做“夹补中线.例如:图1中,△ABC 与△ADE的对应边AB=AD,AC=AE,∠BAC+∠DAE=180°,AF是DE边的中线,则△ADE 就是△ABC的“夹补三角形”,AF叫做△ABC的“夹补中线”.特例感知:(1)如图2、图3中,△ABC与△ADE是一对“夹补三角形”,AF是△ABC的“夹补中线”;①当△ABC是一个等边三角形时,AF与BC的数量关系是:;②如图3当△ABC是直角三角形时,∠BAC=90°,BC=a时,则AF的长是;猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AF与BC的关系,并给予证明.拓展应用:(3)如图4,在四边形ABCD中,∠DCB=90°,∠ADC=150°,BC=2AD=6,CD=,若△P AD是等边三角形,求证:△PCD是△PBA的“夹补三角形”,并求出它们的“夹补中线”的长.【解答】解:(1)∵△ABC与△ADE是一对“夹补三角形”,∴AB=AD,AC=AE,∠BAC+∠DAE=180°,①∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=60°∴AD=AE=AB=AC,∠DAE=120°,∴∠ADE=30°,∵AF是“夹补中线”,∴DF=EF,∴AF⊥DE,在Rt△ADF中,AF=AD=AB=BC,故答案为:AF=BC;②当△ABC是直角三角形时,∠BAC=90°,∵∠DAE=90°=∠BAC,易证,△ABC≌△ADE,∴DE=BC,∵AF是“夹补中线”,∴DF=EF,∴AF=DE=BC=a,故答案为a;(2)解:猜想:AF=BC,理由:如图1,延长DA到G,使AG=AD,连EG∵△ABC与△ADE是一对“夹补三角形”,∴AB=AD,AC=AE,∠BAC+∠DAE=180°,∴AG=AB,∠EAG=∠BAC,AE=AC,∴△AEG≌△ACB,∴EG=BC,∵AF是“夹补中线”,∴DF=EF,∴AF=EG,∴AF=BC;(3)证明:如图4,∵△P AD是等边三角形,∴DP=AD=3,∠ADP=∠APD=60°,∵∠ADC=150°,∴∠PDC=90°,作PH⊥BC于H,∵∠BCD=90°∴四边形PHCD是矩形,∴CH=PD=3,∴BH=6﹣3=3=CH,∴PC=PB,在Rt△PCD中,tan∠DPC==,∴∠DPC=30°∴∠CPH=∠BPH=60°,∠APB=360°﹣∠APD﹣∠DPC﹣∠BPC=150°,∴∠APB+∠CPD=180°,∵DP=AP,PC=PB,∴△PCD是△PBA的“夹补三角形”,由(2)知,CD=,∴△P AB的“夹补中线”==.【知识点】四边形综合题6.如图1,在△ABC中,点D是BC的中点,延长AD到点G,使DG=AD,连接CG,可以得到△ABD≌△GCD,这种作辅助线的方法我们通常叫做“倍长中线法”.如图2,在△ABC中,点D是BC的中点,点E是AB上一点,连接ED,小明由图1中作辅助线的方法想到:延长ED到点G,使DG=ED,连接CG.(1)请直接写出线段BE和CG的关系:;(2)如图3,若∠A=90°,过点D作DF⊥DE交AC于点F,连接EF,已知BE=3,CF=2,其它条件不变,求EF的长.【答案】BE=CG【解答】解:(1)∵点D是BC的中点,∴BD=CD,在△EBD和△GCD中,∵,∴△EBD≌△GCD(SAS),∴BE=CG,故答案为:BE=CG;(2)如图,连接GF,由(1)知△EBD≌△GCD,∴∠B=∠GCD,BE=CG=3,又∵∠A=90°,∴∠B+∠BCA=90°,∴∠GCD+∠BCA=90°,即∠GCF=90°,∵CG=3,CF=2,∴FG==,∵DF⊥DE,且DE=DG,∴EF=FG=.【知识点】全等三角形的判定与性质7.[方法呈现](1)如图①,△ABC中,AD为中线,已知AB=3,AC=5,求中线AD长的取值范围.解决此问题可以用如下方法:延长AD至点E,使DE=AD,连结CE,则易证△DEC≌△DAB,得到EC=AB=3,则可得AC﹣CE<AE<AC+CE,从而可得中线AD长的取值范围是.[探究应用](2)如图②,在四边形ABCD中,AB∥CD,点E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系,并写出完整的证明过程.(3)如图③,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,点E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.