余姚市2019学年第一学期初中期末考试
- 格式:doc
- 大小:84.00 KB
- 文档页数:2
2019-2020学年浙江省宁波市余姚市九年级(上)期末语文试卷一、积累(20分)2019年10月,通济桥入选第八批全国重点文物保护单位,班级就此开展主题探究活动。
请你参与,完成1-4题。
1.(4分)搜集背景资料。
阅读下面文字,完成相关任务。
余姚城区有【甲】凌空横跨姚江、沟通南北两城的石砌拱桥﹣﹣通济桥。
该桥原系木桥,始建于北宋庆历年间(1041﹣1048),初名德惠桥。
后几毀几建,元至顺三年(1332)改【乙】石桥,更名为通济桥。
现存桥梁为清雍正七年(1729)至九年重建,为陡拱式三孔二墩石桥,有“浙东第一桥”的美yù___.通济桥北建有舜江楼,飞檐翘角,古朴庄重。
一桥一楼相得益 zhāng____,构成“长虹腾空,飞阁镇流”的连合体,诉说着余姚的历史与文化(1)根据语境,分别给【甲】【乙】两处选择最恰当的字。
①【甲】处 A.坐 B.座②【乙】处 A.筑 B.铸(2)根据拼音写出相应的汉字。
①yù②zhāng2.(2分)整理桥上楹联。
通济桥主拱圈两侧镌刻着楹联,分东西两联。
请你根据同学们摘录的四句联语(见图),运用对联知识,整理出其中一副对联。
(填字母)其中一副对联的上联和下联依次是()3.(4分)探究桥名由来。
同学们发现“通济桥”的名称出自《周易》“刳木为舟,剡木为楫,舟楫之利,以济不通,致远以利天下”,由此展开讨论。
请你根据理解,将下面的对话补充完整。
小艾:这句话中的“刳”和“剡”分别是什么意思?小宇:这两个字偏旁都是“刂”,字义与(1) 有关。
《古汉语常用字字典》里,“刳(k ū)”的意思是“剖开,挖空”,“剡(y ăn )”的意思是“削尖”。
小瑶:那根据偏旁“氵”,再联系“直挂云帆济沧海”,可以推知“以济不通”中的“济”字与“水”有关,意思是(2) 。
“通济桥”这个名字取得真好。
小宇:可见,分析字形可以帮助我们理解字义。
这方面我有体会,我曾经探究过“绝”这个字,它的偏旁是“纟”,与丝线有关,右边“色”字中的““”表示“刀”,所以“绝”字的本义是(3) ,引申为(4) ,《醉翁亭记》中“往来而不绝者,滁人游也”的“绝”就是这个意思。
浙江省宁波市余姚市19-20九上期末数学试卷一、选择题(本大题共12小题,共48.0分)1.如果ab =2,则a+ba−b的值是()A. 3B. −3C. 12D. 322.下列事件为必然事件的是()A. 买一张电影票,座位号是偶数B. 抛掷一枚普通的正方体骰子1点朝上C. 明天一定会下雨D. 百米短跑比赛,一定产生第一名3.抛物线y=x2+1的顶点坐标是()A. (1,0)B. (−1,0)C. (0,1)D. (1,1)4.△ABC的三边长分别为6、8、10,则其内切圆和外接圆的半径分别是()A. 2,5B. 1,5C. 4,5D. 4,105.若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A. 32π B. 2π C. 3π D. 6π6.点P1(−1,y1),P2(3,y2),P3(5,y3)均在二次函数y=−x2+2x+c的图象上,则y1,y2,y3的大小关系是()A. y1=y2>y3B. y1>y2>y3C. y3>y2>y1D. y3>y1=y27.如图,已知⊙O是△ABC的外接圆,⊙O的半径为5,AB=5,则∠C为()A. 60°B. 90°C. 45°D. 30°8.若抛物线y=ax2+c经过点P(1,−2),则它也经过()A. P1(−1,−2)B. P2(−1,2)C. P3(1,2)D. P4(2,1)9.如图,在等腰△ABC中,AB=AC,BC=3√10,sinA=35,则AB的长为()A. 15B. 5√10C. 20D. 10√510.如图,在△ABC中,两条中线BE,CD相交于点O,则S△DOE:S△COB等于()A. 1:2B. 1:3C. 1:4D. 2:311.已知OA=4cm,以O为圆心,r为半径作⊙O.若使点A在⊙O内,则r的值可以是()A. 2cmB. 3cmC. 4cmD. 5cm12.如图,在矩形ABCD内放入六个小正方形后形成一个中心对称图形,其中顶点E、F分别在边BC、AD上,则长AD与宽AB的比为()A. 6:5B. 13:10C. 8:7D. 4:3二、填空题(本大题共6小题,共24.0分)13.一个正八边形每个内角的度数为______度.14.比较下列三角函数值的大小:sin40°____sin50°.15.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是奇数的概率为.16.把二次函数y=2x2向左平移3个单位长度,再向下平移4个单位长度得到的解析式为______.17.在△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D,BD=1,则BC的长为______.18.如图,已知A,B,C,D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD、AD.若BE=3,ED=6,则AB=______ .三、计算题(本大题共1小题,共6.0分)19.计算:4sin45°+cos230°−.tan60°−√2四、解答题(本大题共7小题,共72.0分)20.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.(1)用树状图或列表等方法列出所有可能出现的结果;(2)求两次摸到的球的颜色不同的概率.21.如图所示,小明准备测量学校旗杆AB的高度,他发现阳光下,旗杆AB的影子恰好落在水平地面和斜坡的坡面上,测得水平地面上的影长BC=20m,斜坡坡面上的影长CD=8m,太阳光线AD与水平地面成锐角为26°,斜坡CD与水平地面所成的锐角为30°,求旗杆AB的高度(精确到1m).(参考数据:sin26°=0.44,cos26°=0.90,tan26°=0.49)22.已知抛物线y=−x2+(m−1)x+m与y轴交于(0,3),(1)求m的值;(2)求抛物线与x轴的交点坐标及顶点坐标;(3)请直接写出抛物线在x轴上方时x的取值范围________.(4)请直接写出y随x的增大而增大时x的取值范围________.23.如图,AB是⊙O的直径,且AB=4,点C在半径OA上(点C与点O、A不重合),过点C作AB的垂线交⊙O于点D,连接OD,过点B作OD的平行线交⊙O于点E,交CD的延长线于点F.(1)若∠F=30°,请证明E是BD⏜的中点;(2)若AC=1,求BE⋅EF的值.224.某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元,每上涨1元,则每个月少卖3件.设每件商品的售价为x元,每个月的销售量为y件.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式;(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?25.已知:在△ABC中,以AC边为直径的⊙O交BC于点D,在劣弧AD⏜上到一点E使∠EBC=∠DEC,延长BE依次交AC于G,交⊙O于H.(1)求证:AC⊥BH;(2)若∠ABC=45°,⊙O的直径等于10,BD=8,求①CG的值;CD②EH的长.26.如图,在平面直角坐标系中,A(3,4),B(5,0),连结AO,AB.点C是线段AO上的动点(不与A,O重合),连结BC,以BC为直径作⊙H,交x轴于点D,交AB于点E,连结CD,CE,过E 作EF⊥x轴于F,交BC于G.(1)AO的长为______,AB的长为______(直接写出答案)(2)求证:△ACE∽△BEF;(3)若圆心H落在EF上,求BC的长;(4)若△CEG是以CG为腰的等腰三角形,求点C的坐标.