苏科版七年级下册数学 平面图形的认识(二) 单元提优训练
- 格式:docx
- 大小:69.89 KB
- 文档页数:5
苏教版七年级数学下第七章《平面图形的认识(二)》综合提优训练(含答案)一、选择题1.经过平面内一点P,画∠AOB两边垂线段画法正确的是()A. B.C. D.2.下列说法中,正确的是()A. 三角形的中线是射线B. 三角形的三条高交于一点C. 等腰三角形的三个内角相等D. 三角形的三条角平分线交于一点3.如图,CM、CD、ON、OB被AO所截,那么()A. ∠1和∠4是同旁内角B. ∠2和∠4是内错角C. ∠ACD和∠AOB是同位角D. ∠1和∠3是同位角4.下列说法正确的是()A. 两条直线相交成四个角,如果有三个角相等,那么这两条直线垂直B. 两条直线相交成四个角,如果有两个角相等,那么这两条直线垂直C. 两条直线相交成四个角,如果有一对对顶角互余,那么这两条直线垂直D. 两条直线相交成四个角,如果有两个角互补,那么这两条直线垂直5.如图,AB//CD,∠E=27°,∠B=52°,则∠ECD为()度.A. 63B. 79C. 101D. 256.如图,AB=AC,BE平分∠ABC,DE//BC,图中等腰三角形共有()A. 1个B. 2个C. 3个D. 4个7.如图,已知直线AB//CD,点E,F分别在直线AB和CD上,EH平分∠AEN,EN//MF,HE//FN.若∠N=114°,则∠MFH的度数为()A. 48°B. 58°C. 66°D. 68°二、填空题8.如图,AB//CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E−∠F=33º,则∠E=________。
9.把边长相等的正五边形ABCDE和正三角形ABF按照如图所示的方式叠合在一起,则∠EAF=_________度.10.把一张长方形纸片按图中那样折叠后,若得到,则______.11.三角形ABC的底边BC上的高为8cm,当它的底边BC从16cm变化到5cm时,三角形ABC的面积从变化到.12.如图所示,在折纸活动中,小明制作了一张▵ABC纸片,点D,E分别在边AB、AC上,将▵ABC沿着DE折叠压平,使点A与点N重合.(1)若∠B=45°,∠C=65°,则∠A的度数为________;(2)若∠A=80°,则∠1+∠2的度数为___________.13.如图,在△ABC中,BD:DC=1:2,E为AB的中点,连接AD、CE交于点O,已知S▵ABC=12cm²,则=___________cm²S阴影三、解答题14.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB//CD.15.已知直线AB、CD、EF相交于点O,∠1:∠3=3:1,∠2=20°,求∠DOE的度数.16.如图,直线AB//CD,并且被直线MN所截,MN分别交AB和CD于点E与F,点Q在PM上,且∠EPM=∠FQM,求证:∠DFQ=∠BEP.17.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F.18.如图1,AB//CD,E是AB、CD之间的一点.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;(2)如图2,若∠BAE、∠CDE的两条平分线交于点F.直接写出∠AFD与∠AED之间的数量关系;(3)将图2中的射线DC沿DE翻折交AF于点G得图3,若∠AGD的余角等于2∠E的补角,求∠BAE的大小.19.如图,方格纸中每个小正方形都是1,点P、A、B、C、D、E、F是方格纸中的格点(即小正方形的顶点).(1)在图①中,过点P画出AB的平行线和垂线;(2)在图②中,以线段AB、CD、EF的长为边长的三角形的面积等于______.20.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=60°,∠C=50°,求∠DAC及∠BOA的度数.21.数学思考:(1)如图①,已知AB//CD,探究下面图形中∠APC和∠PAB,∠PCD的关系,并证明你的结论.推广延伸:(2)①如图②,已知AA 1//BA 3,请你猜想∠A 1,∠B 1,∠B 2,∠A 2、∠A 3的关系,并证明你的猜想;②如图③,已知AA 1//BA n,直接写出∠A 1,∠B 1,∠B 2,∠A 2…,∠B n−,∠A n的1关系.