【答案】2<AD<8【解答】解:(1)由题意知AC﹣CE<AE<AC+CE,即5﹣4<AD<5+3,∴2<AD<8,故答案为:2<AD<8;(2)如图②,延长AE,DC交于点F,∵AB∥CD,∴∠BAF=∠F,在△ABE和△FCE中CE=BE,∠BAF=∠F,∠AEB=∠FEC,∴△ABE≌△FEC(AAS),∴CF=AB,∵AE是∠BAD的平分线,∴∠BAF=∠F AD,∴∠F AD=∠F,∴AD=DF,∵DC+CF=DF,∴DC+AB=AD.(3)如图③,延长AE,DF交于点G,同(2)可得:AF=FG,△ABE≌△GEC,∴AB=CG,∴AF+CF=AB.【知识点】四边形综合题8.数学兴趣小组在活动时,老师提出了这样一个问题:如图1,在△ABC中,AB=8,AC=6,D是BC的中点,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,请补充完整证明“△ADC≌△EDB”的推理过程.(1)求证:△ADC≌△EDB证明:∵延长AD到点E,使DE=AD在△ADC和△EDB中AD=ED(已作)∠ADC=∠EDB()CD=BD(中点定义)∴△ADC≌△EDB()(2)探究得出AD的取值范围是;【感悟】解题时,条件中若出现“中点”“中线”等字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,△ABC中,∠B=90°,AB=2,AD是△ABC的中线,CE⊥BC,CE=4,且∠ADE =90°,求AE的长.【答案】【第1空】对顶角相等【第2空】SAS【第3空】1<AD<7【解答】解:(1)证明:延长AD到点E,使DE=AD,在△ADC和△EDB中,AD=ED(已作),∠ADC=∠EDB(对顶角相等),CD=BD(中点定义),∴△ADC≌△EDB(SAS),故答案为:对顶角相等,SAS;(2)∵△ADC≌△EDB,∴BE=AC=6,8﹣6<AE<8+6,∴1<AD<7,故答案为:1<AD<7;(3)延长AD交EC的延长线于F,∵AB⊥BC,EF⊥BC,∴∠ABD=∠FCD,在△ABD和△FCD中,,∴△ABD≌△FCD,∴CF=AB=2,AD=DF,∵∠ADE=90°,∴AE=EF,∵EF=CE+CF=CE+AB=4+2=6,∴AE=6.【知识点】三角形综合题9.我们定义:在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△AB'C'叫△ABC的“旋补三角形”,△AB'C'的边B'C'上的中线AD叫做△ABC的“旋补中线”.下面各图中,△AB'C'均是△ABC的“旋补三角形”,AD均是△ABC的“旋补中线”.(1)如图1,若△ABC为等边三角形,BC=8,则AD的长等于;(2)如图2,若∠BAC=90°,求证:AD=BC;(3)如图3,若△ABC为任意三角形,(2)中结论还成立吗?如果成立,给予证明;如果不成立,说明理由.【解答】解:(1)如图1中,∵△ABC是等边三角形,∴AB=BC=AC=AB′=AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=AB′=BC=4,(2)证明:如图2中,∵AB绕点A旋转得到AB',AC绕点A旋转得到AC',∴AB′=AB,AC'=AC,∵∠BAC=90°,α+β=180°,∠B′AC′=360°﹣(α+β)﹣∠BAC,∴∠B′AC′=360°﹣180°﹣90°=90°,∴∠BAC=∠B′AC′,∴△BAC≌△B′AC′(SAS)∴BC=B′C′,∵AD是△AB'C'边B'C'上的中线,∠B′AC′=90°.∴AD=B′C′.∴AD=BC.(3)结论AD=BC成立.理由:如图3中,延长AD到A′,使得AD=DA′,连接B′A′,C′A′.∴AD=AA′,∵B′D=DC′,AD=DA′,∴四边形AB′A′C′是平行四边形,∴AC′=B′A′=AC,∵∠BAC+∠B′AC′=360°﹣180°=180°,∠B′AC′+∠AB′M=180°,∴∠BAC=∠AB′A′,∵AB=AB′,∴△BAC≌△AB′A′(SAS)∴BC=AA′,∴AD=BC.【知识点】几何变换综合题10.阅读理解:小明热爱数学,在课外书上看到了一个有趣的定理﹣﹣“中线长定理”:三角形两边的平方和等于第三边的一半与第三边上的中线的平方和的两倍.