-------- 答案与解析 --------1.答案:A解析:本题考查了比例的性质,主要利用了两内项之积等于两外项之积,熟记性质是解题的关键.根据两内项之积等于两外项之积可得a=2b,然后代入比例式进行计算即可得解.解:∵ab=2,∴a=2b,∴a+ba−b =2b+b2b−b=3.故选:A.2.答案:D解析:本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.必然事件就是一定发生的事件,根据定义即可判断.解:A.是随机事件,选项错误;B.是随机事件,选项错误;C.是随机事件,选项错误;D.是必然事件,选项正确.故选D.3.答案:C解析:解:∵抛物线的解析式为:y=x2+1,∴其顶点坐标为(0,1).故选:C.直接根据二次函数的顶点式可得出结论.本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.4.答案:A解析:本题考查三角形的内心、外心、三角形的面积及勾股定理的逆定理.解题的关键是正确应用三角形的内心和外心的性质.根据三角形的内心到三角形的三边等距离,可以运用三角形的面积求出内切圆的半径;根据直角三角形的外心是斜边的中点可得外接圆的半径.解:如图,△ABC中,设AC=6,BC=8,AB=10,根据勾股定理的逆定理由62+82=102可得△ABC是直角三角形,且AB是斜边,所以AB是外接圆的直径,所以外接圆的半径是5;设O是内心,作OD⊥BC,OE⊥AC,OF⊥AB,D、E、F是垂足,则OD=OE=OF=r,S△ABC=S△OAB+S△OBC+S△OAC=12r×10+12r×8+12r×6=12r,又因为S△ABC=12×8×6=24,所以12r=24,解得r=2,所以△ABC内切圆和外接圆的半径分别是2和5.故选A.5.答案:C解析:解:该扇形的弧长=90⋅π⋅6180=3π.故选:C.根据弧长公式计算.本题考查了弧长的计算:弧长公式:l=n⋅π⋅R180(弧长为l,圆心角度数为n,圆的半径为R).6.答案:A解析:解:二次函数y=−x2+2x+c的图象的对称轴为直线x=−22×(−1)=1,而P1(−1,y1)和P2(3,y2)到直线x=1的距离都为2,P3(5,y3)到直线x=1的距离为4,所以y1=y2>y3.故选:A.先求出抛物线的对称轴方程,然后根据二次函数的性质,通过比较三个点到对称轴的距离大小可得到y1,y2,y3的大小关系.本题考查了二次函数图象上点的坐标特征:熟练掌握二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.7.答案:D解析:本题主要考查了三角形的外接圆与外心的知识,解题的关键是熟练掌握圆周角定理.根据等边三角形的性质求出∠AOB的度数,再根据圆周角定理求出∠C的度数.解:∵⊙O是△ABC的外接圆,⊙O的半径为5,AB=5,∴△AOB是等边三角形,∴∠AOB=60°,∴∠C=12∠AOB=12×60°=30°,故选:D.8.答案:A解析:本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的对称性.根据二次函数的对称性解答即可.解:∵抛物线y=ax2+c的对称轴为y轴,P(1,−2)关于y轴的对称点为(−1,−2),∴抛物线也经过点(−1,−2).故选A.9.答案:A解析:[分析]过点C作CD⊥AB,垂足为D,设CD=3k,则AB=AC=5k,继而可求出BD=k,解直角三角形即可得到结论.本题考查了等腰三角形的性质,解直角三角形的知识,过点C作CD⊥AB,构造直角三角形是关键.[详解]解:过点C作CD⊥AB,垂足为D,,在Rt△ACD中,sinA=35设CD=3k,则AB=AC=5k,∴AD=√AC2−CD2=4k,在Rt△BCD中,∵BD=AB−AD=5k−4k=k,在Rt△BCD中,BC=√BD2+CD2=√k2+9k2=√10k,∵BC=3√10,∴√10k=3√10,∴k=3,∴AB=5k=15,故选A.10.答案:C解析:解:∵BE和CD是△ABC的中线,∴DE=12BC,DE//BC,∴DEBC =12,△DOE∽△COB,∴S△DOES△COB =(DEBC)2=(12)2=14,故选:C.根据三角形的中位线得出DE//BC,DE=12BC,根据平行线的性质得出相似,根据相似三角形的性质求出即可.本题考查了相似三角形的性质和判定,三角形的中位线的应用,注意:相似三角形的面积比等于相似比的平方,三角形的中位线平行于第三边,并且等于第三边的一半.11.答案:D解析:∵已知OA=4cm,以O为圆心,r为半径作⊙O.若使点A在⊙O内,∴点A到圆心的大小应该小于圆的半径,∴圆的半径应该大于4.故选:D.根据点A与⊙O的位置关系确定点到圆心的距离与圆的半径大小即可.本题考查了点与圆的位置关系,解题的关键是了解圆的位置关系与点与圆心的距离及半径的大小关系,难度不大.12.答案:A解析:解:连结EF,作IJ⊥LJ于J,∵在矩形ABCD内放入六个小正方形后形成一个中心对称图形,∴△HGF∽△FHE,△HGF≌△FML≌△LJI,∴HG:GF=FH:HE=1:2,∴长AD与宽AB的比为(1+2+1+2):(2+2+1)=6:5.故选:A.连结EF,作IJ⊥LJ于J,根据中心对称图形的定义和相似三角形的性质可得两直角边的比是2:1,进一步得到长AD与宽AB的比.此题考查了中心对称图形,相似三角形的性质,关键是理解直角三角形两直角边的比是2:1.13.答案:135解析:解:一个正八边形每个内角的度数=18×(8−2)×180°=135°.故答案为:135.根据多边形的内角和公式列式计算即可得解.本题考查了多边形的内角与外角,熟记多边形的内角和公式是解题的关键.14.答案:<解析:解:∵40°<50°,∴sin40°<sin50°.故答案为<.根据当0<α<90°,sinα随α的增大而增大即可得到sin40°<sin50°.本题考查了锐角三角函数的增减性:对于正弦函数,当0<α<90°,sinα随α的增大而增大.15.答案:353 5解析:此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.让正面的数字是奇数的情况数除以总情况数即为所求的概率.解:∵从写有数字1,2,3,4,5这5张卡片中抽取一张,其中正面数字是奇数的有1、3、5这3种结果,∴正面的数字是奇数的概率为3535;故答案为3.516.答案:y=2(x+3)2−4解析:解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移3个单位,再向下平移4个单位得到的图象表达式为y=2(x+3)2−4,故答案为:y=2(x+3)2−4.根据“上加下减,左加右减”的原则进行解答即可.本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.17.答案:3解析:解:∵AB=AC,∠BAC=120°,×(180°−120°)=30°,∴∠B=∠C=12∵AD⊥AC,∴∠DAC=90°,∴∠DAB=30°,∴∠DAB=∠B,∴AD=BD=1,在Rt△DAC中,∠C=30°,∴CD=2AD=2,∴BC=BD+CD=3,故答案为:3.根据等腰三角形的性质,三角形内角和定理得到∠B=∠C=30°,进而得到∠DAB=∠B,即可得到AD=BD=1,根据直角三角形的性质计算出CD,即可.本题考查的是含30度角的直角三角形的性质,等腰三角形的判定与性质,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.18.答案:3√3解析:此题考查相似三角形的判定与性质,圆周角定理,利用圆周角定理得出角相等,证得三角形相似是解决问题的关键.