拓展应用:(3)①如图④所示,若AB//EF,用含α,β,γ的式子表示x,应为()A.180°+α+β−γB.180°−α−γ+βC.β+γ−αD.α+β+γ②如图⑤,AB//CD,且∠AFE=40°,∠FGH=90°,∠HMN=30°,∠CNP=50°,请你根据上述结论直接写出∠GHM的度数是___________.答案和解析1.B解:观察各选项,过平面内一点P画∠AOB两边垂线段画法正确的是B选项图形.2.D解:A、三角形的中线是线段,所以A选项错误;B、三条高所在直线相交于一点,所以B选项错误;C、等腰三角形的两个底角相等,所以C选项错误;D、三角形的三条角平分线交于一点,所以D选项正确.3.C解:A、不是同旁内角,故本选项错误;B、是同位角,故本选项错误;C、是同位角,故本选项正确;D、不是同位角,故本选项错误;4.A解:A、两条直线相交成四个角,如果有三个角相等,那么这两条直线垂直,正确,故A正确;B、两条直线相交成四个角,则这四个角中有2对对顶角.如果三个角相等,则这四个角相等,都是直角,所以这两条直线垂直.故B错误;C、两条直线相交成四个角,如果有一对对顶角互余,这两条直线不一定垂直,故答案错误;D、两条直线相交成四个角,如果有两个角互补,那么这两条直线垂直,错误.5.B解:延长EC交AB与F,∵∠E=27°,∠B=52°,∴∠AFE=79°,∵AB//CD,∴∠ECD=∠AFE=79°,6.C解:∵AB=AC,∴△ABC是等腰三角形;∵DE//BC,∴△ADE是等腰三角形;∵BE是∠ABC的平分线,∴∠DBE=∠EBC,∵DE//BC,∴∠EBC=∠BED,∴△BDE是等腰三角形;∴图中等腰三角形的个数有3个;7.A解:∵HE//FN,∴∠MEN=180°−∠N=180°−114°=66°,∵AB//CD,∴∠AEH=∠MHF,∵EN//MF,∴∠MEN=∠HMF=66°,∵EH平分∠AEN,∴∠AEH=∠MEN=66°,∴∠MHF=∠HMF=66°,在△MHF中,∠MFH=180°−66°−66°=48°.8.82°解:如图,过F作FH//AB,∵AB//CD,∴FH//AB//CD,∵∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∴可设∠ABF=∠EBF=a=∠BFH,∠DCG=∠ECG=β=∠CFH,∴∠ECF=180∘−β,∠BFC=∠BFH−∠CFH=α−β,∴四边形BFCE中,∠E+∠BFC=360∘−α−(180∘−β)=180∘−(α−β)=180∘−∠BFC,即∠E+2∠BFC=180∘,①又∵∠E−∠BFC=33∘,∴∠BFC=∠E−33∘,②∴由①②可得,∠E+2(∠E−33∘)=180∘,解得∠E=82∘,9.48∵△ABF是正三角形,∴∠BAF=60°.∵五边形ABCDE是正五边形,∴正五边形的内角和为(5−2)×180°=540°,∴∠BAE=540°÷5=108°,∴∠EAF=∠BAE−∠BAF=108°−60°=48°.10.110°解:∵AD//BC,∴∠BGD′=∠AEG=40°,(180°−40°)=70°,由折叠的性质得,∠DEF=∠D′EF=12∴∠C′FE=∠EFC=180°−∠E=DEF=110°.11.64cm2;20cm2解:当△ABC的底边BC上的高为8cm,底边BC=16cm时,(16×8)=64cm2;S1=12(5×8)=20cm2.底边BC=5cm时,S2=1212.(1)70°;(2)160°(1)∵∠B =45°,∠C =65°,∴∠A =180°−45°−65°=70°.故答案为70°.(2)∵△NDE 是△ADE 翻折变换而成,∴∠AED =∠NED ,∠ADE =∠NDE ,∴∠AED +∠ADE =∠NED +∠NDE =180°−80°=100°,∴∠1+∠2=360°−2×100°=160°.13.2.8解:连接OB ,设△BOE 的面积为x ,△BOD 的面积为y ,∵BD:DC =1:2∴S △ABD =13S △ABC =4cm 2 ,S △COD =2S △BOD =2y ,∵E 为AB 的中点∴S △BCE =12S △ABC =6cm 2 ,S △AOE =S △BOE =x ,∴{S △ABD =2x +y =4S △BCE =3y +x =6∴{x =1.2y =1.6.14.