Euclid欧几里得数学竞赛(Grade12)-数学Mathematics-2001-试题 exam
- 格式:pdf
- 大小:166.18 KB
- 文档页数:4
欧几里得数学竞赛知识点欧几里得数学竞赛(Euclidean Mathematics Contest)是一项面向中学生的数学竞赛,以培养学生的数学思维能力和解决问题的能力为目标。
该竞赛注重培养学生的几何直觉和创造力,并涵盖了广泛的数学知识点。
以下是一些常见的欧几里得数学竞赛知识点:1.几何学:欧几里得数学竞赛主要涉及几何学,包括平面几何和立体几何。
常见的几何知识点包括:平行线与垂直线的性质、三角形的性质(如相似三角形、直角三角形等)、多边形的性质(如正多边形、等腰三角形等)、圆的性质(如平行切线、切线与弦的性质等)等。
2.代数学:代数学也是欧几里得数学竞赛的重要内容之一、常见的代数知识点包括:数列与数列的性质(如等差数列、等比数列等)、方程的解法(如一元二次方程、一次方程等)、不等式与不等式的性质、函数与函数的性质(如一次函数、二次函数等)等。
3.数论:数论也是欧几里得数学竞赛中常见的知识点。
数论主要研究整数的性质与关系,常见的数论知识点包括:因数与倍数的性质、质数与合数的性质、最大公约数与最小公倍数的性质、模运算与同余定理、整数的奇偶性等。
4.组合数学:组合数学是欧几里得数学竞赛中的另一个重要内容。
组合数学主要研究集合的性质和排列组合等问题,常见的组合数学知识点包括:排列与组合的计数、二项式定理与多项式展开、概率与期望等。
5.解析几何:解析几何是欧几里得数学竞赛中的高阶内容。
解析几何主要研究几何图形与坐标之间的关系,常见的解析几何知识点包括:平面直角坐标系与空间直角坐标系、直线与曲线的方程、圆与球的方程、曲线的性质与参数方程等。
6.计算方法:除了数学的理论知识,欧几里得数学竞赛还注重学生的计算能力和解题技巧。
常见的计算方法包括:化简与整理表达式、代数运算的技巧与策略、几何图形的构造与判定等。
以上只是欧几里得数学竞赛的一部分常见知识点,实际上,欧几里得数学竞赛的题目题材多样,知识点广泛。
参加欧几里得数学竞赛的学生需要在学习过程中全面掌握数学各个领域的知识,并能够灵活运用这些知识解决问题。
欧几里得数学竞赛_摘要:I.欧几里得数学竞赛概述- 竞赛起源与发展- 竞赛难度与影响力II.欧几里得数学竞赛适合人群- 参赛对象与报名方式- 竞赛对申请大学的帮助III.欧几里得数学竞赛考试内容与形式- 竞赛知识点覆盖范围- 考试时间与题型- 评分标准与奖项设置IV.欧几里得数学竞赛备考策略- 备考时间安排- 推荐教材与学习资源- 真题练习与模拟考试V.欧几里得数学竞赛在中国的发展- 我国学生参赛情况- 相关培训机构与课程- 对我国数学教育的启示与影响正文:欧几里得数学竞赛(Euclid Mathematics Contest)是由加拿大滑铁卢大学(University of Waterloo)数学与计算机学院主办的面向全球高中生的数学竞赛,被誉为数学界的托福。
竞赛始于1963年,每年有来自10多个国家和地区、1850多所学校的2万多名学生参加。
该竞赛在数学界中已经得到广泛认可,对学生的申请大学具有很大的帮助。
欧几里得数学竞赛适合人群广泛,参赛对象为全球各地的高中生,报名方式一般由学校统一组织。
竞赛难度较高,知识点覆盖范围广泛,对学生的逻辑思维能力和数学素养有很高的要求。
在我国,许多学生通过参加欧几里得数学竞赛,提高了自身的数学能力,为申请国内外知名大学提供了有力的砝码。
欧几里得数学竞赛的考试内容主要包括代数、几何、组合、数论等多个方面,考试形式为笔试,分为简答题和解答题。
评分标准根据解题过程的准确性、完整性和创新性来评判,奖项分为金、银、铜三个等级。
对于如何备考欧几里得数学竞赛,建议学生合理安排时间,提前准备。
推荐使用一些经典的数学竞赛教材和在线学习资源,如《数学竞赛题型解析》、《欧几里得数学竞赛真题详解》等。
在备考过程中,要注重真题练习和模拟考试,以检验自己的学习效果,逐步提高自己的解题能力。
近年来,随着我国学生对国际数学竞赛的热情逐渐高涨,欧几里得数学竞赛在我国也得到了广泛关注。
越来越多的学生通过参加欧几里得数学竞赛,提升了自己的数学素养,为我国数学教育的发展带来了新的启示和影响。
欧几里得备考心得
欧几里得数学竞赛(Euclid Math Contest)是北美最具有高声誉的数学竞赛之一,每年有来自全球的超过一百万名学生参加。
以下是我对准备欧几里得数学竞赛的一些心得:
1.基础知识的掌握:欧几里得数学竞赛主要考察的是高中数学和初级大学数学的基础知识。
因此,在准备过程中,需要熟练掌握并理解这些基础知识,例如代数、几何、数论、统计学等。
2.刷题和模拟考试:欧几里得数学竞赛的题目类型比较固定,通过大量的刷题和模拟考试,可以熟悉出题的套路和解题的技巧。
此外,还可以提高解题的速度和准确率。
3.注重解题思路:在欧几里得数学竞赛中,题目往往比较复杂,需要清晰的解题思路才能快速准确地解题。
因此,在准备过程中,需要注重培养自己的解题思路,学会分析问题、分解问题、解决问题的能力。
4.拓展数学知识:虽然欧几里得数学竞赛考察的是高中数学和初级大学数学的基础知识,但是在准备过程中,可以适当地拓展数学知识,了解一些高级的数学概念和技巧。
这样不仅可以提高自己的数学水平,还可以在考试中更加灵活地应对一些难度较高的题目。
5.保持积极心态:欧几里得数学竞赛的题目难度较大,准备过程也比较繁琐,需要保持积极的心态和良好的学习习惯才能坚持到最后。
同时,在考试中也需要保持冷静,不要因为一道难题而影响整个考试的状态。
总的来说,准备欧几里得数学竞赛需要全面提升自己的数学水平、解题能力和心理素质,同时要注重刷题和模拟考试,保持积极的心态和良好的学习习惯。
数学欧几里得竞赛欧几里得竞赛是全球范围内备受瞩目的数学竞赛。
它得名于古希腊学者欧几里得(Euclid),这位数学大师所著的《几何原本》奠定了几何学研究的基础。
以下是关于欧几里得竞赛的一些介绍,以及参赛者应该知道的重点。
一、竞赛的目的和历史欧几里得竞赛旨在鼓励和挑战高中学生们的数学能力,并提高他们的数学研究、问题解决和推理能力。
该竞赛始于1962年,至今已有几十年历史。
欧几里得竞赛是一项以几何学和数论为主的竞赛,其测试内容涵盖了高中阶段的数学知识和应用技能。
二、竞赛的组成和考试内容欧几里得竞赛由两个部分组成,即初赛和决赛。
初赛通常在学校内进行,由各校的数学老师出卷并监考,考试时间约为3小时。
初赛题目主要测试参赛者的几何学和数论知识,题型除了选择题外,也包括了填空、计算、证明等题型。
决赛是由参加了初赛并获得一定成绩的选手进入的,其考试时间一般为4小时。
决赛的题目比初赛更难,主要包括了较为高级的几何学和数论知识,也会涉及到代数、组合等知识点。
三、竞赛对参赛者的帮助参加欧几里得竞赛有利于学生在数学上有进一步的提高,对于他们今后的升学和就业都有着积极的影响。
经过参加该竞赛,学生们可以更好地掌握高中阶段数学的基础知识和应用技能,提高他们的建模、证明、创新和团队合作能力,有助于他们将来在数学和科学领域做出更多的成就。
四、参赛者应注意的事项在参加欧几里得竞赛的过程中,参赛者应该:1.熟练掌握高中阶段的数学知识,特别是几何和数论方面的知识和技能。
2.多做题并学会总结题目解法,尝试理解每道题目的本质,从而能够更好地掌握数学知识点。
3.善于分析、归纳和推理,注重问题解决思维的培养,提高数学思维的能力。
4.勇于挑战困难问题,保持耐心、冷静和坚持不懈的精神,不断超越自我。
通过参加欧几里得竞赛,可以让我们更好地了解和掌握数学知识,从而有更多的机会在科学和数学领域里展现自己的才华和创新能力。
欧几里得数学竞数学
欧几里得数学竞赛是一项著名的数学竞赛。
该竞赛在数学界享有
很高的声誉和影响力。
它的历史可以追溯到2000多年前的古希腊。
欧
几里得是该竞赛的主要主持者和组织者之一,现在的竞赛也以他的名
字命名。
欧几里得数学竞赛旨在培养学生的数学思维能力以及解决复杂数
学问题的能力。
竞赛题目涉及数学的各个领域,象数、代数、几何、