等弦对等角可证DB平分∠ABC,证得△ABE∽△DBA,根据相似三角形的性质可求AB的长.解:∵AB=BC,∴AB⏜=BC⏜,∴∠BDC=∠ADB,∴又∵∠ABE=∠ABD,∴△ABE∽△DBA,∴ABBE =BDAB,∵BE=3,ED=6,∴BD=9,∴AB2=BE⋅BD=3×9=27,∴AB=3√3.故答案为3√3.19.答案:解:原式=4×√22+(√32)2−√3−√2=2√2+34−2(√3+√2)=34−2√3.解析:直接利用特殊角的三角函数值分别代入求出答案.此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.20.答案:解:(1)如图:;(2)共有6种情况,两次摸到的球的颜色不同的情况有4种,概率为46=23.解析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中树状图可知两次摸到的球的颜色不同的情况有4种,再利用概率公式求解即可.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21.答案:解:延长AD交BC于E点,则∠AEB=30°,作DQ⊥BC于Q,在Rt△DCQ中,∠DCQ=30°,DC=8,∴DQ=4,QC=8cos30°=4√3,≈8.16(米)在Rt△DQE中,QE=QDtan26∘∴BE=BC+CQ+QE=(20+4√3+8.16)米,在Rt△ABE中,AB=BEtan26°≈17(米).答:旗杆的高度约为17米.解析:延长AD交BC于E点,则BE即为AB的影长.然后根据物长和影长的比值计算即可.本题查了解直角三角形的应用,解决本题的关键是作出辅助线得到AB的影长.22.答案:解:(1)∵抛物线y=−x2+(m−1)x+m与y轴交于(0,3),∴3=0+(m−1)×0+m,解得:m=3;(2)∵m=3,∴抛物线解析式为:y=−x2+2x+3=−(x−1)2+4,当y=−x2+2x+3=0,解得:x1=3,x2=−1,∴抛物线与x轴的交点坐标为:(3,0),(−1,0),顶点坐标为:(1,4);(3)−1<x<3;(如图所示:当−1<x<3时,抛物线在x轴上方)(4)x<1.(如图所示:当x<1时,y随x的增大而增大)解析:此题主要考查了二次函数的性质以及二次函数图象上点的坐标特征,数形结合得出x的取值范围是解题关键.(1)根据图象过点(0,3),则可求出m的值;(2)利用(1)中所求得出二次函数解析式,进而求出其顶点坐标和与x轴的交点坐标;(3)画出函数图象进而得出抛物线在x轴上方时,x的取值范围;(4)利用函数开口方向以及对称轴位置,进而得出y 随x 的增大而增大时x 的取值范围.23.答案:(1)证明:连接OE ,如图1所示.∵CF ⊥AB ,∴∠FCB =90°.∵∠F =30°,∴∠OBE =60°.∵OB =OE ,∴△OBE 为等边三角形,∴∠OEB =∠BOE =60°.∵OD//BF ,∴∠DOE =∠BEO =∠BOE =60°,∴BE ⏜=DE ⏜.(2)解:过点Q 作OM ⊥BE 于M ,如图2所示.∵OB =OE ,∴BE =2BM .∵OD//BF ,∴∠COD =∠B .在△OBM 和△DOC 中,{∠OMB =∠DCO =90°∠OBM =∠DOC OB =DO,∴△OBM≌△DOC(AAS),∴BM =OC =2−12=32, ∴BE =2OC =3.∵OD//BF ,∴△COD∽△CBF ,∴OC BC =OD BF ,即322+32=2BF ,∴BF =143,∴EF =BF −BE =143−3=53,∴BE⋅EF=3×5=5.3解析:本题考查了相似三角形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质以及圆周角定理,解题的关键是:(1)根据等边三角形的性质结合平行线的性质找出∠DOE=∠BOE;(2)利用全等三角形及相似三角形的性质,求出BM、BF的长度.(1)连接OE,由CF⊥AB、∠F=30°,可得出∠OBE=60°,结合OB=OE可得出△OBE为等边三角形,根据等边三角形的性质可得出∠OEB=∠BOE=60°,由OD//BF利用“两直线平行,内错角相等”可得出∠DOE=∠BEO=∠BOE=60°,由此即可证出BE⏜=DE⏜;(2)过点Q作OM⊥BE于M,易证△OBM≌△DOC,根据全等三角形的性质可得出BM=OC=3,进2而可得出BE=3,由OD//BF可得出△COD∽△CBF,根据相似三角形的性质可求出BF的长度,结合EF=BF−BE可求出EF的长度,再将BE、EF的长度代入BE⋅EF中即可求结论.24.答案:(1)y=360−3x,自变量x的取值范围:50≤x≤120;(2)每件商品的售价定为80元时,每个月可获得最大利润,最大的月利润是6400元解析:[分析](1)当售价超过50元,每件商品的售价每上涨1元,则每个月少卖3件,直接根据销量=原销量−上涨的钱数×3即可求解,然后确定取值范围即可;(2)由利润=(售价−成本)×销售量列出函数关系式,(3)求出定义域内函数的最大值,然后作比较.[详解](1)y=210−3(x−50),即y=360−3x,自变量x的取值范围:50≤x≤120,(2)w=−3x2+480x−14400,(3)当50≤x≤120时,w=−3x2+480x−14400,当x=80时,w有最大值为6400,答:每件商品的售价定为80元时,每个月可获得最大利润,最大的月利润是6400元.[点睛]本题主要考查二次函数的应用,应用二次函数解决实际问题比较简单.25.答案:解:(1)如图,连接AD,∵∠DAC=∠DEC,∠EBC=∠DEC,∴∠DAC=∠EBC,∵AC是⊙O的直径,∴∠ADC=90°,∴∠DAC+∠DCA=90°,∴∠EBC+∠DCA=90°,∴∠BGC=180°−(∠EBC+∠DCA)=180°−90°=90°,∴AC⊥BH.(2)①∵∠ABC=45°、∠ADC=90°,∴AD=BD=8,则CD=√AC2−AD2=√102−82=6,∴BC=BD+CD=8+6=14,∵∠CBG=∠CAD、∠CGB=∠CDA=90°,∴△BCG∽△ACD,则CGCD =BCAC=1410=75;②∵∠BCE=∠ECD、∠EBC=∠DEC,∴△BEC∽△EDC ,则BC EC =EC DC ,即14EC =EC 6,即EC 2=84, 连接OE ,在Rt △CGE 中,EG 2=EC 2−CG 2,即EG 2=84−(5+OG)2,在Rt △EOG 中,EG 2=EO 2−OG 2,即EG 2=25−OG 2,则84−(5+OG)2=25−OG 2,解得:OG =175,则EG 2=25−(175)2=33625, ∴EG =4√215(负值舍去), ∵AC ⊥BH ,∴EH =2EG =8√215.解析:(1)由∠DAC =∠DEC 、∠EBC =∠DEC 知∠DAC =∠EBC ,根据∠DAC +∠DCA =90°知∠EBC +∠DCA =90°,即可得证;(2)①由∠ABC =45°、∠ADC =90°知AD =BD =8、CD =6、BC =BD +CD =14,证△BCG∽△ACD 得CG CD =BC AC ;②先证△BEC∽△EDC 得BC EC =EC DC ,即EC 2=84,连接OE ,由EG 2=84−(5+OG)2且EG 2=25−OG 2可得OG =175,代入EG 2=25−OG 2得EG 的长度,再利用垂径定理可得答案.本题主要考查圆的综合问题,解题的关键是熟练掌握圆周角定理、相似三角形的判定与性质、勾股定理等知识点.26.