证明:∵BE ⊥FD ,∴∠EGD =90°,∴∠1+∠D =90°,又∠2和∠D 互余,即∠2+∠D =90°,∴∠1=∠2,又已知∠C =∠1,∴∠C=∠2,∴AB//CD.15.解:∵∠1:∠3=3:1,∴设∠1=3k,∠3=k,则3k+20°+k=180°,解得k=40°,∴∠1=3k=120°,∴∠COF=∠1+∠2=120°+20°=140°,∠DOE=∠COF=140°.16.证明:∵∠EPM=∠FQM,∴FQ//EP,∴∠MFQ=∠MEP,又∵AB//CD,∴∠MFD=∠MEB,∴∠MFQ−∠MFD=∠MEP−∠MEB,∴∠DFQ=∠BEP.17.解:如图,连接AD.∵∠1=∠E+∠F,∠1=∠FAD+∠EDA,∴∠E+∠F=∠FAD+∠EDA,∴∠A+∠B+∠C+∠D+∠E+∠F =∠BAD+∠ADC+∠B+∠C.又∵∠BAD+∠ADC+∠B+∠C=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.18.解:(1)∠BAE+∠CDE=∠AED.理由如下:作EF//AB,如图1,∵AB//CD,∴EF//CD,∴∠1=∠BAE,∠2=∠CDE,∴∠BAE+∠CDE=∠AED;(2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,∵∠BAE、∠CDE的两条平分线交于点F,∴∠BAF=12∠BAE,∠CDF=12∠CDE,∴∠AFD=12(∠BAE+∠CDE),∵∠BAE+∠CDE=∠AED,∴∠AFD=12∠AED;(3)由(1)的结论得∠AGD=∠BAF+∠CDG,而射线DC沿DE翻折交AF于点G,∴∠CDG=4∠CDF,∴∠AGD=∠BAF+4∠CDF=12∠BAE+2∠CDE=12∠BAE+2(∠AED−∠BAE)=2∠AED−32∠BAE,∵90°−∠AGD=180°−2∠AED,∴90°−2∠AED+32∠BAE=180°−2∠AED,∴∠BAE=60°.19.(1)(2)4解:(1)如图①所示:MN//AB,PD⊥AB;(2)如图②所示:以线段AB、CD、EF的长为边长的三角形的面积等于△ABM的面积为:3×4−12×1×2−12×2×3−12×2×4=4.故答案为:4.(1)直接利用网格结合勾股定理得出答案;(2)利用平移的性质得出以线段AB、CD、EF的长为边长的三角形的面积等于△ABM的面积,进而得出答案.20.解:∵在△ABC中,AD是高,∴∠ADC=90°,∵在△ACD中,∠C=50°,∴∠DAC=90°−50°=40°,∵在△ABC中,∠C=50°,∠BAC=60°,∴∠ABC=70°,∵在△ABC中,AE,BF是角平分线,∴∠EAC=12∠BAC=30°,∠FBC=12∠ABC=35°,∴∠BOA=∠BEA+∠FBC=∠C+∠EAC+∠FBC=50°+30°+35°=115°.21.解:(1)证明:如答图1,过点P作OP//AB.∵AB//CD,∴OP//AB//CD.∴∠1=∠PAB,∠2=∠PCD,∴∠APC=∠1+∠2=∠PAB+∠PCD,即∠APC=∠PAB+∠PCD.(2)①如答图2,过点A2作A2O//AA1.由(1)可知∠B1=∠A1+∠1,∠B2=∠2+∠A3,所以,∠B1+∠B2=∠A1+∠A2+∠A3.②由①可知:∠A1+∠A2+⋯+∠A n=∠B1+∠B2+⋯+∠B n−1.(3)①B;②30°.。
苏科版数学七年级下册第7章《平面图形的认识(二)》综合提优测试第7章《平面图形的认识(二)》综合提优测试(时间:100分钟满分:100分)一、选择题(每题2分,共20分) 1. 下列命题中,不正确的是( ).A.如果两条直线都和第三条直线平行,那么这两条直线也互相平行B.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行C.两条直线被第三条直线所截,那么这两条直线平行D.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行2. 图中有四条互相不平行的直线1l 、2l 、3l 、4l 所截出的七个角.关于这七个角的度数关系,下列说法正确的是( ).A. 247∠=∠+∠B. 316∠=∠+∠C. 146180∠+∠+∠=?D.235180∠+∠+∠=?3. 