核磁共振录井原理及技术简介
- 格式:pdf
- 大小:2.93 MB
- 文档页数:32
核磁共振测井原理
核磁共振测井(NMR)是一种地球物理测井技术,利用磁共振现象分析电磁信号来获取地下岩石中的孔隙结构和流体含量信息。
NMR测井原理基于核磁共振现象,即在强磁场中放置原子核会产生共振吸收现象。
在NMR测井中,沿井壁发射一系列短脉冲电磁信号,这些信号会激发旋转相干磁矩,进而引起共振吸收现象,并使得磁共振信号能够被测量。
这些信号可以表征岩石中的孔隙结构和流体含量。
NMR测井技术常见的参数包括自由液体体积(FFV),有效孔隙度、孔隙尺度和流体饱和度。
其中最重要的参数为FFV,它表征了岩石中的自由水体积。
知道FFV,可以确定孔隙中不同类型液体的含量,如水、油、混合物等。
有效孔隙度和孔隙尺度表征了岩石中的孔隙结构,可用于评估岩石的渗透性和储层质量。
流体饱和度则表征了岩石中所含流体的百分比,用于确定油田储层中可采储量和开发方案。
核磁共振测井的基本原理
核磁共振测井(NMR)的基本原理是利用原子核在外磁场
中的磁矩为零或自旋为零,即自转的变化率为零,在外加磁场中与外加电场发生作用,使原子核受到磁场力而发生磁化。
当原子核在外加磁场中运动时,其周围就产生一系列感应电流(自转),这些感应电流与磁场力方向相同,就会使原子核发生位移,其位移量与原子核磁矩成正比。
核磁共振测井正是根据原子核在外加磁场中的自转变化率来研究原子核的运动和核外电子运动的。
核磁共振测井仪器有两个重要部件:一个是感应线圈;另一个是接收线圈。
感应线圈的作用是把发射出去的核磁共振信号接收下来。
一般情况下,感应线圈处于待测井段井眼的周围,在井下有很多的铁屑或其他杂质和岩石颗粒存在。
这些铁屑和颗粒对核磁共振信号会产生很大的干扰。
当井眼打开后,由于井壁对核磁共振信号有屏蔽作用,使核磁共振信号在井眼周围产生一个很强的磁场。
在这个强磁场下,原子核就会发生位移,在原子核的自转轴方向上形成一个脉冲磁场(核磁共振脉冲)。
—— 1 —1 —。
核磁共振录井技术在石油工程中的应用在石油的查看以及开采程序中,核磁共振措施获得了普遍的运用。
这种措施包含以下几个部分:随钻、录井、测井、辨别流体模块样式的底层检查等核磁共振措施。
在石油的开采程序中施展着日益关键的用途。
文章主要从核磁共振措施的理论解析着手,对核磁共振录井措施在存储物性评估地层等部分使用的方案开展解析,关键对储存物性评估开展具体讲述,进一步解释了核磁共振录井措施对石油项目部分有着日益关键的位置以及用途。
标签:核磁共振技术;石油工程;录井;储层物性评价引言伴随着石油业的前进,油田查看开采的范畴持续扩张,录井业也随之有了新的前进机会。
在承袭以及开展以往录井优点措施的过程中,人类凭借措施发展以及科学技术改革,持续拓展录井业新的服务范畴,开采出新的利益成长点。
当前,录井工艺以开展成以往石油业以及信息措施相综合的集化学、电子资料、电、声、磁、机器为整体的全面措施,牵扯到石油地况、钻井项目、地球化学以及物理、传感措施、信息处置以及运送等很多科目、很多范畴的现代化专业措施,其特征是信息化以及智能化。
身为一项新的科技,在上世纪末核磁共振就已经被普遍的运用到石油地况以及石油项目的探索部分。
它对信号的测验有着显著的优点,就是能够不会因固体骨架等遇到干扰,拥有安稳性质同时信息丰厚。