概率等等。
赛制一般为笔试和面试结合,还会有小组合作解题等活动。
参加欧几里得数学竞赛,需要具备扎实的数学基础和一定的数学
思维能力。
但是即使没有参加过竞赛,只是单纯喜欢数学的人,也可
以通过做竞赛题目来提高自己的数学水平和思维能力。
总之,欧几里得数学竞赛是一项十分有意义的数学活动,它不仅
能够提高参赛者的数学素养,而且还能够培养他们的数学兴趣和创新
精神。
parts are indicated like this: .Enter the answer in the appropriate box in the answer booklet.be given for a correct answer which is placed in the box. Part marks will be awarded parts are indicated like this: .Finished solutions must be written in the appropriate location in the answer booklet.Sybasei Anywhere SolutionsCanadian Instituteof ActuariesChartered Accountants Great West Lifeand London LifeNOTE: 1.Please read the instructions on the front cover of this booklet.2.Place all answers in the answer booklet provided. 3.For questions marked “”, full marks will be given for a correct answer placed in theappropriate box in the answer booklet. Marks may be given for work shown . Students are strongly encouraged to show their work.4.It is expected that all calculations and answers will be expressed as exact numbers such as4π, 27+, etc., except where otherwise indicated.1.(a)In the diagram, the parabola cuts the y -axis at the point 08,(), cuts the x -axis at the points 20,() and 40,(),and passes through the point a ,8(). What is the value of a ?(b)The quadratic equation x x k 260++= has two equal roots. What is the value of k ?(c)The line y x =+22 intersects the parabola y x x c =+23– at two points. One of these points is 14,(). Determine the coordinates of the second point of intersection.2.(a)If 090o o <<x and 3150sin cos x ()−()=o , what is the value of x to the nearest tenth of a degree?(b)In the diagram, ∆ABC is right-angled at B and AC =20. If sin C =35, what is the length ofside BC ?(c) A helicopter is flying due west over level ground at a constant altitude of 222 m and at aconstant speed. A lazy, stationary goat, which is due west of the helicopter, takes two measurements of the angle between the ground and the helicopter. The first measurement the goat makes is 6° and the second measurement, which he makes 1 minute later, is 75°. If the helicopter has not yet passed over the goat, as shown, how fast is the helicopter travelling to the nearest kilometre per hour?A B C3.(a)The function f x () has the property that f x f x 2323+()=()+ for all x .If f 06()=, what is the value of f 9()?(b)Suppose that the functions f x () and g x () satisfy the system of equations f x g x x x f x g x x ()+()=++()+()=+36242422for all x . Determine the values of x for which f x g x ()=().4.(a)In a short-track speed skating event, there are five finalists including two Canadians. Thefirst three skaters to finish the race win a medal. If all finalists have the same chance of finishing in any position, what is the probability that neither Canadian wins a medal?(b)Determine the number of positive integers less than or equal to 300 that are multiples of 3or 5, but are not multiples of 10 or 15.5.(a)In the series of odd numbers 1357911131517192123+++++––––––... the signs alternate every three terms, as shown. What is the sum of the first 300 terms of the series?(b)A two-digit number has the property that the square of its tens digit plus ten times its units digit equals the square of its units digit plus ten times its tens digit. Determine all two-digit numbers which have this property, and are prime numbers.6.