如图,//AB EF ,CD EF ⊥,若40ABC ∠=?,则BCD ∠=( ). A. 140? B. 130? C. 120? D. 110?4. 若多边形的边数增加1,则( ).A.其内角和增加180?B.其内角和为360?C.其内角和不变D.其外角和减少 5. 三角形的三条高所在直线的交点( ). A.一定在三角形的内部 B.一定在三角形的外部 C.一定在三角形的顶点 D.都有可能6. 若一个三角形的3个内角度数之比为5:3:1,则与之对应的3个外角的度数之比为( ).A.4:3:2B.2:3:4C.3:2:4D.3:1:5 7. 如图,//AB CD ,CE 平分BCD ∠,36B ∠=?,则DCE ∠等于( ).A. 18?B. 36?C. 45?D.54?8. 如图,六边形ABCDEF 的六个内角都相等,若1AB =,3BC CD ==,2DE =,则这个六边形的周长等于( ).A. 15B. 14C. 17D. 18 9. 如图,若//AB CD ,则B ∠、C ∠、E ∠三者之间的关系是().A. 180B C E ∠+∠+∠=?B. 180B E C ∠+∠-∠=?C. 180B C E ∠+∠-∠=?D. 180C E B ∠+∠-∠=? 10. 如图, //AB CD ,AC BC ⊥,AC BC ≠,则图中与BAC ∠互余的角有( ).A. 1个B. 2个C. 3个D.4个二、填空题(每题2分,共20分)11.如图所示,小华从点A 出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地点A 时,一共走的路程是 .12.在ABC V 中,已知点D 、E 、F 分别是边BC 、AD 、CE 上的中点,且24ABC S cm =V ,则BEF S V 的值为 .13.在ABC V 中,150A B ∠+∠=?,2C A ∠=∠,则A ∠= ,B ∠= .14.如图,直线//a b ,Rt ABC V 的直角顶点C 在直线b 上,120∠=?,则2∠= . 15.如果一个正多边形的每个外角都是30°,那么这个多边形的内角和为 .16.如图,ABC V 中,AB AC =、12BC cm =,点D 在AC 上,4DC cm =.将线段DC 沿着CB 的方向平移7cm 得到线段EF ,点E 、F 分别落在边AB 、BC 上,则EBF V 的周长为cm .17.如图所示,A B C D E ∠+∠+∠+∠+∠= .18.教材在探索多边形的内角和为(2)180n -??时,都是将多边形转化为去探索的.从(3)n n >边形的一个顶点出发,画出条对角线,这些对角线把n 边形分成个三角形,分成的三角形内角的总和与多边形的内角和 .19.如图,//AB CD ,26B ∠=?,39D ∠=?,求BED ∠的度数.解:过点E 作//EF AB ,126B ∴∠=∠=?.( )//AB CD Q (已知),//EF AB (所作),//EF CD ∴.( )239D ∴∠=∠=?. 1265BED ∴∠=∠+∠=?.20.在三角形纸片ABC 中,已知90ABC ∠=?,6AB =,8BC =.过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的T 处,折痕为MN .当点T 在直线l 上移动时,折痕的端点M 、N 也随之移动.若限定端点M 、N 分别在边AB 、BC 上移动,则线段AT 长度的最大值与最小值之和为 .(计算结果不取近似值)三、解答题(共9题,共60分)21.如图,ABC V 的顶点都在方格纸的格点上.将ABC V 向左平移2格,再向上平移4格.请在图中画出平移后的三角形'''A B C ,再在图中画出三角形'''A B C 的高''C D .22.如图,直线AB 和直线CD 被直线GH 所截,交点分别为点E 、F ,AEF EFD ∠=∠. (1) AB 与CD 平行吗,为什么?(2)如果AEM NFD ∠=∠,那么EM 与FN 是否平行,为什么?23.如图,25B ∠=?,45BCD ∠=?,30CDE ∠=?,10E ∠=?,求证://AB EF .24.如图,在ABC V 中,CE AB ⊥,垂足为点E ,DF AB ⊥,垂足为点F ,//AC ED ,CE 是ACB ∠的角平分线.