五年级上册图形面积计算
- 格式:docx
- 大小:140.49 KB
- 文档页数:4
多边形的面积一、计算公式注:S表示面积,a表示底,h表示高,底和高必须对应!在梯形的面积公式里,a表示上底,b表示下底,一般来说,短的是上底,长的是下底。
在计算面积时,要找准对应的量。
求三角形和梯形的面积时,不要忘了除以2。
二、其他知识点1、计算多边形的面积,要代入公式计算。
2、推导平行四边形的面积,将平行四边形转化成长方形。
(割补法)3、平行四边形的周长=相邻两边长之和×2 三角形的周长=三条边之和梯形的周长=上底+下底+两条腰4、把一个长方形拉成平行四边形,周长不变,面积变小(平行四边形的高比原来长方形的宽小)。
反之,把平行四边形拉成一个长方形,周长不变,面积变大。
5、两个完全一样的三角形可以拼成一个平行四边形。
(拼摆法)6、等底等高的平行四边形和三角形,平行四边形的面积是三角形面积的2倍,三角形面积是平行四边形面积的一半。
等面积等底的平行四边形和三角形,三角形的高是平行四边形的高的2倍,平行四边形的高是三角形的高的一半。
7、在直角三角形里,两条直角边就是对应的底和高,斜边最长。
8、两个完全一样的梯形可以拼成一个平行四边形。
(拼摆法)9、计算堆成梯形形状的圆木、钢管等的个数,通常用下面的方法:(顶层个数+底层个数)×层数÷2=总个数。
注意:只有下一层物体比上一层物体数多1时,才有“层数=底层个数-顶层个数+1”10、求组合图形的面积时,一定要找准所分成的图形的相关数据。
11、不规则图形的面积可以转化成学过的图形来估算,也可以通过数方格的方法来估算。
三、解答方法1、计算面积时,分清是算哪种图形的面积,直接利用相应的面积公式,一定要找准公式里所需的每个量,注意单位是否一致,算出结果后记得写单位,面积单位有“平方”两个字。
2、计算底、高、上底或下底时,同样看清是哪种图形,直接利用相应面积公式的变式。
(熟记和熟练运用上面表格的计算公式。
)3、计算组合图形的面积时,利用割补法,看清组合图形是由哪几个简单图形(所谓简单图形,就是我们学过的长方形、正方形、平行四边形、三角形、梯形)组成的,分别算出每个简单图形的面积,最后不要忘了再相加(分割法,图形是凸的)或相减(添补法,图形是凹的)。
人教版五年级上册《多边形的面积》要点知识及易错点解析《多边形的面积》要点知识一、公式:多边形面积公式面积公式的变式说明正方形正方形的面积=边长X边长S正=aXa=a2已知:正方形的面积,求边长长方形长方形的面积=长X宽S长=aXb已知:长方形的面积和长,求宽平行四边形平行四边形的面积=底X高S平=aXh已知:平行四边形的面积和底,求高h=S平÷a三角形三角形的面积=底X宽高÷2S三=aXh÷2已知:三角形的面积和底,求高H=S三X2÷a梯形梯形形的面积=(上底+下底)X高÷2S梯=(a+b)X2已知:梯形的面积与上下底之和,求高高=面积×2÷(上底+下底)上底=面积×2÷高-下底组合图形当组合图形是凸出的,用两种或三种简单图形面积相加进行计算。
当组合图形是凹陷的,用一种最大的简单图形面积减较小的简单图形面积进行计算。
二、平行四边形面积公式推导:剪拼、平移平行四边形可以转化成一个长方形;长方形的长相当于平行四边形的底;长方形的宽相当于平行四边形的高;长方形的面积等于平行四边形的面积,因为长方形面积=长×宽,所以平行四边形面积=底×高。
三、三角形面积公式推导:旋转两个完全一样的三角形可以拼成一个平行四边形,平行四边形的底相当于三角形的底;平行四边形的高相当于三角形的高;平行四边形的面积等于三角形面积的2倍,因为平行四边形面积=底×高,所以三角形面积=底×高÷2四、梯形面积公式推导:旋转两个完全一样的梯形可以拼成一个平行四边形。
平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2五、等底等高的平行四边形面积相等;等底等高的三角形面积相等;等底等高的平行四边形面积是三角形面积的2倍。
小学五年级上册数学《三角形面积的计算》教案(精选7篇)小学五年级上册数学《三角形面积的计算》篇1教学内容:教材第9—10页例4、例5及“练一练”、“试一试”、“练习二”第6-9题。
教学目标:1.通过操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确地计算三角形的面积,并应用公式解决简单的实际问题。
2.进一步体会转化方法的价值,培养自己应用已有知识解决新问题的能力,发展自己的空间观念和初步的推理能力。
教学重点:经历探究三角形面积计算公式的过程,理解并掌握三角形的面积计算公式。
教学难点:理解三角形面积公式的推导过程。
教学准备:多媒体、教材第115页的三角形。