如图1,在△ABC中,点D为BC的中点,根据“中线长定理”,可得:AB2+AC2=2AD2+2BD2.小明尝试对它进行证明,部分过程如下:解:过点A作AE⊥BC于点E,如图2,在Rt△ABE中,AB2=AE2+BE2,同理可得:AC2=AE2+CE2,AD2=AE2+DE2,为证明的方便,不妨设BD=CD=x,DE=y,∴AB2+AC2=AE2+BE2+AE2+CE2=…(1)请你完成小明剩余的证明过程;理解运用:(2)①在△ABC中,点D为BC的中点,AB=6,AC=4,BC=8,则AD=;②如图3,⊙O的半径为6,点A在圆内,且OA=2,点B和点C在⊙O上,且∠BAC=90°,点E、F分别为AO、BC的中点,则EF的长为;拓展延伸:(3)小明解决上述问题后,联想到《能力训练》上的题目:如图4,已知⊙O的半径为5,以A (﹣3,4)为直角顶点的△ABC的另两个顶点B,C都在⊙O上,D为BC的中点,求AD长的最大值.请你利用上面的方法和结论,求出AD长的最大值.【解答】解:(1)过点A作AE⊥BC于点E,如图2,在Rt△ABE中,AB2=AE2+BE2,同理可得:AC2=AE2+CE2,AD2=AE2+DE2,为证明的方便,不妨设BD=CD=x,DE=y,∴AB2+AC2=2AE2+(x+y)2+(x﹣y)=2AE2+2x2+2y2、=2AE2+2BD2+2DE2=2AD2+2BD2.(2)①∵AB2+AC2=2AD2+2BD2,∴62+42=2AD2+2×42,∴AD=②如图3中,∵AF是△ABC的中线,EF是△AEO的中线,OF是△BOC的中线,∵2EF2+2AE2=AF2+OF2,2AF2+2BF2=AB2+AC2,OF2=OB2﹣BF2,∴4EF2=2OB2﹣4AE2=2OB2﹣OA2,∴EF2=OB2﹣OA2=16,∴EF=4(负根以及舍弃),故答案为.4.(3)如图4中,连接OA,取OA的中点E,连接DE.由(2)的②可知:DE═OB2﹣OA2=,在△ADE中,AE=,DE=,∵AD≤AE+DE,∴AD长的最大值为+=10.【知识点】圆的综合题11.[问题提出]如图①,在△ABC中,若AB=6,AC=4,求BC边上的中线AD的取值范围.[问题解决]解决此问题可以用如下方法,延长AD到点E使DE=AD,再连结BE(或将△ACD绕着点D逆时针装转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三边的关系即可判断,由此得出中线AD的取值范围是[应用]如图②,如图,在△ABC中,D为边BC的中点,已知AB=5,AC=3,AD=2.求BC的长[拓展]如图③,在△ABC中,∠A=90°,点D是边BC的中点,点E在边AB上,过点D作DF⊥DE交边AC于点F,连结EF,已知BE=4,CF=5,则EF的长为【解答】解:(1)在△DAC和△DEB中,,∴△DAC≌△DEB(SAS),∴AC=EB=4,∵AB﹣BE<AE<AB+BE,AB=6,∴2<AE<10,∴1<AD<5,故答案为:1<AD<5;(2)延长AD到E,使得AD=DE,连接BE,如图②,在△DAC和△DEB中,,∴△DAC≌△DEB(SAS),∴AC=EB=3,∵AE=2AD=4,AB=5,∴BE2+AE2=AB2,∴∠AEB=90°,∴BD=,∴BC=2BD=2;(3)延长FD到G,使得DG=FD,连接BG,EG,如图③,在△BDG和△CDF中,,∴△BDG≌△CDF(SAS),∴BG=CF=5,DG=DF,∠DBG=∠DCF,∵DE⊥DF,∴EG=EF,∵∠A=90°,∴∠ABC+∠ACB=90°,∴∠ABC+∠DBG=90°,∴EG=,∴EF=,故答案为:.【知识点】全等三角形的判定与性质、直角三角形斜边上的中线、垂线段最短、三角形三边关系、解直角三角形12.我们定义:如图1,在△ABC看,把AB绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.【解答】解:(1)①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;理由:∵△ABC是等边三角形,∴AB=BC=AC=AB′=AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=AB′=BC,故答案为.②如图3,当∠BAC=90°,BC=8时,则AD长为4.