(a)A lead box contains samples of two radioactive isotopes of iron. Isotope A decays so that after every 6 minutes, the number of atoms remaining is halved. Initially, there are twice as many atoms of isotope A as of isotope B, and after 24 minutes there are the same number of atoms of each isotope. How long does it take the number of atoms of isotopeB to halve?(b)Solve the system of equations:log log log log 103102102103113x y x y ()+()=()−()=7.(a) A regular hexagon is a six-sided figure which has all of its angles equal and all of its side lengths equal. Inthe diagram, ABCDEF is a regular hexagon with anarea of 36. The region common to the equilateral triangles ACE and BDF is a hexagon, which isshaded as shown. What is the area of the shadedhexagon?(b)At the Big Top Circus, H erc theHuman Cannonball is fired out of the cannon at ground level. (For the safetyof the spectators, the cannon ispartially buried in the sand floor.)Herc ’s trajectory is a parabola until he catches the vertical safety net, on his way down, at point B . Point B is 64 mdirectly above point C on the floor ofthe tent. If Herc reaches a maximumheight of 100 m, directly above a point30 m from the cannon, determine thehorizontal distance from the cannon tothe net.8.(a) A circle with its centre on the y-axis intersects the graph of y x = at the origin, O , and exactly two otherdistinct points, A and B , as shown. Prove that the ratioof the area of triangle ABO to the area of the circle isalways 1 : π.(b)In the diagram, triangle ABC has a right angle at Band M is the midpoint of BC . A circle is drawn usingBC as its diameter. P is the point of intersection of thecircle with AC . The tangent to the circle at Pcuts ABat Q . Prove that QM is parallel to AC .9.Cyclic quadrilateral ABCD has AB AD ==1, CD ABC =∠cos , and cos –∠=BAD 13. Provethat BC is a diameter of the circumscribed circle.10. A positive integer n is called “savage” if the integers 12,,...,n{} can be partitioned into three sets A, B and C such thati)the sum of the elements in each of A, B, and C is the same,ii)A contains only odd numbers,iii)B contains only even numbers, andiv)C contains every multiple of 3 (and possibly other numbers).(a)Show that 8 is a savage integer.(b)Prove that if n is an even savage integer, then n+412is an integer.(c)Determine all even savage integers less than 100.PUBLICATIONS2003 Euclid Contest(English)。
该考试是学生申请滑铁卢大学数学学院本科专业的重要参考。
众所周知滑铁卢大学数学学院是全球最大的数学、统计学、计算机科学等学科教学中心比尔•盖茨曾于 2005 年、 2008 年两度造访该大学是比尔•盖茨大学巡回讲座的北美5 所大学之一也是唯一的一所加拿大大学。
考试范围:大部分的题目基于高三或者12年级数学课学习的内容。
我们的竞赛题目主要包括以下的数学内容:Ø 欧几里德几何和解析几何Ø 三角函数,包括函数、图像、性质、正弦余弦定理Ø 指数和对数函数Ø 函数符号Ø 方程组Ø 多项式,包括二次三次方程根的关系、余数定理Ø 数列、数列求和Ø 简单的计算问题Ø 数字的性质考试时间为 2.5 个小时, 10 道题。
每题 10 分,共计 100 分。
考试题有两种,一种只需要给出答案,另一种则需要写出整个解题过程,这种题的最终得分不仅取决于结果正确与否,还与解题思路有关。
Ø 笔试Ø 10道题:大部分要求写出完整的解题步骤;Ø 根据解题的方法和步骤获得相应的分数;Ø 步骤不完整的解题无法得到全部的分数;Ø 竞赛时长为2.5小时;Ø 共100分;Ø 可以使用无编程无绘图功能的计算器;Ø 不可以使用任何可接入互联网的设备,如手机、平板电脑等均不能携带如何准备:Ø CEMC官网可以免费下载历年的竞赛原题以及标准答案;Ø CEMC官网提供各种免费的数学资源;Ø www.cemc.uwaterloo.ca;如何参加:Ø 学校可以申请注册为考点,安排组织欧几里德数学竞赛;Ø 学生需要通过自己所在的学校报名参加欧几里德数学竞赛;Ø 如果学生所在学校未注册考点,学生可以报名在我们北京或者上海的考点参加欧几里德数学竞赛;Ø 竞赛结束之后,学校需要将全部的试卷寄回滑铁卢大学;Ø 改卷结束之后,滑铁卢大学会在CEMC官网录入学生的成绩。