探究方案:一、自主准备1.说一说:下面每个小方格表示1平方厘米,你知道涂色三角形的面积各是多少平方厘米吗?你是怎么想的?()()()2.思考:(1)三角形的面积与它拼成的平行四边形的面积有什么关系?(2)有没有直接计算三角形面积的方法呢?(3)假如要你探究三角形的面积,你打算把它转化成什么图形进行研究?我想转化成二、自主探究1.拼一拼:从课本第115页上选两个完全一样的三角形剪下来,看看能不能拼成平行四边形。
2.填一填:你剪下的两个完全一样的三角形能拼成平行四边形吗?如果能,拼成的平行四边形的面积和每个三角形的面积各是多少?请填写下表。
3.想一想(1)拼成平行四边形的两个三角形有什么关系?(2)拼成的平行四边形的底和高与原三角形的底和高有什么关系?每个三角形的面积与拼成的平行四边形的面积呢?(3)根据平行四边形的面积公式,怎样求三角形的面积?三、自主应用试一试:完成书上第10页的“试一试”。
四、自主质疑说一说:(1)三角形的面积公式是怎么推导的?你还有什么疑问?(2)你认为本节课应学会什么?教学过程:一、明确目标提问:同学们,通过自主学习,你知道今天的学习内容吗?(揭示课题)你认为本节课应学会什么?二、交流提升1.出示例4的方格图及其中的平行四边形。
组合图形面积应用1.计算下面图形中阴影部分的面积。
(单位:厘米)解:25×16-(9+11)×6÷2=25×16-20×6÷2=400-120÷2=400-60=340(平方厘米)答:阴影部分的面积为340平方厘米。
2.求面积是多少?解:[(200-140)+100]×(200-80)÷2+200×140=160×120÷2+28000=9600+28000=37600(平方米)答:面积是37600平方米。
3.计算下图阴影部分的面积。
解:阴影部分的面积=(10+15)×10÷2-10×10÷2 =25×10÷2-100÷2=250÷2-50=125-50=75(平方米)。
4.计算阴影部分的面积。
(单位:cm)解:60×40-60×40÷2=2400-2400÷2=2400-1200=1200(平方厘米)5.求下面组合图形的面积。
(单位:cm)解:8×4+8×4÷2=32+32÷2=32+16=48(平方厘米)6.计算下面阴影部分的面积。
(1)(2)(1)解:阴影部分的面积=14×12÷2=168÷2=84(平方厘米)(2)解:阴影部分的面积=12×10-12×6÷2=120-72÷2=120-36=84(平方分米)(2)阴影部分的面积=平行四边形的面积-三角形的面积,平行四边形的底是20dm,高是10dm;三角形的底是20dm,高是6dm,再根据平行四边形的面积=底×高,三角形的面积=底×高÷2,代入数值计算即可。
7.计算下面图形的面积。
小学数学五年级上册图形计算公式Prepared on 21 November 2021五年级上册图形计算公式 正方形的面积=S=正方形的周长=c =长方形的面积=S= 长方形的周长=c = 平行四边形的面积=S= 底=a = 高=h =三角形形的面积=S= 底=a =高=h =梯形形的面积=S=(上底+下底)=(a+b )=上底=a =下底=b =高=h =5、梯形面积公式的推导过程:把两个完全一样的梯形可以拼成一个平形四边形,拼成平形四边形的底等于梯形的上底加下底的和,平行四边形的高与梯形的高相等,每个梯形的面积是拼成平形四边形面积的一半,因为平形四边形面积等于底乘以高,所以梯形等于(上底+下底)×高÷2.如果用S 表示梯形的面积,用a 、b 和h 分别表示梯形的上底和高,面积公式可以写成S=(a+b)h÷2梯形的面积=(上底+下底)×高÷2?S 梯=(a+b )h÷2梯形的高=面积×2÷(上底+下底)h 梯=S×2÷(a+b )上底+下底=面积×2÷高?a+b=S×2÷h梯形的上底=面积×2÷高-下底?a 梯=S×2÷h-b梯形的下底=面积×2÷高-上底?b 梯=S×2÷h-a1.长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米 aa aba hah2.面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米?l平方厘米=100平方毫米3.重量单位换算1吨=1000千克1千克=1000克1千克=1公斤4.人民币单位换算‘1元=10角1角=10分1元=100分5.时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月?平年2月28天,闰年2月29天平年全年365天,闰年全年366天1日=24小时?1时=6O分1分=60秒1时=3600秒6.数量关系式(1)、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数(2)、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数(3)、速度×时间=路程路程÷速度=时间路程÷时间=速度(4)、单价×数量=总价总价÷单价=数量总价÷数量=单价(5)、工作效率×工作时间=工作总量?工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率(6)、加数+加数=和?和-一个加数=另一个加数(7)、被减数-减数=差?被减数-差=减数?差+减数=被减数(8)、因数×因数=积?积÷一个因数=另一个因数(9)、被除数÷除数=商被除数÷商=除数商×除数=被除数7.角和三角形(1)角的大小分类,从小到大是:锐角、直角、钝角、平角、周角(2)锐角是小于90度的角,直角是90度,钝角是大于90度而小于平角的角,平角是180度的角,周角是360度的角。
五年级上册图形面积专项训练题库及答案研究必备,欢迎下载!以下是一些计算题和图形面积专项训练题。
1.计算下列图形的面积(单位:cm):长4cm,宽5cm的矩形:4 × 5 = 20平方厘米底边长3cm,高8cm的三角形:3 × 8 ÷ 2 = 12平方厘米底边长8cm,高10cm的三角形:8 × 10 ÷ 2 = 40平方厘米底边长8cm,高7cm的梯形:(8 + 10) × 7 ÷ 2 = 56平方厘米底边长9cm,高8cm的梯形:(9 + 7) × 8 ÷ 2 = 64平方厘米2.计算下列图形的面积:长10m,宽24m的矩形:10m × 24m = 240平方米底边长40m,高12m的三角形:40m × 12m ÷ 2 = 240平方米一个由两个矩形组成的图形,其中一个矩形的长是14cm,宽是16cm,另一个矩形的长是18cm,宽是25cm,它们的高都是12cm:(14 × 12 ÷ 2 + 16 × 12 ÷ 2) + (18 × 12 ÷ 2 + 25 × 12 ÷ 2) = 180 + 252 = 432平方厘米3.计算下列三角形的面积:底边长8.6m,高2.7m:8.6m × 2.7m ÷ 2 = 11.61平方米底边长10dm,高7.3dm:10dm × 7.3dm ÷ 2 = 36.5平方分米4.根据已知条件填表:底为6cm,高为5cm的三角形面积为4.2平方厘米底为4cm,高为1.2cm的三角形面积为2.4平方厘米底为12cm,高为3cm的三角形面积为18平方厘米5.一个停车场是平行四边形,底边长为63米,高为25米,每辆车平均占地15平方米。
小学数学五年级上册
《组合图形的面积》资料计算公式
长方形:
{长方形面积=长×宽}
正方形:
{正方形面积=边长×边长}
平行四边形:
{平行四边形面积=底×高}
三角形:
{三角形面积=底×高÷2}
梯形:
{梯形面积=(上底+下底)×高÷2}
圆形(正圆):
{圆形(正圆)面积=圆周率×半径×半径}
圆环:
{圆形(外环)面积={圆周率×(外环半径^2-内环半径^2)} 扇形:
{圆形(扇形)面积=圆周率×半径×半径×扇形角度/360}
长方体表面积:
{长方体表面积=(长×宽+长×高+宽×高)×2}
正方体表面积:
{正方体表面积=棱长×棱长×6}
球体(正球)表面积:
{球体(正球)表面积=圆周率×半径×半径×4}
椭圆
(其中π(圆周率,a,b分别是椭圆的长半轴,短半轴的长). 半圆:
(半圆形的面积公式=圆周率×半径的平方÷2)。
一、看图计算下列图形的面积。
①②
③④
3dm
5dm 8dm
25m
14m
32dm
26dm
34dm
34dm
10cm
7cm
8cm
8cm
二、求下列阴影部分的面积。
① ②已知S 平=48dm 2,求S 阴。
③已知:阴影部分的面积为24 ④求S 阴。
平方厘米,求梯形的面积。
三、解决问题。
1、一个平行四边形的停车场,底是65米,高是24米。
平均每辆车占地15平方米,这个停车场可停车多少辆?
2、公园里有两块空地,计划分别种玫瑰和牡丹。
玫 瑰
每棵占地1m 2
每棵6元
13cm
16cm
8dm
3dm
12cm 7cm
4dm
8dm
①玫瑰园占地多少平方米?种玫瑰一共需要多少钱?
②你还能提出什么问题?
3、梯形菜园的面积是多少?
4、计算下面每个平行四边形的面积,你能发现什么?
5、竹篱笆全长84米。
这个花园面积有多大?
6、一个三角形的底是5米。
如果将底延长1米,面积就增加2平方米,原来三角形的面积是多少平方米?
7、小明家一面外墙墙皮脱落,要重新粉刷,每平方米需要用0.5千克涂料。
如
果涂料的价格是每千克10元,粉刷这面墙需要多少元?
8、每平方米放养甲鱼苗200只,可放养甲鱼苗多少只?
9、小明用红纸做直角三角形形状的小红旗,已知红纸长12分米,宽8分米,小红旗的两条直角边分别是2分米和3分米,一张红纸可做多少面小红旗?
10、①这堆钢管一共有多少根?
②这根钢管在使用前,最上面一层只有1根,而且下一层总比上一层多1根,使用前,这堆钢管一共有多少根?
30米
80米
90米
40米
2号甲鱼池平面示意。