理由:∵∠BAC=90°,∠BAC+∠B′AC′=180°,∴∠B′AC′=∠BAC=90°,∵AB=AB′,AC=AC′,∴△BAC≌△B′AC′,∴BC=B′C′,∵B′D=DC′,∴AD=B′C′=BC=4,故答案为4.(2)猜想.证明:如图,延长AD至点Q,则△DQB'≌△DAC',∴QB'=AC',QB'∥AC',∴∠QB'A+∠B'AC'=180°,∵∠BAC+∠B'AC'=180°,∴∠QB'A=∠BAC,又由题意得到QB'=AC'=AC,AB'=AB,∴△AQB'≌△BCA,∴AQ=BC=2AD,即.【知识点】几何变换综合题13.如图1,在等边△ABC中,线段AM为BC边上的中线,动点D在直线AM(点D与点A重合除外)上时,以CD为一边且在CD的下方作等边△CDE,连接BE.(1)判断AD与BE是否相等,请说明理由;(2)如图2,若AB=8,点P、Q两点在直线BE上且CP=CQ=5,试求PQ的长;(3)在第(2)小题的条件下,当点D在线段AM的延长线(或反向延长线)上时.判断PQ的长是否为定值,若是请直接写出PQ的长;若不是请简单说明理由.【解答】解:(1)AD=BE.理由如下:∵△ABC,△CDE都是等边三角形,∴AC=BC,CD=CE,∵∠ACD+∠BCD=∠ACB=60°,∠BCE+∠BCD=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,∵,∴△ACD≌△BCE(SAS),∴AD=BE;(2)如图,过点C作CN⊥BQ于点N,∵CP=CQ,∴PQ=2PN,∵△ABC是等边三角形,AM是中线,∴CM⊥AD,CM=BC=×8=4,∴CN=CM=4(全等三角形对应边上的高相等),∵CP=CQ=5,∴PN===3,∴PQ=2PN=2×3=6;(3)PQ的长为定值6.∵点D在线段AM的延长线(或反向延长线)上时,△ACD和△BCE全等,∴对应边AD、BE上的高线对应相等,∴CN=CM=4是定值,∴PQ的长是定值.【知识点】全等三角形的判定与性质、等边三角形的性质14.我们定义:如图1,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)并缩短一半得到AB',把AC绕点A逆时针旋转β并缩短一半得到AC',连接B'C'.当α+β=180°时,我们称△AB'C'是△ABC的“旋半三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋半中线”,点A 叫做“旋半中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋半三角形”,AD是△ABC的“旋半中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=4时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用:(3)如图4,在平面直角坐标系中,△ABC的坐标分别是A(4,3),B(1,0),C(5,0),△AB′C′是△ABC的“旋半三角形”,AD是△ABC的“旋半中线”,连结OD,求OD的最大值是多少?并请直接写出当OD最大时点D的坐标.【解答】解:(1)①如图2中,∵△ABC是等边三角形,∴AB=BC=AC=2AB′=2AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=AB′=BC,故答案为:.②如图3中,∵∠BAC=90°,∠BAC+∠B′AC′=180°,∴∠B′AC′=∠BAC=90°,∵AB=AB′,AC=AC′,∴△BAC∽△B′AC′,∴BC=2B′C′,∵B′D=DC′,∴AD=B′C′=BC==1,故答案为:1;(2)结论:AD=BC.理由:如图1中,延长AD到M,使得AD=DM,连接B′M,C′M∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴AC′=B′M=AC,∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,∴∠BAC=∠MB′A,∵AB=AB′,∴△BAC∽△AB′M,∴BC=2AM,∴AD=BC.(3)如图4,∵AD=BC,BC=4,∴AD=1,∴D在以A为圆心,以1为半径的圆上,∴当D运动到直线OA与半圆相交时OD最大,∵A(4,3),∴OA=5,∵AD=1,∴OD的最大值是6.过A作AE⊥x轴于E,过D作DF⊥x轴于F,∴AE∥DF,∴△AOE∽△DOF,∴==,∵OE=4,AE=3,∴OF=,DF=,∴D(,).【知识点】几何变换综合题。