几何变换(第十二届夏令营)湖南师大附中数学竞赛组自公元前3世纪古希腊数学家欧几里得(Euclid)的《几何原本》问世以来, 平面几何就作为数学的一个分支而存在于世. 由于平面几何有其鲜明的的直觉与严谨、精确、简明的语言, 并且经常出现一些极具挑战性的问题, 因而这一古老的数学分支一直保持着青春的活力, 以极具魅力的姿态展现在我们面前. 世界各国无不将平面几何作为培养本国公民的逻辑思维能力、空间想象能力和推理论证能力的重要题材. 由匈牙利于1894年首开先河的国内外各级数学竞赛活动更是将平面几何作为常规的竞赛内容, 并且从1959年开始举办的每年一届(1980年因特殊原因中断)的国际中学生数学竞赛(通称国际数学奥林匹克)中, 在同一届出现两道平面几何题的情况已是屡见不鲜.但是, 传统的平面几何都是采用公理化方法处理的, 这种方法将平面图形视为静止的图形, 其优点是便于掌握几何图形本身的内在规律. 但用这种静止的观点研究平面几何的一个最大缺陷是: 难以发现不同几何事实之间的联系. 欲深刻揭示客观事物之间的联系, 掌握运动的事物的空间形式最本质的东西——在运动中始终保持不变的性质, 仅用静止的观点是远远不够的, 必须动静结合, 用运动、变化的观点来研究客观事物的运动形式和变化规律. 就平面几何而言, 按照德国数学家克莱因(F. Klein)于1872年提出的观点, 平面几何是研究平面图形在运动、变化过程中的不变性质和不变量的科学.几何变换作为一种现代数学思想方法, 正是采用运动、变化的观点来研究平面几何的. 面对一个平面几何问题, 几何变换往往能有效地帮助我们顺利地实现由条件到结论的逻辑沟通. 将几何图形按照某种法则或规则变换成另一种几何图形的过程叫做几何变换. 平面几何中的几何变换主要有合同变换、相似变换和反演变换等.1 知识方法1.1 合同变换在一个几何变换f下, 如果任意两个之间的距离等于变化后的两点之间的距离, 则称f是一个合同变换.合同变换只改变图形的相对位置, 不改变其性质和大小. 合同变换有三种基本形式: 平移变换, 轴反射变换, 旋转变换.(一) 平移变换将平面图形上的每一个点都按一个定方向移动定距离的变换叫作平移变换.记为()T a , 定方向a 称为平移方向, 定距离称为平移距离.显然, 在平移变换下, 两对应线段平行(或共线)且相等. 因此, 凡已知条件中含有平行线段, 特别是含有相等线段的平面几何问题, 往往可用平移变换简单处理. 平移可移线段, 也可移角或整个图形.例1.1 平面上一个单位正方形与距离为1的两条平行线均相交, 使得正方形被两条平行线截出两个三角形(在两条平行线之外). 证明: 这两个三角形的周长之和与正方形在平面上的位置无关. (第15届亚洲—太平洋数学奥林匹克, 2003)证明: 如图所示, 设直线1l //2l , 1l 与2l 的距离为1,单位正方形ABCD 的边,AB AD 分别与1l 交于,P Q , 边,BC CD 分别与2l 交于,R S . 作平移变换()T PA , 设1122',','l l l l R R →→→, 则'R 在2'l 上, 1'l 过正方形的顶点A . 因点A 到2'l 的距离等于AB , 所以2'l 决不会与边,AB AD 相交. 设2'l 与边,BC CD 分别交于,E F , 则有',,,R F RS SF PA ER AQ === 进而, ',ER PQ = 于是''AP PQ AQ RC CS RS SF ER ER RC CS R F EC CF EF +++++=+++++=++ 过顶点A 作2'l 的垂线, 设垂足为H , 则1AH AB AD ===. 由于,,AB EC AD CF AH EF ⊥⊥⊥, 所以, 点A 是CEF ∆的C -旁心, 且,,B H D 分别为CEF ∆的C -旁心圆与三边的切点, 所以,EH BE HF FD ==, 从而2EC CF EF BC CD ++=+=, 即2AP PQ AQ RC CS RS +++++=. 这就是说, APQ ∆的周长与CSR ∆的周长之和等于2. 它与正方形在平面上的位置无关.(二) 轴反射变换如果直线l 垂直平分连接两点,'A A 的线段'AA , 则称两点,'A A 关于直线l 对称. 其中'()A A 叫作点(')A A 关于直线l 的对称点.把平面上图形中任一点都变到它关于定直线l 的对称点的变换, 叫作关于直线l 的轴反射变换, 记为()S l , 直线l 叫作反射轴.显然, 在轴反射变换下, 对应线段相等, 两对应直线或者相交于反射轴上, 或者与反射轴平行. 通过轴反射变换构成(或部分构成)轴对称图形是处理平面几何问题的重要思想方法.例1.2 在锐角ABC ∆中, AB AC <, AD 是边BC 上的高, P 是线段AD 上一点. 过P 作PE AC ⊥, 垂足为E , 作PF AB ⊥, 垂足为F . 12,O O 分别是,BDF CDE ∆∆的外心. 求证:12,,,O O E F 四点共圆的充要条件为P 是ABC ∆的垂心. (全国高中数学联赛, 2007)证明: 如图所示, 由,PD BC PF AB ⊥⊥知,,,B D P F 四点共圆, 且BP 为其直径, 所以BDF ∆的外心1O 为BP 的中点. 同理, ,,,C D P E 四点共圆, 且2O 是CP 的中点. 因此, 12O O //BC , 所以21O O P CBP ∠=∠.充分性. 设P 是ABC ∆的垂心, 由于,PE AC PF AB ⊥⊥, 所以1,,,B O P E 四点共线, 2,,,C O P F 四点共线, ,,,B C E F 四点共圆. 于是由21O O P CBP ∠=∠得212O O E CBE CFE O FE ∠=∠=∠=∠, 故12,,,O O E F 四点共圆.必要性. 因为1O 是Rt BFP ∆的斜边PB 的中点, 2O 是Rt CEP ∆的斜边PC 的中点, 所以12PO F PBA ∠=∠, 2O EC ACP ∠=∠. 因为,,,A F E P 四点共圆, 所以FEP FAP ∠=∠. 于是212112O O F O O P PO F CBP PBA CBA PBF ∠=∠+∠=∠+∠=∠+∠2229090FEO FEP PEO FAP O EC FAP ACP ∠=∠+∠=∠+-∠=∠+-∠这样, 若12,,,O O E F 四点共圆, 则212180O O F FEO ∠+∠= . 因而有90180CBA PBF FAP ACP ∠+∠+∠+-∠=再注意90CBA FAP ∠+∠= , 即得PBF ACP ∠=∠, 也就是PBA ACP ∠=∠.作反射变换()S AD , 设'B B →, 因AB AC <, AD BC ⊥, 所以BD CD <, 于是'B 在线段CD 上, 且','PB B CBP AB P PBA ∠=∠∠=∠. 因PBA ACP ∠=∠, 所以'AB P ACP ∠=∠, 从而,,',A P B C 四点共圆. 于是'90PB B PAC ACB ∠=∠=-∠ , 所以90CBP ACB ∠=-∠ , 所以, BP AC ⊥. 而AP BC ⊥, 故P 是ABC ∆的垂心.(三) 旋转变换将平面上图形中每一个点都绕一个定点O 按定方向(逆时针或顺时针)转动定角θ的变换, 叫作旋转变换, 记为(,)R O θ. 点O 叫作旋转中心, θ叫作转幅或旋转角.易知, 在旋转变换下, 两对应线段相等, 两对应直线的交角等于转幅. 对于已知条件中含有正方形或等腰三角形或其它特殊图形问题, 往往可运用旋转变换来处理.特别是在转幅为90 的旋转变换下, 两对应线段垂直且相等. 而转幅为180 的旋转变换称为中心对称变换, 记为()C O . 在中心对称变换下, 任意一对对应点的连线段都通过旋转中心(此时称为对称中心), 且被对称中心所平分. 由于中心对称变换的这一特殊性, 凡是与中点有关的平面几何问题, 我们可以考虑用中心对称变换处理.例1.3 设圆1T 与圆2T 交于,A B 两点. 圆1T 在A 点的切线交圆2T 于C , 圆2T在A 点的切线交圆1T 于D . M 是CD 的中点. 求证:CAM DAB ∠=∠. (中国国家队培训, 2007)证明: 如图所示, 作中心对称变换()C M , 设'A A →, 则四边形'ACA D 是一个平行四边形. 设AB 的延长线交'CA 于E , 则AEC BAD BCA ∠=∠=∠. 又CAE ADB ∠=∠, 所以ABC ACE DBA ∆∆∆ , 于是,AC AB AE CE AE AC DA BA ==. 两式相乘, 并注意到'AC DA =, 得'AC CE AD DA =. 而'ACE ADA ∠=∠, 所以'ACE ADA ∆∆ , 则'CAE DAA ∠=∠, 故CAM DAB ∠=∠.例1.4 在ABC ∆中, AB AC =, ,,D E F 分别为直线,,BC AB AC 上的点, 且DE //AC , DF //AB , M 为ABC ∆的外接圆上BC的中点. 求证: MD EF ⊥. (伊朗国家队选拔考试, 2005)证明: 如图所示, 因AB AC =, DF //AB ,所以CF DF =. 又四边形EAFD 显然为平行四边形, 则AE DF CF ==. 于是, 设ABC ∆的外心为O , 作旋转变换(,2)R O CBA (其中,CBA 表示始边为射线BC , 终边为射线BA 的有向角), 则,,C A A B →→ 且F E →, 所以OE OF =. 因此, 设EF 的中点为N , 则ON EF ⊥.另一方面, 因四边形EAFD 是平行四边形, 所以N 也是AD 的中点. 又AB AC =, M 为ABC ∆的外接圆上 BC的中点, 所以AM 为ABC ∆的外接圆的直径, 从而O 为AM 的中点, 故ON //MD . 于是由ON EF ⊥, 即知MD EF ⊥.1.2 相似变换在一个几何变换f 下, 若对于平面上任意两点,A B , 以及对应点','A B , 总有''A B kAB =(k 为非零实数), 则称这个变换f 是一个相似变换. 非零实数k 叫作相似比, 相似比为k 的相似变换记为()H k .显然, 相似变换既改变图形的相对位置, 也改变图形的大小, 但不改变图形的形状. 当1k =时, (1)H 就是合同变换. 讨论相似变换时, 常讨论位似变换、位似旋转变换以及位似轴反射变换.(一) 位似变换设O 是平面上一定点, H 是平面上的变换, 若对于任一双对应点,'A A , 都有'OA kOA =(k 为非零实数), 则称H 为位似变换. 记为(,)H O k , O 叫作位似中心, k 叫作相似比或位似系数. A 与'A 在O 点的同侧时0k >, 此时O 为外分点, 此种变换称为正位似(或顺位似); A 与'A 在O 点的两侧时0k <, 此时O 为内分点, 此种变换称为反位似(或逆位似).显然, 位似变换是特殊的相似变换. 有此问题借助于位似变换求解比相似变换更简洁.例1.5 设ABC ∆的内切圆与边,,BC CA AB 分别切于点,,D E F . 求证: ABC ∆的外心O , 内心I 与DEF ∆的垂心H 三点共线. (第12届伊朗数学奥林匹克, 1995; 第97届匈牙利数学奥林匹克, 1997; 第51届保加利亚数学奥林匹克, 2002)证法一: 如图(1)所示, 设ABC ∆的内切圆半径与外接圆半径分别为,r R , R k r =⋅.作位似变换(,)H I k -, 设'''DEF D E F ∆→∆,则'D I R =. 再设ABC ∆的外接圆上的 BC(不含点A )的中点为M , 则OM //'D I 且'OM D I =, 所以四边形'OMID 是平行四边形, 于是'D O //IM , 注意到,,A I M 共线, 所以'D O //AI . 又AI EF ⊥, 所以'D O EF ⊥. 但EF //''E F , 从而'''D O E F ⊥. 同理, '''E O F D ⊥, 所以O 是'''D E F ∆的垂心, 因此H O →. 故,,H I O 三点共线, 且HI r IO R=.证法二: 如图(2)所示, 设直线,,DH EH FH分别与ABC ∆的内切圆交于另一点,,P Q R , 则DEF ∆的三边分别垂直平分,,HP HQ HR , 所以DQ DH DR ==, 由此可知QR //BC . 同样地,RP //CA , PQ //AB , 因此ABC ∆与PQR ∆是位似的. 而,O I 分别是ABC ∆与PQR ∆的外心, ,I H 分别是ABC ∆与PQR ∆的内心, 故,,O I H 三点共线, 且HI r IO R=.(二) 位似旋转变换具有共同中心的位似变换(,)H O k 和旋转变换(,)R O θ复合便得位似旋转变换(,,)S O k θ, 即(,,)(,)(,)(,)(,)S O k H O k R O R O H O k θθθ=⋅=⋅.例1.6 设圆1T 与圆2T 交于,A B 两点, 一直线过点A 分别与圆1T 、圆2T 交于另一点C 和D , 点,,M N K 分别是线段,,CD BC BD 上的点, 且MN // BD , MK //BC . 再设点,E F 分别在圆1T 的 BC(不含点A )上和圆2T 的 BD(不含点A )上, 且EN BC ⊥, FK BD ⊥. 求证: 90EMF ∠= .(第43届IMO 预选题, 2004; 第22届伊朗数学奥林匹克, 2004)证明: 如图所示, 设圆1T 与圆2T 的半径分别为12,,r r 12r k r =⋅, 作位似旋转变换(,,)S B k DBC , 因割线CD 过两圆的另一个交点, 所以D C →. 设','K K F F →→, 则'K 在BC 上, 'F 在圆1T 上, 且''F K BC ⊥,'K C KD MD NB BC BD CD BC===, 所以, 'K C BN =. 设''F K 的延长线交圆1T 于L , 则有''EBN BF K ∠=∠, 而''BF K BFK ∠=∠, 于是EBN BFK ∠=∠. 又,BKF ENB ∠∠皆为直角, 因此BFK EBN ∆∆ . 但由MN // BD , MK // BC 知, 四边形MNBK 是平行四边形, 所以,,BK MN BN MK ==. 于是, 易知MNE FKM ∠=∠, 因此MEN FMK ∆∆ . 再注意到,EN BC FK BD ⊥⊥, 即知EM MF ⊥.(三) 位似轴反射变换就目前的情况来看, 位似轴反射变换的应用似乎尚不及其他几种几何变换. 但作为一种不可或缺的几何变换, 应该有其广泛的用武之地. 实际上, 对于梯形、圆内接四边形、对角线等问题, 都有可能用得上位似轴反射变换.例1.7 已知圆内接凸四边形ABCD , F 是AC 与BD 的交点, E 是AD 与BC 的交点, ,M N 分别是AB 和CD 的中点. 求证:1||2MN AB CD EF CD AB=-. (第46届保加利亚数学奥林匹克(第3轮), 1997)证明: 如图所示, 设AB k CD =⋅, 以E为位似中心, k 为位似比作位似轴反射变换, 使,C A D B →→. 设1F F →, 则1EF k EF =⋅. 同样地, 如果以1k -为位似比作位似轴反射变换, 使,A C B D →→. 设2F F →, 则12EF k EF -=⋅, 且12,F F 都在EF 关于AEB ∠的平分线对称的直线上, 所以11212||||||F F EF EF k k EF -=-=-⋅另一方面, 由ABF DCF ∆∆ , 1BAF DCF ∆∆ 知1ABF BAF ∆∆ , 从而1ABF BAF ∆≅∆, 所以四边形1AF BF 是一个平行四边形, 因此M 是1FF 的中点. 同理, N 是2FF 的中点. 于是11211||22MN F F k k EF -==-⋅, 故 111||||22MN AB CD k k EF CD AB-=-=- 1.3 反演变换设O 是平面α上一定点, 对于α上任意异于点O 的点A , 有在OA 所在直线上的点'A , 满足'0OA OA k ⋅=≠, 则称法则I 为平面α上的反演变换, 记为(,)I O k . 其中O 为反演中心或者反演极, k 为反演幂; A 与'A 在点O 的两侧时0k <, 否则0k >; A 与'A 为此反演变换下的一对反演点(或反点), 显然A 与'A 互为反点(但点O 的反点不存在或为无穷远点); 点A 集的像'A 集称为此反演变换下的反演形(或反形).由于0k <时的反演变换(,)I O k 是反演变换(,||)I O k 和以O 为中心的中心对称变换的复合, 我们只就0k >讨论反演变换即可.令r =则2'OA OA r ⋅=. 此时, 反演变换的几何意义则可知如图所示, 并称以O 为圆心, r 为半径的圆为反演变换2(,)I O r 的基圆.由此几何意义, 我们可作出与'AA 垂直的过A 的直线l 及过'A 的直线'l 的反形分别为下图中的圆'c 及圆c , 反之以,'OA OA 为直径的圆c , 圆'c 的反形分别为直线',l l .