并且,可以有选择的对物体开展检测,能够检测的更准确,在检测的程序中可以更清楚的辨析出油、气、水等在核磁共振部分存在显著的不一样,防止在以往方式中的不足。
以往的行为是经过对外形模子的使用开展的,会遭到岩性、井眼以及地层水矿化的作用。
尤其辨别情况以及储存位置的评估都在使用核磁共振之后获得了处理。
全部这些措施的运用,能够更加精准的评估地层油气构造,计算的储存量更加科学,对产层的构造估算更加精准,推动了油气田的开采量。
1 核磁共振技术的基本原理人类在不一样的范畴中都运用了核磁共振措施,在石油项目部分的运用和别的部分存在着很大的差距。
在石油项目部分,这项措施充分使用核磁对油水开展检测以及解析,最后解析出油水在地层以及岩石中是什么样的形式以及状况留存的。
核磁共振测井原理与应用一、核磁共振基本原理核磁共振(NMR)是物理学中的一种现象,其基本原理是原子核在磁场中的磁矩与射频脉冲之间的相互作用。
核磁共振在测井中的应用得益于其独特的物理性质,可以对地层岩石和流体进行无损检测。
二、核磁共振测井技术核磁共振测井技术利用了在地磁场中自由氢核(如H)的磁矩进动与射频脉冲的相互作用。
当射频脉冲停止后,氢核将恢复到原来的状态,这一过程中产生的信号可以被检测并用于分析地层性质。
核磁共振测井技术可以分为静态测量和动态测量两种。
三、岩石孔隙结构分析核磁共振测井可以提供关于岩石孔隙结构的详细信息。
通过测量地层中氢核的弛豫时间,可以推断出孔隙的大小、分布以及连通性,从而评估储层的渗透率和油气储量。
四、地层流体识别与分类核磁共振测井可以区分油、水、气等不同的流体,这是由于不同流体中氢核的弛豫时间不同。
此外,通过测量束缚流体和自由流体的比率,可以评估油藏的驱替效率和水淹程度。
五、地层参数反演通过核磁共振测井数据,可以反演地层的多种参数,如孔隙度、渗透率、含水饱和度等。
这一过程涉及到复杂的数学模型和算法,是核磁共振测井数据处理的关键环节。
六、测井数据处理与解释核磁共振测井数据处理包括原始数据的预处理、参数反演、解释和后处理等多个环节。
解释人员需要具备丰富的地质和测井知识,以便正确地解释测井数据,提供准确的储层评价结果。
七、核磁共振测井应用实例核磁共振测井在油气勘探和开发中得到了广泛应用。
例如,在评估油田的储层质量、监测注水作业效果、确定剩余油分布等方面发挥了重要作用。
具体实例包括评估某油田的储层孔隙结构和含油性、监测某气田的产气能力等。
这些实例证明了核磁共振测井在油气勘探和开发中的实用价值。
八、未来发展趋势与挑战随着技术的不断进步和应用需求的增加,核磁共振测井在未来将面临一些发展趋势和挑战。
例如,发展更高分辨率和灵敏度的核磁共振测井仪器、提高数据处理和解释的自动化程度、解决复杂地层和油藏条件下的应用问题等。
核磁共振测井原理一、快速发展的核磁共振测井技术1945年,Bloch 和Purcell发现了核磁共振(NMR)现象。
从那时起,NMR作为一种有活力的谱分析技术被广泛应用于分析化学、物理化学、生物化学,进而扩展到生命科学、诊断医学及实验油层物理等领域。
如今,NMR已成为这些领域的重要分析和测试手段。
40年代末,Varian公司证实了地磁场中的核自由运动,50年代,Varian Schlumberger-Doll,Chevron三个公司开展了核磁共振测井可行性研究。
60年代初开发出实验仪器样机,它基于Chevron研究中心提出的概念,仪器使用一些大线圈和强电流,在志层中产生一个静磁场,极化水和油气中的氢核。