答案:解:(1)5;2√5;(2)如图1中,∵OA=OB=5,∴∠A=∠EBF,∵BC是直径,∴∠BEC=∠AEC=90°,∵EF⊥OB,∴∠EFB=90°,∴∠AEC=∠EFB=90°,∴△ACE∽△BEF;(3)如图2中,当GC=GE时,点G与点H重合,∴GE=GB=GC,∴∠GEB=∠EBG,∵∠GEB+∠ABO=90°,∴∠EBG+∠ABO=90°,∵OA=OB,∴∠A=∠OBA,∴∠A+∠EBG=90°,∴∠ACB=90°,∴BC⊥AO,∴OC=OB⋅cos∠AOB=3,∴BC=√OB2−OC2=√52−32=4;(4)①如图2中,当GC=GE时,点G与点H重合,∴GE=GB=GC,∴∠GEB=∠EBG,∵∠GEB+∠ABO=90°,∴∠EBG+∠ABO=90°,∵OA=OB,∴∠A=∠OBA,∴∠A+∠EBG=90°,∴∠ACB=90°,∴BC⊥AO,∴OC=OB⋅cos∠AOB=3,∴C(95,125);②如图3中,当CE=CG时,作AK⊥OB于K.设CD=4k,OD=3k.∵CE=CG,∴∠CEG=∠CGE=∠BGF,∵∠CEG+∠BEF=90°,∠BGF+∠CBD=90°,∴∠CBD=∠BEF,∵EF⊥OB,AK⊥PB,∴EF//AK,∴∠BEF=∠BAK,∴∠CBD=∠BAK,∵∠CDB=∠AKB=90°,∴△CBD∽△BAK,∴CDBK =BDAK,∴4k2=5−3k4,∴k=511,∴C(1511,2011)解析:本题属于圆综合题,考查了相似三角形的判定和性质,解直角三角形,等腰三角形的判定和性质、勾股定理、平行线的性质、角平分线的性质定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数解决问题,属于中考压轴题.(1)利用两点间距离公式计算即可;(2)根据两角对应相等的两个三角形相似即可判断;(3)当GC=GE时,点G与点H重合,根据三角函数和勾股定理解答即可;(4)分两种情形画出图形分别求解即可解决问题.(1)∵A(3,4),B(5,0).∴OA=√32+42=5,OB=5,AB=√(3−5)2+42=2√5.故答案为5;2√5;(2)见答案;(3)见答案;(4)见答案.。
每日一学:浙江省宁波市余姚市2018-2019学年七年级上学期数学期末考试试卷_压轴题解答答案浙江省宁波市余姚市2018-2019学年七年级上学期数学期末考试试卷_压轴题~~ 第1题 ~~(2019慈溪.七上期末) 如图1,现有一个长方体水槽放在桌面上,从水槽内量得它的侧面高20cm ,底面的长25cm ,宽20cm ,水槽内水的高度为acm ,往水槽里放入棱长为10cm 的立方体铁块.(1) 求下列两种情况下a 的值.①若放入铁块后水面恰好在铁块的上表面;②若放入铁块后水槽恰好盛满(无溢出).(2) 若0<a≤18,求放入铁块后水槽内水面的高度(用含a 的代数式表示).(3) 如图2,在水槽旁用管子连通一个底面在桌面上的圆柱形容器,内部底面积为50cm ,管口底部A 离水槽内底面的高度为hcm (h >a ),水槽内放入铁块,水溢入圆柱形容器后,容器内水面与水槽内水面的高度差为8.2cm ,若a=15,求h 的值.(水槽和容器的壁及底面厚度相同)考点: 一元一次方程的实际应用-几何问题;~~ 第2题 ~~(2019慈溪.七上期末) 把四张大小相同的长方形卡片(如图①)按图②、图③两种放法放在一个底面为长方形(长比宽多6)的盒底上,底面未被卡片覆盖的部分用阴影表示,若记图②中阴影部分的周长为C , 图③中阴影部分的周长为C , 则C -C =________.~~ 第3题 ~~(2019慈溪.七上期末) 在2019年1月份的月历表中,任意框出表中竖列上三个相邻的数(如图,如框出了10,17,24),则这三个数的和可能的是( )A . 21B . 27C . 50D . 7522323浙江省宁波市余姚市2018-2019学年七年级上学期数学期末考试试卷_压轴题解答~~ 第1题 ~~答案:解析:~~ 第2题 ~~答案:解析:~~ 第3题 ~~答案:B解析:。
2019-2020学年浙江省宁波市余姚市八年级(上)期末数学试卷一、选择题(本题有12小题,每小题3分,共36分)1.(3分)下面四个图是“余姚阳明故里LOGO 征集大赛”的四件作品,其中是轴对称图形的是( )A .B .C .D .2.(3分)在平面直角坐标系中,点(1,2)-在( )A .第一象限B .第二象限C .第三象限D .第四象限3.(3分)已知一个等腰三角形的底角为50︒,则这个三角形的顶角为( )A .40︒B .50︒C .80︒D .100︒4.(3分)下列选项错误的是( )A .若a b >,b c >,则a c >B .若a b >,则33a b ->-C .若a b >,则22a b ->-D .若a b >,则2323a b -+<-+5.(3分)下列平面直角坐标系中的图象,不能表示y 是x 的函数是( )A .B.C.D.6.(3分)下列尺规作图分别表示:①作一个角的平分线,②作一个角等于已知角.③作一条线段的垂直平分线.其中作法正确的是()A.①②B.①③C.②③D.①②③7.(3分)能说明命题“对于任意正整数n,则22n n”是假命题的一个反例可以是() A.1n=n=D.3 n=-B.1n=C.28.(3分)若a,b,c为ABC∆是直角三角形的∆的三边长,则下列条件中不能判定ABC是()A. 1.5a=,2b=, 2.5c=B.::3:4:5a b c=C.A B C∠+∠=∠D.::3:4:5A B C∠∠∠=9.(3分)如图,有一张直角三角形纸片,90ACB∠=︒,5AB cm=,3AC cm=,现将ABC∆折叠,使边AC与AB重合,折痕为AE,则CE的长为()A.1cm B.2cm C.32cm D.52cm10.(3分)如图,ABC∆是等边三角形,D是边BC上一点,且ADC∠的度数为(520)x-︒,则x的值可能是()A.10B.20C.30D.4011.(3分)某天,某同学早上8点坐车从余姚图书馆出发去宁波大学,汽车离开余姚图书馆的距离S(千米)与所用时间t(分)之间的函数关系如图所示.已知汽车在途中停车加油一次,则下列描述不正确的是()A.汽车在途中加油用了10分钟B.若//OA BC,则加满油以后的速度为80千米/小时C.若汽车加油后的速度是90千米/小时,则25a=D.该同学8:55到达宁波大学12.(3分)如图,点A,B,C,D顺次在直线l上,以AC为底边向下作等腰直角三角。
余姚市2019学年第一学期初中期末考试九年级语文试题卷考生须知:1.全卷分试题卷和答题卷。
试题卷共8页,有四个大题,21个小题。
满分为150分,考试时间为120分钟。
2.答题必须使用黑色字迹钢笔或签字笔书写,答案必须按照题号顺序在答题卷各题目规定区域内作答,做在试题卷上或超出答题区域书写的答案无效。
一、书写(5分)本题根据卷面书写情况评分。
请你在答题时努力做到书写正确、工整。
二、积累(20分)2019年10月,通济桥入选第八批全国重点文物保护单位,班级就此开展主题探究活动。
请你参与,完成1-4题。
1.搜集背景资料。
(4分)阅读下面文字,完成相关任务。
余姚城区有一【甲】凌空横跨姚江、沟通南北两城的石砌拱桥——通济桥。
该桥原系木桥,始建于北宋庆历年间(1041-1048),初名德惠桥。
后几毁几建,元至顺三年(1332)改【乙】石桥,更名为通济桥。
现存桥梁为清雍正七年(1729)至九年重建,为陡拱式三孔二墩石桥,有“浙东第一桥”的美yù。
通济桥北建有舜江楼,飞檐翘角,古朴庄重。
一桥一楼相得益zhāng构成“长虹腾空,飞阁镇流”的连合体,诉说着余姚的历史与文化。
【任务一】根据语境,分别给【甲】【乙】两处选择最恰当的字。
(1)【甲】处(▲) A.坐 B.座(2)【乙】处(▲) A.筑 B.铸【任务二】根据拼音写出相应的汉字。
(1)yù▲(2)zhāng ▲2.整理桥上楹联。
(2分)通济桥主拱圈两侧镌刻着楹联,分东西两联。