由反演变换(0k >)的定义及几何意义, 即推出反演变换有下列有趣性质: 性质1 基圆上的点仍变为自己, 基圆内的点(O 除外)变为基圆外的点, 反之亦然.性质2 不共线的任意两对反演点必共圆, 过一对反演点的圆必与基圆正交(即交点处两圆的切线互相垂直).性质3 过反演中心的直线变为本身(中心除外), 过反演中心的圆变为不过反演中心的直线, 特别地过反演中心的相切两圆变为不过反演中心的两平行直线; 过反演中心的相交圆变为不过反演中心的相交直线.性质4 不过反演中心的直线变为过反演中心的圆, 且反演中心在直线上射影的反点是过反演中心的直径的另一端点; 不过反演中心的圆变为不过反演中心的圆, 特别地, (1) 以反演中心为圆心的圆变为同心圆; (2) 不过反演中心的相切(交)圆变为不过反演中心的相切(交)圆; (3) 圆11(,)O R 和圆22(,)O R 若以点O 为反演中心, 反演幂为(0)k k >, 则212222||k R R OO R ⋅=-, 212222||k OO OO OO R ⋅=-. 性质5 在反演变换下, (1) 圆和圆、圆和直线、直线和直线的交角保持不变;(2) 共线(直线或圆)点(中心除外)的反点共反形线(圆和直线), 共点(中心除外)线的反形共发形点.例1.8 设M 为ABC ∆的边BC 的中点, 点P 为ABM ∆的外接圆上 AB (不含点M )的中点, 点Q 为AMC ∆的外接圆上AC (不含点M )的中点. 求证: AM PQ ⊥.(第57届波兰数学奥林匹克, 2006)证明: 如图所示, 以M 为反演中心、MB 为反演半径作反演变换, 则,B C 皆为自反点, 直线AM 为自反直线. 设A 的反点为'A , 则'A 在直线AM 上, 且ABM ∆的外接圆的反形为直线'A B , AMC ∆d 的外接圆的反形为直线'A C , 点P 的反点'P 为直线PM 与'A B 的交点, 点Q 的反点'Q 为直线QM 与'A C 的交点, 直线PQ 的反形为''MP Q ∆的外接圆. 因,MP MQ 分别平分AMB ∠和AMC ∠, 所以, ''MP MQ ⊥, 且''''''''A P MA MA A Q P B MB MC Q C=== 从而''P Q //BC . 设'A M 与''P Q 交于N . 因M 是BC 的中点, 所以N 是''P Q 的中点. 再注意''MP MQ ⊥即知N 为''MP Q ∆的外心, 这说明直线'A M 与''MP Q ∆的外接圆正交, 因此直线AM 与PQ 正交, 即AM PQ ⊥.2 范例选讲2.1 合同变换例2.1 设ABC ∆是一个正三角形, 12,A A 在边BC 上, 12,B B 在边CA 上,12,C C 在边AB 上, 且凸六边形121212A A B B C C 的六边长都相等. 求证: 三条直线121212,,A B B C C A 交于一点. (第46届IMO , 2005)证明: 如图所示, 作平移变换12()T B A , 则12B A →, 设2B K →, 则12122A A B B KA ==, 且2160KA A ∠= , 所以12KA A ∆是正三角形, 因此11212KA A A C C ==, 且由2160A A K CBA ∠==∠ 知, 1KA //12C C , 所以121C C A K 是平行四边形, 于是12121C K C A B C ==, 又21221B K B A B C ==, 所以21KB C ∆也是正三角形.于是, 由221B KA B 是平行四边形, 12KA A ∆与21KB C ∆都是正三角形可知,121121A A B C B B ∠=∠. 同理, 121121B B C C C A ∠=∠, 所以212121AB C BC A CA B ∠=∠=∠再注意212121B AC C BA A CB ∠=∠=∠, 212121B C C A A B ==即得121212AC B BAC CB A ∆≅∆≅∆进而可知111111AC B BAC CB A ∆≅∆≅∆, 所以111A B C ∆是正三角形. 于是1111A B AC =, 又2121B B B C =, 因此12A B 是11B C 的垂直平分线, 从而12A B 通过111A B C ∆的中心O , 同理1212,B C C A 都通过111A B C ∆的中心O . 故121212,,A B B C C A 三线共点.实际上, 在本题中, 222A B C ∆也是正三角形, 且111A B C ∆、222A B C ∆、ABC ∆这三个正三角形的中心都是点O .例2.2 在凸四边形ABCD 中, 对角线BD 既不平分ABC ∠, 也不平分CDA ∠,点P 在四边形的内部, 满足PBC DBA ∠=∠,PDC BDA ∠=∠. 证明: 四边形ABCD 内接于圆的充分必要条件是PA PC =. (第45届IMO , 2004)证明: 如图所示.必要性. 设四边形ABCD 内接于圆. 以AC 的垂直平分线为反射轴作轴反射变换, 设','B B D D →→, 则','B D 都在圆上, 且','CB AB CD AD ==, 所以'B DC ADB PDC ∠=∠=∠, 这说明',,B P D 三点共线. 同理, ',,D P B 三点共线, 所以点P 是'B D 与'BD 的交点, 因而P 在反射轴上, 即P 在AC 的垂直平分线上, 故PA PC =.充分性. 设PA PC =. 分别延长,BP DP 与BCD ∆的外接圆交于点','D B , 则有''PB C DB C DBC ABP ∠=∠=∠=∠, ''PD C BD C BDC ADP ∠=∠=∠=∠, ''BPD B PD ∠=∠. 因,',,'B B D D 四点共圆, ''PBD PB D ∠=∠, 所以''PBD PB D ∆∆ . 又''CB D CBP DBA =∠=∠, ''B D C PDC ADB ∠=∠=∠, 因此''CB D ABD ∆∆ , 从而''ABPD CB PD 四边形四边形. 但PC PA =, 所以''ABPD CB PD ≅四边形四边形. 这说明四边形ABPD 与四边形''CB PD 关于'BPB ∠的平分线互相对称. 而,',,',B B C D D 共圆, 所以',,,,'B B A D D 共圆, 即,,',,',A B B C D D 六点共圆. 故四边形ABCD 内接于圆.例2.3 设H 为ABC ∆的垂心, ,,D E F 为ABC ∆的外接圆上三点, 且AD //BE //CF , ,,S T U 分别为,,D E F 关于边,,BC CA AB 的对称点. 求证: ,,,S T U H 四点共圆. (中国国家队选拔考试, 2006)证明: 我们先证明如下引理: 设,O H 分别为ABC ∆的外心和垂心, P 为ABC ∆的外接圆上任意一点, P 关于BC 的中点的对称点为Q , 则直线AP 关于OH 的中点对称的直线是QH 的垂直平分线.引理的证明. 事实上, 如右图所示, 过A 作ABC ∆的外接圆的直径'AA , 则'A 与ABC ∆的垂心H 也关于BC 的中点对称, 所以QH //'A P 且'QH A P =. 又'A P AP ⊥, 因此QH AP ⊥. 设,D N分别为,AP QH 的中点, 则'2,A P OD = 2QH NH =, 于是OD //NH 且OD NH =. 而AP OD ⊥, 故直线AP 关于OH 的中点对称的直线是QH 的垂直平分线.回到原题. 如下图所示, 过得D 作BC 的平行线与ABC ∆的外接圆交于另一点P . 由AD //BE //CF 易知PE //CA , PF //AB . 因PD //BC , S 是点D 关于BC 的对称点, 所以点P 关于BC 的中点的对称点是S . 于是, 设ABC ∆的外心为O , OH 的中点为M , 作中心对称变换()C M , 由引理可知, 直线AP 的像直线是HS的垂直平分线. 同理, 直线,BP CP 的像直线分别是,HT HU 的垂直平分线.而,,AP BP CP 有公共点P , 因此,,HS HT HU 的垂直平分线交于一点.