迅速断开静磁场后,被极化的氢核将在弱而均匀的地磁场中进动。
这种核进动在用于产生静磁场的相同线圈中产生一种按指数衰减的信号。
使用该信号可计算自由流体指数FFI,它代表包含各种可动流体的孔隙度。
这些早期仪器有一些严重的技术缺陷首先,共振信号的灵敏区包括了所有的井眼流体,这迫使作业人员使用专门的加顺磁物质的泥浆和作业程序,以消除大井眼背景信号,这是一促成本昂贵且耗时冗长的处理,作业复杂而麻烦,测井速度慢石油公司难以接受。
其次,用强的极化电流持续20ms的长时间,减小了仪器对快衰减孔隙度成分的灵敏度,而只能检测具有长弛豫衰减时间的自由流体,由于固液界面效应对弛豫影响及岩石孔隙中油与水的弛豫时间差异不大,使得孔隙度和饱和度都很难求准。
此外,这些仪器为翻转被极化的自旋氢核需消耗大量功率,不能和其它测井仪器组合。
但这些难题没有使核磁共振测井研究中止。
70年代末至80年代初,美国Los Alamos 国家实验室Jasper Jackson 博士提出“INSDE-OUT”磁场技术。
在相同时期,磁共振成象(MRI)概念也得到很大发展。
1983年,Melvin Miller博士在美国创办了NU-MAR公司,他们综合了“INSIDE-OUT”概念和MAR技术同时,斯伦贝谢公司几十年来,一直在努力发展核磁共振测井技术。
核磁共振测井资料解释与应用核磁共振测井(Nuclear Magnetic Resonance Logging,简称NMR 测井)是一种常用的地质测井技术,利用核磁共振原理对地下岩石进行非侵入性测量,可获取地层各种物理和化学参数的连续变化情况。
NMR测井资料是分析地层组成、孔隙结构和流体性质等信息的重要工具,在油气勘探、地下水资源评价和地质储层评价等领域有广泛的应用。
NMR测井资料提供了多个参数,包括有效孔隙度、孔隙尺度分布、孔隙直径、孔隙连通性和时间常数等。
根据这些参数,可以评估岩石孔隙结构特征,如孔隙度、孔隙分布、孔隙连通性,进而判断流体的储存和流动情况。
此外,NMR测井资料还可以提供岩石矿物组成信息,以及含油气饱和度、流体相态(油、气、水)比例和流体饱和度等。
NMR测井资料在油气勘探中的应用主要有以下几个方面:1.矿石特性评估:NMR测井资料可以获取到岩石的孔隙结构参数,如孔隙度、孔隙连通性等,进而评估储层的孔隙度分布、孔隙尺度、孔隙连通性等。
这些参数对于判断储层的储存和流动能力非常重要,对油气资源的评估和开发有着重要的指导意义。
2.资源评价和储量估算:NMR测井资料可以提供岩石中流体的类型、饱和度和流体饱和度等参数,这些参数对于评估油气资源的潜力和储量有着重要的作用。
结合地震和地质资料,可以对储层进行综合评价和储量估算,为油气勘探和开发决策提供科学依据。
3.储层评价和改造:NMR测井资料可以提供储层的孔隙结构参数,如孔隙度、孔隙连通性等,对于储层的评价和改造有着重要的作用。
通过对NMR测井资料的分析,可以确定储层的渗透率、孔隙度分布、孔隙连通性等,进而指导油气勘探和生产管理。
4.地下水资源评价:NMR测井资料可以提供地层中含水饱和度、孔隙结构和含水层分布等参数,对地下水资源的评价和开发有着重要的作用。
利用NMR测井资料,可以评估地下水资源的潜力和可开发性,从而指导地下水资源的开发和管理。
总之,NMR测井资料是一种重要的地质测井技术,可以提供地层的孔隙结构、流体性质和岩石组成等信息。