请你根据同学们摘录的四句联语(见右),运用对联知识,整理出其中一副对联。
(填字母)其中一副对联的上联和下联依次是(▲)(▲)。
3.探究桥名由来。
(4分)同学们发现“通济桥”的名称出自《周易》“刳木为舟,剡木为楫,舟楫之利,以济不通,致远以利天下”,由此展开讨论。
请你根据理解,将下面的对话补充完整。
小艾:这句话中的“刳”和“剡”分别是什么意思?小宇:这两个字偏旁都是“刂”,字义与(1)▲有关。
2019-2020学年浙江省宁波市余姚市九年级(上)期末数学试卷一、选择题(共12小题). 1.(4分)若13a b =,则a bb+的值为( ) A .53B .43 C .35D .342.(4分)下列事件属于必然事件的是( ) A .足球比赛中梅西罚进点球B .小强在校运会上100米比赛的成绩为5秒C .今年宁波的冬天不下雪D .实心的铁球会在水中下沉3.(4分)抛物线224y x =+的顶点坐标是( ) A .(0,4)B .(2,4)C .(2,2)D .(0,2)4.(4分)若一个三角形的三边长分别为3,4,5,则这个三角形的外接圆的半径是( ) A .1B .2.4C .2.5D .55.(4分)如果一个扇形的半径是2,弧长是2π,则此扇形的圆心角的度数为( ) A .30︒B .45︒C .60︒D .90︒6.(4分)已知点1(2,)A y -,2(1,)B y 在二次函数22y x x m =+-的图象上,则下列有关1y 和2y 的大小关系的结论中正确的是( )A .12y y =B .12y y <C .12y y >D .与m 的值有关7.(4分)如图,等边ABC ∆内接于O ,点D 在AC 上,15CAD ∠=︒,则ACD ∠的度数为( )A .30︒B .35︒C .40︒D .45︒8.(4分)抛物线2y ax bx c =++经过4个点(,)A m n ,(6,)B m n +,(4,2)C -,(0,2)D ,则m的值为()A.5-B.1-C.3D.不能确定9.(4分)在锐角等腰ABC∆中,AB AC=,4sin5A=,则cosC的值是() A.12B.2C.255D.5510.(4分)如图,ABC∆的中线AD,BE相交于点F,过点E作//EG AD交BC于点G,则:EG AF的值是()A.12B.23C.34D.4511.(4分)如图,已知O的半径为1,按如下步骤作图:①以O上的点A为圆心,1为半径画弧交O于点B;②依次在O上取点C和D,使得BC CD AB==;③分别以点A和D为圆心,AC长为半径画弧交于点E;④以点A为圆心,OE长为半径画弧交O于点F.则以下说法不正确的是()A.3AC=B.2AF=C.45ACF∠=︒D.30BEO∠=︒12.(4分)如图,矩形ABCD被分成5个正方形和2个小矩形后形成一个中心对称图形,如果矩形BEFG∽矩形ABCD,那么BEFGABCDSS矩形矩形的值为()A .12B .13C .14 D .15二、填空题(每小题4分,共24分)13.(4分)正六边形的每个内角的度数是 度.14.(4分)比较sin80︒与tan 46︒的大小,其中值较大的是 .15.(4分)有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为 .16.(4分)将二次函数25(1)3y x =-+的图象向左平移2个单位长度,再向下平移1个单位长度后得到的二次函数表达式为 .17.(4分)如图,在ABC ∆中,AB AC =,30ABC ∠=︒,点P 在ABC ∆内,连结PA ,PB ,PC ,若123∠=∠=∠,且1PA =,则PB 的长是 .18.(4分)如图,O 的直径AB 长为12,点E 是半径OA 的中点,过点E 作CD AB ⊥交O 于点C ,D ,点P 在CBD 上运动,点Q 在线段CP 上,且2PQ CQ =,则EQ 的最大值是 .三、解答题(第19题6分,第20、21题各8分,第22、23、24题各10分,第25题12分,第26题14分,共78分)19.(6分)计算:23tan 30cos 302sin 60︒+︒-︒20.(8分)一个不透明的袋子中装有2个红球和2个白球,这些球除颜色外其余都相同,先从袋中摸出1个球后不放回,再摸出一个球.(1)请用树状图或列表法列举出两次摸球可能出现的各种结果. (2)求两次摸到不同颜色的球的概率.21.(8分)如图,学校旗杆的下方有一块圆形草坪,草坪的外面围着“圆环”水池,草坪和水池的外边缘是两个同心圆,旗杆在圆心O 的位置且与地面垂直.(1)若草坪的面积与圆环水池的面积之比为1:4,求两个同心圆的半径之比.(2)如图,若水池外面通往草坪有一座10米长的小桥BC ,小桥所在的直线经过圆心O ,上午8:00时太阳光线与地面成30︒角,旗杆顶端的影子恰好落在水池的外缘;上午9:00时太阳光线与地面成45︒角,旗杆顶端的影子恰好落在草坪的外缘,求旗杆的高OA 长.22.(10分)如图,在平面直角坐标系中,抛物线223(0)y ax ax a =+-≠交x 轴于点A ,B (点A 在点B 的左侧),交y 轴于点C ,顶点为D . (1)求抛物线的对称轴和点C 的坐标.(2)若4AB =,求抛物线图象位于直线BD 上方部分的自变量x 的取值范围.23.(10分)如图1,ABC ∆内接于O ,点D 是AB 的中点,且与点C 位于AB 的异侧,CD 交AB 于点E .(1)求证:ADE CDA∆∆∽.(2)如图2,若O的直径46AB=,2CE=,求AD和CD的长.24.(10分)小颖家经营着一家水果店,在杨梅旺销季节,她的父母经常去果园采购杨梅用于销售.果园的杨梅价格如下:购买数量不超过20筐,每筐进价20元;购买数量超过20筐,每筐进价18元.小颖在观察水果店一段时间的销售情况后发现,当杨梅的售价为每筐30元时,每天可销售30筐;每筐售价提高1元,每天销量减少1筐;每筐售价降低1元,每天销量增加1筐.若每天购进的杨梅能全部售出,且售价不低于进价,从果园进货的运费为每天100元.(1)设售价为每筐x元,则每天可售出筐.(2)当每筐杨梅的售价定为多少元时,杨梅的日销售利润最大?最大日利润是多少元?25.(12分)定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到该边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,ABC∆中,点D 是BC边上一点,连结AD,若2AD BD CD=,则称点D是ABC∆中BC边上的“好点”.(1)如图2,ABC∆的顶点是43⨯网格图的格点,请仅用直尺画出AB边上的一个“好点”.(2)ABC∆中,9BC=,4tan3B=,2tan3C=,点D是BC边上的“好点”,求线段BD的长.(3)如图3,ABC∆是O的内接三角形,OH AB⊥于点H,连结CH并延长交O于点D.①求证:点H是BCD∆中CD边上的“好点”.②若O的半径为9,90ABD∠=︒,6OH=,请直接写出CHDH的值.26.(14分)如图1,在平面直角坐标系中,点A,B的坐标分别为(8,0)A和(0,6)B,点P 为x轴负半轴上的一个动点,画ABP∆的外接圆,圆心为M,连结BM并延长交圆于点C,连结CP.(1)求证:OBP ABC∠=∠.(2)当M的直径为14时,求点P的坐标.(3)如图2,连结OC,求OC的最小值和OC达到最小值时ABP∆的外接圆圆心M的坐标.参考答案一、选择题(每小题4分,共48分) 1.(4分)若13a b =,则a bb+的值为( ) A .53B .43 C .35D .34解:13a b =, 3b a ∴=, ∴3433a b a a b a ++==; 故选:B .2.(4分)下列事件属于必然事件的是( ) A .足球比赛中梅西罚进点球B .小强在校运会上100米比赛的成绩为5秒C .今年宁波的冬天不下雪D .实心的铁球会在水中下沉解:A 、足球比赛中梅西罚进点球,是随机事件,选项不合题意;B 、小强在校运会上100米比赛的成绩为5秒,属于不可能事件,选项不合题意;C 、今年宁波的冬天不下雪,是随机事件,选项不合题意;D 、实心的铁球会在水中下沉,属于必然事件,选项符合题意;故选:D .3.(4分)抛物线224y x =+的顶点坐标是( ) A .(0,4)B .(2,4)C .(2,2)D .(0,2)解:抛物线224y x =+, ∴该抛物线的顶点坐标为(0,4),故选:A .4.(4分)若一个三角形的三边长分别为3,4,5,则这个三角形的外接圆的半径是( ) A .1B .2.4C .2.5D .5解:三角形的三边长分别为3,4,5,又222345+=,∴这个三角形是直角三角形,∴这个三角形的外接圆的直径的长就是斜边的长为5, ∴此三角形的外接圆半径是2.5.故选:C .5.(4分)如果一个扇形的半径是2,弧长是2π,则此扇形的圆心角的度数为( ) A .30︒ B .45︒C .60︒D .90︒解:扇形的弧长为2π,半径为2,∴22180n ππ⨯=, 解得:45n =︒. 故选:B .6.(4分)已知点1(2,)A y -,2(1,)B y 在二次函数22y x x m =+-的图象上,则下列有关1y 和2y 的大小关系的结论中正确的是( )A .12y y =B .12y y <C .12y y >D .与m 的值有关解:222(1)1y x x m x m =+-=+--,点1(2,)A y -是二次函数2(1)1y x m =+--图象上的点,21(21)111y m m m ∴=-+--=--=-;点2(1,)B y 是二次函数2(1)1y x m =+--图象上的点,22(11)1413y m m m ∴=+--=--=-.12y y ∴<.故选:B .7.(4分)如图,等边ABC ∆内接于O ,点D 在AC 上,15CAD ∠=︒,则ACD ∠的度数为( )A .30︒B .35︒C .40︒D .45︒解:连接CD , ABC ∆是等边三角形, 60B ∴∠=︒, 120D ∴∠=︒, 15CAD ∠=︒,1801512045ACD ∴∠=︒-︒-︒=︒,故选:D .8.(4分)抛物线2y ax bx c =++经过4个点(,)A m n ,(6,)B m n +,(4,2)C -,(0,2)D ,则m 的值为( ) A .5-B .1-C .3D .不能确定解:抛物线2y ax bx c =++经过4个点(,)A m n ,(6,)B m n +,(4,2)C -,(0,2)D , ∴64022m m ++-+=, 解得,5m =-, 故选:A .9.(4分)在锐角等腰ABC ∆中,AB AC =,4sin 5A =,则cos C 的值是( ) A .12B .2C 25D 5 解:如图,过B 作BD AC ⊥于D ,4sin 5BD A AB ==, ∴设4BD k =,5AB k =,223AD AB BD k ∴=-=,5AB AC k ==, 2CD k ∴=,2225BC BD CD k ∴=+=,25cos 525CD k C BC k ∴===, 故选:D .10.(4分)如图,ABC ∆的中线AD ,BE 相交于点F ,过点E 作//EG AD 交BC 于点G ,则:EG AF 的值是( )A .12B .23C .34D .45解:ABC ∆的中线AD ,BE 相交于点F , AE EC ∴=,BD CD =,2BE AFEF DF==, 即23AF AD =, //DE AD ,AE CE =, DG CG ∴=,12EG AD ∴=,∴132243ADEGAF AD==,故选:C .11.(4分)如图,已知O的半径为1,按如下步骤作图:①以O上的点A为圆心,1为半径画弧交O于点B;②依次在O上取点C和D,使得BC CD AB==;③分别以点A和D为圆心,AC长为半径画弧交于点E;④以点A为圆心,OE长为半径画弧交O于点F.则以下说法不正确的是()A.3AC=B.2AF=C.45ACF∠=︒D.30BEO∠=︒解:如图所示,①以O上的点A为圆心,1为半径画弧交O于点B;②依次在O上取点C和D,使得BC CD AB==;∴点A、B、C、D为圆的六等分点,③分别以点A和D为圆心,AC长为半径画弧交于点E;3AC AE∴==④以点A 为圆心,OE 长为半径画弧交O 于点F . 2AF OE ∴==,1OA OF ==90AOF ∴∠=︒,45ACF ∴∠=︒.说法不正确的是D .故选:D .12.(4分)如图,矩形ABCD 被分成5个正方形和2个小矩形后形成一个中心对称图形,如果矩形BEFG ∽矩形ABCD ,那么BEFGABCD S S 矩形矩形的值为( )A .12B .13C .14D .15解:设小正方形的边长为a ,大正方形的边长为b ,则AG b =,BG b a =+,2BE b a =-,2CE b =,2AB b a ∴=+,224BC b b a b a =+-=-,矩形BEFG ∽矩形ABCD ,∴BG BE AD AB =,即242b a b a b a b a+-=-+, 32b a ∴=, 52BG b a a ∴=+=,45AD b a a =-=, 矩形BEFG ∽矩形ABCD ,∴22512()()54BEFGABCD a S BG S AD a ===矩形矩形. 故选:C .二、填空题(每小题4分,共24分)13.(4分)正六边形的每个内角的度数是 120 度. 解:根据多边形的内角和定理可得:正六边形的每个内角的度数(62)1806120=-⨯︒÷=︒.14.(4分)比较sin80︒与tan 46︒的大小,其中值较大的是 tan 46︒ .解:sin α随α的增大而增大,且sin80sin 90︒<︒,sin801∴︒<,tan α随α的增大而增大,且tan 46tan 45︒>︒,tan 461∴︒>,则tan 46sin80︒>︒,故答案为:tan 46︒.15.(4分)有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为 25. 解:从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,∴正面的数字是偶数的概率为25, 故答案为:25. 16.(4分)将二次函数25(1)3y x =-+的图象向左平移2个单位长度,再向下平移1个单位长度后得到的二次函数表达式为 25(1)2y x =++ .解:将二次函数25(1)3y x =-+的图象向左平移2个单位长度,再向下平移1个单位长度后得到的二次函数表达式为:25(12)31y x =-++-,即25(1)2y x =++.故答案为:25(1)2y x =++.17.(4分)如图,在ABC ∆中,AB AC =,30ABC ∠=︒,点P 在ABC ∆内,连结PA ,PB ,PC ,若123∠=∠=∠,且1PA =,则PB 的长是 3 .解:AB AC =,30ABC ACB∴∠=∠=︒,123∠=∠=∠,PBC ACP∴∠=∠,APC CPB∴∆∆∽,∴AP AC PC CP BC PB==,在等腰ABC∆中,33 ACBC=,1AP=,3PC∴=,3PB∴=,故答案为3.18.(4分)如图,O的直径AB长为12,点E是半径OA的中点,过点E作CD AB⊥交O 于点C,D,点P在CBD上运动,点Q在线段CP上,且2PQ CQ=,则EQ的最大值是132+.解:延长CD到F,使得DE CE=,连接OF,PF,OP,OD.AB CD⊥,CE DE∴=,DE DF =,2EF CE ∴=,2PQ CQ =, ∴12CE CQ EF QP ==, ECQ FCP ∠=∠,ECQ FCP ∴∆∆∽, ∴13EQ CE PF CF ==, 13EQ PF ∴=, 3AE OE ==,6OD =,90OED ∠=︒,DE ∴===,在Rt OED ∆中,2EF DE ==,3OE =,OF ∴===,PF OP OF +,6313PF ∴+PF ∴的最大值为6,EQ ∴2+.2+.三、解答题(第19题6分,第20、21题各8分,第22、23、24题各10分,第25题12分,第26题14分,共78分)19.(6分)计算:23tan 30cos 302sin 60︒+︒-︒解:原式232=+- 34= 34=. 20.(8分)一个不透明的袋子中装有2个红球和2个白球,这些球除颜色外其余都相同,先从袋中摸出1个球后不放回,再摸出一个球.(1)请用树状图或列表法列举出两次摸球可能出现的各种结果.(2)求两次摸到不同颜色的球的概率.解:(1)画树状图如下:画树状图得:由图可知,共有12种等可能的结果;(2)共有12种等可能的结果,其中两次摸到不同颜色的球有8种,∴两次摸到不同颜色的球的概率是82123=. 21.(8分)如图,学校旗杆的下方有一块圆形草坪,草坪的外面围着“圆环”水池,草坪和水池的外边缘是两个同心圆,旗杆在圆心O 的位置且与地面垂直.(1)若草坪的面积与圆环水池的面积之比为1:4,求两个同心圆的半径之比.(2)如图,若水池外面通往草坪有一座10米长的小桥BC ,小桥所在的直线经过圆心O ,上午8:00时太阳光线与地面成30︒角,旗杆顶端的影子恰好落在水池的外缘;上午9:00时太阳光线与地面成45︒角,旗杆顶端的影子恰好落在草坪的外缘,求旗杆的高OA 长.解:(1)由题意得2215OB OC ππ=, ∴155OB OC ==, 5; (2)设OA x =,由45ABO ∠=︒,30ACO ∠=︒知,tan tan 45OA OA OB x ABO ===∠︒,3tan tan 30OA OA OC ACO ===∠︒, 10OC OB BC -==,∴310x x -=, 解得5(31)535x =+=+.∴旗杆的高OA 长为535+米.22.(10分)如图,在平面直角坐标系中,抛物线223(0)y ax ax a =+-≠交x 轴于点A ,B (点A 在点B 的左侧),交y 轴于点C ,顶点为D .(1)求抛物线的对称轴和点C 的坐标.(2)若4AB =,求抛物线图象位于直线BD 上方部分的自变量x 的取值范围.解:(1)抛物线2223(1)3y ax ax a x a =+-=+--,∴该抛物线的对称轴是直线1x =-,当0x =时,3y =-,即抛物线的对称轴是直线1x =-,点C 的坐标是(0,3)-;(2)由(1)得抛物线的对称轴为直线1x =-,4AB =,(3,0)A ∴-,(1,0)B ,∴抛物线图象位于直线BD 上方部分的自变量x 的取值范围是1x <-或1x >.23.(10分)如图1,ABC ∆内接于O ,点D 是AB 的中点,且与点C 位于AB 的异侧,CD 交AB 于点E .(1)求证:ADE CDA ∆∆∽.(2)如图2,若O 的直径6AB =,2CE =,求AD 和CD 的长.解:(1)点D 是ADB 的中点,∴AD BD =ACD BAD ∴∠=∠,ADE CDA ∠=∠ADE CDA ∴∆∆∽(2)连结BD ,点D 时ADB 的中点,AD BD ∴= AB 是O 的直径,90ADB ∴∠=︒,ADB ∴∆为等腰直角三角形, ∴464322AD ===,由(1)得ADE CDA ∆∆∽, ∴AD ED CD AD=,即2AD CD ED =, ∴2(43)(2)CD CD =-,22480CD CD ∴--=,解得8CD =或6-.8CD ∴=.24.(10分)小颖家经营着一家水果店,在杨梅旺销季节,她的父母经常去果园采购杨梅用于销售.果园的杨梅价格如下:购买数量不超过20筐,每筐进价20元;购买数量超过20筐,每筐进价18元.小颖在观察水果店一段时间的销售情况后发现,当杨梅的售价为每筐30元时,每天可销售30筐;每筐售价提高1元,每天销量减少1筐;每筐售价降低1元,每天销量增加1筐.若每天购进的杨梅能全部售出,且售价不低于进价,从果园进货的运费为每天100元.(1)设售价为每筐x 元,则每天可售出 (60)x - 筐.(2)当每筐杨梅的售价定为多少元时,杨梅的日销售利润最大?最大日利润是多少元? 解:(1)根据题意得:每天可售出30(30)60[x x --=-或30(30)60]x x +-=-, 故答案为:(60)x -.(2)设每筐杨梅的售价为x 元,每天的杨梅销售利润为y ,①当6020x -,即40x 时,22(20)(60)100801300(40)300y x x x x x =---=-+-=--+ 此时售价为40元,最大利润为300元;②当6020x ->,即40x <时22(18)(60)100781060(39)341y x x x x x =---=-+-=--+ 此时售价为39元,最大利润为341元;341300>∴当每筐杨梅的售价定为39元时,每天的杨梅销售利润最大,最大利润为341元.25.(12分)定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到该边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,ABC ∆中,点D 是BC 边上一点,连结AD ,若2AD BD CD =,则称点D 是ABC ∆中BC 边上的“好点”.(1)如图2,ABC ∆的顶点是43⨯网格图的格点,请仅用直尺画出AB 边上的一个“好点”.(2)ABC ∆中,9BC =,4tan 3B =,2tan 3C =,点D 是BC 边上的“好点”,求线段BD 的长.(3)如图3,ABC ∆是O 的内接三角形,OH AB ⊥于点H ,连结CH 并延长交O 于点D . ①求证:点H 是BCD ∆中CD 边上的“好点”.②若O 的半径为9,90ABD ∠=︒,6OH =,请直接写出CH DH 的值. 解:(1)如答图1,当CD AB ⊥或点D 是AB 的中点是,2CD AD BD =;(2)作AE BC ⊥于点E ,由4tan 3B =,2tan 3C =可设4AE x =, 则3BE x =,6CE x =,99BC x ∴==,1x ∴=,3BE ∴=,6CE =,4AE =, 设DE a =,①如答图2,若点D 在点E 左侧,由点D 是BC 边上的“好点”知,2AD BD CD =, 224(3)(6)a a a ∴+=-+,即22320a a +-=, 解得112a =,22a =-(舍去), ∴153322BD a =-=-=.②如答图3,若点D 在点E 右侧,由点D 是BC 边上的“好点”知,2AD BD CD =, 224(3)(6)a a a ∴+=+-,即22320a a --=,解得12a =,212a =-(舍去) 3325BD a ∴=+=+=.∴52BD =或5.(5)①CHA BHD ∠=∠,ACH DBH ∠=∠ AHC DHB ∴∆∆∽,∴AH CH DH BH=,即AH BH CH DH =, OH AB ⊥,AH BH ∴=,2BH CH DH ∴=∴点H 是BCD ∆中CD 边上的“好点”. ②521CH DH =. 理由如下:如答图4,连接AD ,BD ,90ABD ∠=︒,AD ∴是直径,18AD ∴=.又OH AB ⊥,//OH BD ∴.点O 是线段AD 的中点,OH ∴是ABD ∆的中位线,212BD OH ∴==.在直角ABD ∆中,由勾股定理知:222218125AB AD BD =-=-= ∴由垂径定理得到:1352BH AB ==. 在直角BDH ∆中,由勾股定理知:2245144321DH BH BD =+=+= 又由①知,2BH CH DH =,即45321CH =,则521CH = ∴5215721321CH DH ==,即521CH DH =. 26.(14分)如图1,在平面直角坐标系中,点A ,B 的坐标分别为(8,0)A 和(0,6)B ,点P 为x 轴负半轴上的一个动点,画ABP ∆的外接圆,圆心为M ,连结BM 并延长交圆于点C ,连结CP .(1)求证:OBP ABC ∠=∠.(2)当M 的直径为14时,求点P 的坐标.(3)如图2,连结OC ,求OC 的最小值和OC 达到最小值时ABP ∆的外接圆圆心M 的坐标.解:(1)如图1,连结AC , BC 为M 的直径, 90BAC BOP ∴∠=∠=︒,ACB APB ∠=∠,90OBP APB ABC ACB ∴∠+∠=∠+∠=︒, OBP ABC ∴∠=∠.(2)90BAC ∠=︒,(8,0)A ,(6,0)B 6OB ∴=,8OA =,10AB ∴= ∴222214106AC BC AB -=-= BOP BAC ∠=∠,OBP ABC ∠=∠, OBP ABC ∴∆∆∽, ∴OP OB AC AB=, ∴612466105OB OP AC AB ===, ∴点P 的坐标为12(6,0)5;(3)如图2,记直线AC 与y 轴的交点为E , AC AB ⊥,则90OAE OBA BAO ∠=∠=︒-∠, 当OC 最小时,OC AE ⊥,此时,432sin sin 855OC OA OAE OA OBA =∠=∠=⨯=.求得点C的坐标为12896 (,) 2525-.又点M为BC的中点∴64225B CMx xx+==,27225B CMy yy+==,∴点M的坐标为6427 (,) 2525.。
余姚市2019-2019学年度八年级语文上册期末试题及答案内容预览:鄂州市2019-2019学年度上学期期末考试试卷八年级语文一、积累与运用(共26分)1.下列注音完全正确的一项是()(2分)A.绥(suí)靖褶(zhě)皱差(cāi)使天衣无缝(fèng)B.翩(piān)然寒噤(jìn)伧(cāng)俗惟妙惟肖(xiāo)C.提(dī)防蹒(pán)跚疟(yào)子气息奄奄D.诘(jié)问藩(fān)篱荒谬(miù)重峦(lán)叠嶂2.下列没有错别字的一项是()(2分)A.锐不可当烦躁鞠躬尽瘁愧怍物竟天择B.无动于衷殷红日薄西山渴幕销声匿迹C.张皇失措取缔坚壁清野追溯长途跋涉D.穷困潦倒箱箧亭台轩谢绮丽转弯抹角3.下列对加点的词语解释有误的一项是()(2分)A.但少闲人如吾两人者耳(只是)B.自既望以至十八日(指农历十五日)C.选贤与能,讲信修睦(通“举”,推举)D.孔子云:何陋之有(没有实际意义)4.下列没有语病的一项是()(2分)A.面对西方文化的冲击,自觉传承华夏文明就成了每一个中国人义不容辞的责任。
B.他发现自己买的是件“水货”衬衣,很是生气,于是就叫出租车回去了。
C.一个卫生城市的标志不仅在于环境的洁净,更在于广大市民卫生素养、文明意识。
D.是否选择对社会对未来负责的低碳生活方式,是衡量现代人良好文明素质的重要标准。
5.下列标点符号使用正确的一项是()(2分)A.这所学校的规模不算太大,全校只有五、六百名学生。
B.我们今天谈的是为什么分数不是衡量教育和人才的唯一标准?C.别人没想到的事,你想到了,别人想到的事,你做到了。
D.所谓“以人为本”,在很大程度上就是顺应民心,而不是修正民心。
6.下列说法有误的一项是()(2分)A.《朝花夕拾》是鲁迅先生唯一的一本散文集,我们已学过其中的《从百草园到三味书屋》、《阿长与〈山海经〉》等回忆性散文。
浙江省宁波市余姚市2019-2021年(三年)七年级上学期期末考试英语试题分类汇编书面表达浙江省宁波市余姚市2020-2021学年七年级上学期期末考试英语试卷七.书面表达(满分20分)假设你是七(4)班学生李华。
校学生会近期将举办主题为“展示自我,认识你我”的英语演讲比赛。
请你用英语写一篇演讲稿。
演讲内容包括:1.班级、姓名、年龄和生日等基本信息;2.家庭成员、电话号码等家庭情况;3.业余爱好、最喜爱的学科及喜爱的理由:注意:1. 可适当增加细节,以使行文连贯,内容充实:2. 文中不得出现与你身份相关的真实信息;3. 词数70左右;短文开头已在答题卷中为你写好(不计入总词数)。
答案:Hello, everyone. My name is Li Hua. I’m in Class Four, Grade Seven. I’m 13 years old. My birthday is on May1st. There are four people in my family, my father, my mother, my brother and I.I really like sports. Playing soccer is my favorite. I always play soccer with my friends on the after school. And my favorite subject is Maths. I think Maths is difficult but interesting. And my Maths teacher is great fun.浙江省宁波市余姚市2019-2020学年七年级上学期期末考试英语试卷十、书面表达(共计15分)2020年夏季奥运会将在日本东京举行, 现组委会向各国招募擅长英语的初中生志愿者(volunteer) o假如你是很想成为其中一员的李梅(Mary)。
余姚市2018学年第一学期初中期末考试
八年级科学参考答案和评分标准
一、选择题(本题有20小题,每小题2分,共40分。
每小题只有一个选项是正确的,不选、多选、错选均不给分)
1.A 2.B 3.D 4.B 5.C 6.A 7.D 8.C 9.D 10.A 11.C 12.A 13.D 14.B 15.C 16.C 17.C 18.A 19.D 20.B 二、填空题(本题有6小题,每空2分,共30分)
21.压强计液体内部存在压强或液体对橡皮膜产生了压强(压力或挤压)22.A、B 携带、运输氧和二氧化碳
23.(1)上表皮(表皮)(2)⑥③
24.(1)②(2)N2O (3)质子
25.(1)压强(2)惯性(3)增大压强
26.变大 C
三、实验探究题(本题有3小题,每空2分,共20分)
27.(1)在弹性限度内,弹簧所受拉力越大,伸长越长或在弹性限度内,弹簧的伸长量与所受拉力成正比(条件不作要求)(2)均匀(3)B 28.(1)叶绿素(2)ACD (3)丁(4)ACEF
29.②G-F ④ρ水g(V-V0)③②①④⑤
四、解答题(本题有4小题,第30小题6分,第31~33小题每题8分,共30分)
30.(1)5 (2)23:32 (3)33.7% (每空2分)
31.(1)气体交换(2)肾小体③(3)右心房(每空2分)32.(1)30.00(2分,30.0或30均给分)
(2)山洞的长度s图洞=6.00cm,实际长度为s洞=20×6.00cm=120.00cm;
小火车通过的总路程为s=s车+s洞=30.00cm+120.00cm=150.00cm=1.5m (1分)
所以小火车行驶的平均速度v=s/t=1.5m/5s=0.3m/s。
(2分)
(3)小火车对地面的压力为F=G=mg=0.2kg×10N/kg=2N,(1分)
小火车对地面的压强为p=F/S=2N/1.0×10﹣4m2=2×104Pa。
(2分)33.(1)物体的体积为V= 0.2m×0.1m×0.1m=0.002m3,(1分)物体的密度为ρ=m/V==1.6kg/0.002 m3=0.8×103kg/m3;(2分)
(2)①由(1)知,ρ物<ρ水,所以水深
h=0.25m
时,物体漂浮在水中,漂浮时物块受到的压
力最
大,此时物块的下底面受到水的压力等于物
块的
重力,即F =G物=mg=1.6kg×10N/kg=16N(2分)
②见右图(3分)。