故,,,S T U H 四点共圆.进一步, 我们还可以证明()STU 与ABC ∆的外接圆是等圆.事实上, 因,,PS PT PU 的中点分别是ABC ∆的三边的中点, 所以()STU 的半径是ABC ∆的中点三角形的外接圆的半径的两倍, 而ABC ∆的外接圆的半径也是其中点三角形的外接圆半径的两倍. 故()STU 与ABC ∆的外接圆是等圆.在本题中, 我们首先将四点共圆的问题转化成三线共点问题, 然后巧妙地通过中心对称变换使问题得到顺利的解决.例2.4 设ABCD 是一个正方形, 以AB 为直径作一个圆T , P 是边CD 上的任意一点, ,PA PB 分别与圆交于,E F 两点. 求证:直线DE 与CF 的交点Q 在圆T 上, 且AQ DP QB PC=. (第44届塞尔维亚和黑山国家数学竞赛, 2006)证明: 如图所示. 设,BE AD 交于R , ,AF BC 交于S , 则,,,F S C P 四点共圆, 所以SPC SFC ∠=∠. 令O 为正方形ABCD 的中心, 作旋转变换(,90)R O , 则,,B C C D D A →→→, 而,AS BP BR AP ⊥⊥, 所以,S P P R →→, 从而PRD SPC ∠=∠. 显然, BC 为圆T 的切线, 所以CBP BAF ∠=∠. 因//AD BC , 所以=+=+RPB PRD CBP SPC CBP ∠∠∠∠∠. 再设CQ 与AB 交于T , 因//AB DC , 则=ATQ DCQ ∠∠, 于是=+=+=+==RPB SPC CBP SFC BAF AFQ BAF ATQ DCQ ∠∠∠∠∠∠∠∠∠又由,,,R E P D 四点共圆, 知=BRP QDC ∠∠, 因此PRB CDQ ∆∆ , 从而=PBR CQD ∠∠, 即=FBE FQE ∠∠, 这说明,,,E Q B F 四点共圆, 换句话说, 点Q 在圆T 上. 再由,,,R E P D 四点共圆, 知===PRD PED AEQ ABQ ∠∠∠∠, 而=90=RDP BQA ∠∠ , 所以PDR AQB ∆∆ , 于是=AQ PD QB DR, 又=DR CP , 故AQ DP QB PC =. 2.2 相似变换例2.5 设12,O O 是半径不等的外离两圆. ,AB CD 是两圆的两条外公切线,EF 是两圆的一条内公切线, 切点,,A C E 在1O 上, 切点,,B D F 在2O 上. 再设1EO 与AC 交于K , 2FO 与BD 交于L . 求证: KL平分EF . (罗马尼亚国家队选拔赛, 2007)证明: 如图所示, 设两条外公切线交于O , 内公切线EF 与外公切线,AB CD 分别交于,P Q , 以O 为位似中心作位似变换, 使12O O →, 则AC BD →, 而12//O E O F , 所以12O E O F →直线直线, 于是AC 与直线1O E 的交点→BD 与直线2O F 的交点, 即K L →, 因此,,O K L 三点共线. 过L 作EF 的平行线分别与直线,AB CD 交于,R S , 则2O L RS ⊥, 而22,O B BR O D SD ⊥⊥, 所以2,,,R B L O 四点共圆, 2,,,O L S D 四点共圆, 再注意到22O B O D =, 于是2222SRO LBO O DL O SR ∠=∠=∠=∠所以22O R O S =, 因此L 平分RS . 而//PQ RS , 所以OL 平分PQ , 即KL 平分PQ . 又PF QE =, 故KL 平分EF .例2.6 在ABC ∆的外部作PAB ∆与QAC ∆, 使得,AP AB AQ AC ==, 且PAB CAQ ∠=∠. 设,BQ CP 交于R , BCR ∆的外心为O . 求证: AO PQ ⊥. (中国国家队培训, 2006)证法一: 如右图所示, 易知APC ABQ ∆≅∆, 所以APR ABR ∠=∠. 因此,,,A P B R 四点共圆, 从而PRB PAB ∠=∠. 于是22COB PRB PAB ∠=∠=∠. 设BC k BO =⋅, 作位似旋转变换(,,)S B k OBC , 则O C →. 设'A A →, 则'2A AB COB PAB ∠=∠=∠, 所以'A AP PAB CAQ ∠=∠=∠. 又由OC OB =, 有'AA AB =. 于是, 再作旋转变换(,)R A PAB , 则,'C Q A P →→, 从而(,)(,,)R A PAB S B k OBC AO PQ → .另一方面, 由,2OB OC BOC PAB =∠=∠知90PAB OBC ∠+∠= , 因此存在点1O , 使得1(,)(,,)(,,90)R A PAB S B k OBC S O k = . 这说明在位似旋转变换1(,,90)S O k 下, 有AO PQ →. 故AO PQ ⊥.证法二: 若下图所示. 同证法一, 有22BOC PRB PAB ∠=∠=∠. 设M 为BC的中点, 则OM BC ⊥. 再分别过,B C 作,AP AQ 的垂线, 垂足分别为,E F , 则CFA CMO BMO BEA ∆∆≅∆∆于是, 设CO k CM =⋅, FCA θ= , 则1(,,)(,,)S C k S B k M OM θθ-→→ 所以, 1(,,)(,,)(,1,2)(,2)S B k S C k S M R M θθθθ-==. 而1(,,)(,,)S C k S B k F A E θθ-→→, 因此在旋转变换(,2)R M θ下, F E →, 所以ME MF =且2FME θ∠=. 因OA 与等腰MEF ∆的两腰,ME MF 的交角都等于θ, 所以OA EF ⊥. 另一方面, 由CFA BEA ∆ , 有AE AE AF AF AP AB AC AQ===, 所以//EF PQ , 故OA PQ ⊥.2.3 反演变换例2.7 设圆T 与直线l 相离, AB 是圆T 的垂直于l 的直径, 点B 离l 较近,C 是圆T 上不同于,A B 的任意一点, 直线AC 交l于D , 过D 作圆T 的切线DE , E 是切点, 直线BE 与l 交于F , AF 与圆T 交于另一点G . 求证:点G 关于AB 的对称点在直线CF 上. (德国国家队选拔考试, 2005)证明: 如图所示, 设AB 与直线l 交于M , 则,,,A E M F 四点共圆, 再由DE 与圆T 相切可知EDF EOA ∆∆ , 所以DF DE =, 且EOD EAF ∆∆ , 从而DOE FAE ∠=∠. 但2GOE FAE ∠=∠, 所以GOD DOE ∠=∠, 从而GOD EOD ∆≅∆, 所以DG 也为圆T 的切线, G 为切点, DG DE DF ==. 设点,G F 关于直线AB 的对称点分别为','G F , 则'G 在圆T 上, 且'F DFG FGD ∠=∠=∠, 所以,,,'A G D F 四点共圆. 于是, 作反演变换(,)I A AG AF ⋅, 则,F G 互为反点, ','F G 互为反点, 这说明圆T 与直线l 互为反形, 所以,C D 互为反点. 又,,,'A G D F 四点共圆, 这个圆与直线FC 互为反形, 所以,,'F C G 共线, 即点G 关于AB 的对称点在直线CF 上.3 训练习题3.1 合同变换练3.1 设四边形ABCD 外切于圆, ,A B ∠∠的外角平分线交于点K , ,B C ∠∠的外角平分线交于点L , ,C D ∠∠的外角平分线交于点M , ,D A ∠∠的外角平分线交于点N . 再设,,,ABK BCL CDM DAN ∆∆∆∆的垂心分别为1111,,,K L M N . 求证: 四边形1111K L M N 是平行四边形. (第30届俄罗斯数学奥林匹克, 2004)练3.2 设,C D 是以O 为圆心、AB 为直径的半圆上任意两点, 过B 作圆O 的切线交直线CD 于P , 直线PO 与直线,CA AD 分别交于,E F . 