倍长中线法Prepared on 21 November 2021
全等三角形的类型题常见辅助线的作法有以下几种:
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的
“对折”.
2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式
是全等变换中的“旋转”.
3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变
换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.
4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或
“翻转折叠”
5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延
长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.
特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.
倍长中线法
1.已知:AB=4,AC=2,D是BC中点,AD是整数,求AD
2、已知:D是AB中点,∠ACB=90°,求证:
1
2 CD AB
3、已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC
C
A
D
B C
D C B A
E 4、已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC
截长补短法
1、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C
2、如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
求证:
BC=AB+DC 。
3、如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .
4、已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE 边加减的问题
1、已知:点A 、F 、E 、C 在同一条直线上, AF =CE ,BE∥DF,BE =DF .求证:△ABE≌△CDF.
2、如图:DF=CE ,AD=BC ,∠D=∠C 。
求证:△AED ≌△BFC 。
3、如图:AB=CD ,AE=DF ,CE=FB 。
求证:AF=DE 。
4、已知AB ∥DE ,BC ∥EF ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .
角加减的问题
1、如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。
求证:(1)EC=BF ;(2)EC ⊥BF 多个垂直问题 1、已知:如图, AC ⊥BC 于C , DE ⊥AC 于E , AD ⊥AB 于A , BC =AE .若AB = 5 ,求AD 的长?
2、如图:BE ⊥AC ,CF ⊥AB ,BM=AC ,CN=AB 。
求证:(1)AM=AN ;(2)AM ⊥AN 。
3、在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥
于E . (1)当直线MN 绕点C 旋转到图1的位置时,求证: ①ADC ∆≌CEB ∆;②BE AD DE +=;
(2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.
C
D
B F
A
E D C B B
A C
D F
2 1 E
A F
E D
C
B A F
E
D B
A
A E
B M
C F
角平分线的逆定理
1、如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F。
求证:DE=DF.
2、如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N
3、已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE。