07 立体与立体相交-相贯线
- 格式:ppt
- 大小:2.47 MB
- 文档页数:35
第7章 立体与立体相交Chapter 7 Intersection of Solids复杂零件往往是由两个或两个以上的立体组成,两立体表面的交线,称为相贯线。
因为立体分为平面立体和曲面立体,所以相贯线又有三种情况:1.平面立体与平面立体相交,如图7-1(a )所示;2.平面立体与回转体相交,如图7-1(b )所示;3.回转体与回转体相交,如图7-1(c )所示。
(a ) (b ) (c )图7-1 常见立体相贯类型本章主要通过实例介绍两平面立体相交、平面立体与曲面立体相交、两曲面立体相交及求相贯线的方法。
相贯线的性质:1.相贯线上的点是两立体表面的共有点,相贯线也就是两立体表面的共有线,具有共有性;2.由于立体有一定的范围,所以相贯线一般是闭合的空间图形,具有封闭性。
既然相贯线上的点是两立体表面的共有点,相贯线是两立体表面的共有线,即相贯线上的每一点,既在甲形体的表面上,也在乙形体的表面上。
求相贯线的一般步骤为:(1)根据两相交立体的表面形状不同(平面或曲面),分析相贯线的性质。
平面体与平面体或曲面体相交时的表面交线,组成相贯线的各截交线段都是平面曲线或直线;两曲面立体相交时的相贯线一般是闭合的空间曲线。
(2)选定合适的方法求相贯线上的特殊点和中间点。
(3)根据相贯线的性质依次连线。
(4)判断相贯线的可见性,并补全立体的投影。
本章主要学习任务:1.掌握立体表面相交时交线的作图方法。
2.灵活运用辅助平面法求相贯线。
3.熟练掌握相贯线特殊情况的画法。
117§7-1平面体与平面体表面相交[Intersections of Plane Solids]两平面立体的相贯线一般是空间闭合折线,相贯线上的每一线段是两平面体相应面的交线,而折点则是一个立体的棱线对另一立体的贯穿点。
求作两平面立体的相贯线,通常采用下面两种方法:(1)折点法 即求出甲立体上参与相交的各棱与乙立体表面的交点(即相贯线上的折点),再求出乙立体上参与相交的各棱与甲立体表面的交点,然后顺序地连接各交点,即可得到相贯线。