证明: OE OF =. (第4届中国东南地区数学奥林匹克, 2007)练3.3 设,D T 是ABC ∆的边BC 上的两点, 且AT 平分BAC ∠, P 是过D 且平行于AT 的直线上的一点, 直线BP 交CA 于E , 直线CP 交AB 于F . 求证: BT DC =的充分必要条件是BF CE =. (必要性: 第19届墨西哥数学奥林匹克, 2005)练3.4 设ABC ∆是一个正三角形. P 是其内部满足条件=120BPC ∠ 的一个动点. 延长CP 交AB 于M , 延长BP 交AC 于N . 求AMN ∆的外心的轨迹.(第17届拉丁美洲数学奥林匹克, 2002)3.2 相似变换练3.5 在ABC ∆中, AB AC ≠, 中线AM 交ABC ∆的内切圆于,E F 两点, 分别过,E F 两点作BC 的平行线交ABC ∆的内切圆于另一点,K L , 直线,AK AL 分别交BC 于,P Q . 求证: BP QC =. (第46届IMO 预选题, 2005; 第47届伊朗国家队选拔考试, 2006)练3.6 设,b c I I 分别是ABC ∆的,B C --旁心旁心, P 是ABC ∆的外接圆上一点. 证明: ABC ∆的外心是b I AP ∆和c I AP ∆的外心的连线段的中点. (第30届俄罗斯数学奥林匹克, 2004)3.3 反演变换练3.7 设,a I I 分别是分别为ABC ∆的内心和A -旁心, a II 与BC 交于D , 与ABC ∆的外接圆交于M . 设N 是 AM 的中点, ABC ∆的外接圆分别与,a NI NI 交于另一点,S T . 求证: ,,S D T 三点共线. (第18届伊朗数学奥林匹克, 2001) 4 习题解答4.1 合同变换练3.1设四边形ABCD 外切于圆, ,A B ∠∠的外角平分线交于点K , ,B C ∠∠的外角平分线交于点L , ,C D ∠∠的外角平分线交于点M , ,D A ∠∠的外角平分线交于点N . 再设,,,ABK BCL CDM DAN ∆∆∆∆的垂心分别为1111,,,K L M N . 求证: 四边形1111K L M N 是平行四边形. (第30届俄罗斯数学奥林匹克, 2004)证明: 如图所示, 设四边形ABCD 的内切圆圆心为O . 由于内角平分线和外角平分线互相垂直, 所以,OA NK OB KL ⊥⊥.又1AK 是ABK ∆的高, 所以1AK BK ⊥, 因此1AK //OB . 同理, 1BK //OA , 从而四边形1AK BO 是平行四边形. 同样地, 四边形111,,BLCO CM DO DN AO 皆为平行四边形. 于是 ()()1111T AO T OC K N BD L M →→但()()()()T OC T AO T OC OA T AC =+= , 因而()1111T AC K N L M → . 故四边形1111K L M N 是平行四边形.练3.2 设,C D 是以O 为圆心、AB 为直径的半圆上任意两点, 过B 作圆O 的切线交直线CD 于P , 直线PO 与直线,CA AD 分别交于,E F . 证明:OE OF =. (第4届中国东南地区数学奥林匹克, 2007)证明: 如图所示. 以过圆心O 且垂直于EF 的直线为轴作轴反射变换, 设'A A →, 则'A 仍在圆O 上, 且'FOA AOE BOP ∠=∠=∠, 所以'PA 也是圆O 的切线, 因此',,,A O B P 四点共圆. 于是''''A DA A BA A BO A PO ∠=∠=∠=∠, 从而',,,A D P F 四点也共圆, 所以'''A FO A DC A BC ∠=∠=∠.另一方面, 因AB 是圆O 的直径, 所以BC EC ⊥. 又显然有'A B EF ⊥, 由此可知'A BC OEA ∠=∠, 因此'A FO OEA ∠=∠. 再注意'FOA EOA ∠=∠, 'OA OA =, 即知'A OF AOE ∆≅∆, 故OE OF =.练3.3 设,D T 是ABC ∆的边BC 上的两点, 且AT 平分BAC ∠, P 是过D 且平行于AT 的直线上的一点, 直线BP 交CA 于E , 直线CP 交AB 于F . 求证: BT DC =的充分必要条件是BF CE =. (必要性: 第19届墨西哥数学奥林匹克, 2005)证明: 如图所示, 设M 为BC 的中点, 作中心对称变换()C M , 则C B →.设'A A →, 则四边形'ABA C 是平行四边形. 再设直线'A B 与CF 交于Q , 则有''A C BF A Q BQ =, CP CE PQ BQ=. 于是, '''//.BT DC T D A D CAB AD AT =⇔→⇔∠⇔为的平分线而//PD AT , 故'=',,''='A C CP BT DC A D P A P CA B A Q PQ ⇔⇔∠⇔三点共线为的平分线 又''A C BF A Q BQ =, CP CE PQ BQ =, 所以===BF CE BT DC BF CE BQ BQ⇔⇔. 练3.4 设ABC ∆是一个正三角形. P 是其内部满足条件=120BPC ∠ 的一个动点. 延长CP 交AB 于M , 延长BP 交AC 于N .求AMN ∆的外心的轨迹.(第17届拉丁美洲数学奥林匹克, 2002)证明: 如图所示, 设AMN ∆的外心为O ,ABC ∆的中心为Q , 分别过点,B C 作BC 的垂线交AQ 的垂直平分线于,E F , 易知, 当P B →时, O E →; 当P C →时, O F →.下面证明: 当P 在ABC ∆内变动时, 点O 的轨迹是线段EF (不包括端点). 事实上, 设点P 满足条件, 作旋转变换(,120)R Q , 则,,A B B C C A →→→. 因=120BPC ∠ , 所以N M →. 注意=60BAC ∠ , 因此,P Q 都在AMN ∆的外接圆上, 所以AMN ∆的外心O 在AQ 的垂直平分线EF 上.反之, 设AMN ∆的外心O 在线段EF 上, 以O 为圆心、OA 为半径作圆分别交,AB AC 于,M N . 由于AQ 平分BAC ∠, 所以=QN QM . 从而在旋转变换。
澳大利亚数学竞赛欧几里得澳大利亚数学竞赛欧几里得澳大利亚数学竞赛是全球数学竞赛中备受瞩目的一项赛事。
作为其中的一道经典数学题目,欧几里得算法一直备受关注。
欧几里得算法是一种求解最大公约数的简洁有效的方法,尽管它诞生于古希腊时期,却至今仍然被广泛应用于数学和计算机科学领域。
欧几里得(Euclid)是古代希腊的一位著名数学家,他是一位卓越的几何学家和教育家。
在他的名著《几何原本》中,欧几里得提出了一种求解最大公约数的方法,即欧几里得算法。
这个方法的基本思想是通过不断相除和取余数的操作,迭代地缩小两个数之间的差距,直到余数为零为止。
假设我们要求解两个整数a和b的最大公约数,我们可以一直进行欧几里得算法的迭代操作,直到最后余数为零。
具体步骤如下:1. 将a除以b,得到商q和余数r。
2. 如果r等于零,那么b就是最大公约数;否则,我们继续使用b和r 重复上述步骤。
欧几里得算法之所以高效,是因为它能够将求解最大公约数的问题转化为更小规模的问题,并且每一次操作都能够缩小问题的规模。
这种迭代的特性使得欧几里得算法在实际应用中非常有用。
在澳大利亚数学竞赛中,欧几里得算法常常出现在各种题目中。
一些题目会要求学生使用欧几里得算法求解最大公约数,而其他一些题目则会考察学生对欧几里得算法的理解和应用。
这不仅考验了学生的算法设计能力,还培养了学生的逻辑思维和问题解决能力。
通过参与澳大利亚数学竞赛,学生们可以掌握欧几里得算法的基本原理和应用,培养他们的数学思维和解决问题的能力。
欧几里得算法的迭代过程深深植根于数学中,同时也为学生们提供了一种思维工具,让他们能够更好地面对复杂的数学问题。
不仅在数学竞赛中,欧几里得算法在现实生活中也有广泛的应用。
它可以用于简化分数、化简系数、求解线性方程等多个领域。
同时,在计算机科学领域,欧几里得算法也被广泛运用于处理大数、密码学等方面。
澳大利亚数学竞赛将欧几里得算法作为一道重要题目,不仅是为了考验学生的数学素质,更是为了让学生认识到数学与现实生活之间的联系,培养他们的创新思维和问题解决能力。