求证:EDF BDF ∠=∠.25.如图,从下列三个条件中:(1)//AD CB ; (2)//AB CD ; (3)A C ∠=∠.任选两个作为条件,另一个作为结论,编一道数学题,并说明理由.已知: 结论: 理由:26.如图,//AD BC ,96A ∠=?,104D ∠=?,BE 、CE 分别是ABC ∠和BCD ∠的角平分线,求BEC ∠的度数.27.如图,已知点D 为等腰直角ABC V 内一点,15CAD CBD ∠=∠=?. E 为AD 延长线上的一点,且CE CA =. (1)求证:DE 平分BDC ∠;(2)若点M 在DE 上,且DC DM =,求证:ME BD =.28.小亮的父亲想用正三角形、正四边形和正六边形地板砖铺设一条小道地面,小亮根据所学的知识告诉父亲,为了能够做到无缝隙.不重叠地铺设.可按如图所示的规律拼图案.即从第二个图案开始,每个图案中正三角形的个数都比前一个图案中正三角形的个数多4个.请你帮助小明求第n 个图案中正只角形的个数有多少?(用含n 的代数式表示)29.平面内的两条直线有相交和平行两种位置关系.(1)AB 平行于CD ,如图(1),点P 在AB 、CD 外部时,由//AB CD ,有B BO D ∠=∠,又因为BOD ∠是POD V 的外角,故BOD BPD D ∠=∠+∠,得B P D B D ∠=∠-∠.如图(2),将点P 移到AB 、CD 内部,以上结论是否成立?若不成立,则BPD ∠、B ∠、D ∠之间有何数量关系?请证明你的结论;(2)在图(2)中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图(3),则BPD ∠、B ∠、D ∠、BQD ∠之间有何数量关系?(不需证明) (3)根据(2)的结论求图(4)中A B C D E F ∠+∠+∠+∠+∠+∠的度数.参考答案1. C2. C3. B4. A5. D6. B7. A8. A9. B 10. C 11. 150米 12. 1cm213. 15° 135° 14. 70° 15. 1800° 16. 13° 17. 180° 18. 三角形 (3)n - (2)n - 相等 19. 两直线平行,内错角相等平行于同一直线的两直线平行 20. 1427- 21. 略22. (1)//AB CD 。
苏科版七年级下册第七章平面图形的认识(二)重难点提优训练一、选择题1、如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.360°C.270°D.540°2、如图,工人师傅砌门时,常用木条EF固定矩形门框ABCD,使其不变形,这种做法的根据是()A.两点之间直线段最短B.矩形的稳定性C.矩形四个角都是直角D.三角形的稳定性3、一个三角形的两边长分别是2cm和9cm,第三边的长是一个奇数,则第三边长为()A.5cmB.7cmC.9cmD.11cm4、如图,在锐角∠ABC中,CD、BE分别是AB、AC边上的高,且CD、BE相交于一点P,若∠A=50°,则∠BPC=()A.150°B.130°C.120°D.100°5、如图,小林从P点向西直走12m后,向左转,转动的角度为α,再走12m,如此重复,小林共走了108m 回到点P ,则α=( )A.40 oB.50 oC.80 oD.不存在6、如图,在∠ABC 中,点D 是BC 边上的一点,E ,F 分别是AD ,BE 的中点,连结CE ,CF ,若S ∠CEF =5,则∠ABC 的面积为( )A .15B .20C .25D .30二、填空题(共6小题,每小题4分,共24分)7、如图,在∠ABC 中,AB=13,AC=10,AD 为中线,则∠ABD 与∠ACD 的周长之差=________.8、如图,∠ABC 三边的中线 AD 、BE 、CF 的公共点为 G ,若 S ∠ABC =12,则图中阴影部分的面积是 .9、若三角形的两边长分别为3、4,且周长为整数,这样的三角形共有________ 个.10、用等腰直角三角板画45AOB =o∠,并将三角板沿OB 方向平移到如图17所示的虚线处后绕点M 逆时针方向旋转22o ,则三角板的斜边与射线OA 的夹角α为______O B11、如图,正方形OABC的边长为3,点P与点Q分别在射线OA与射线OC上,且满足BP=BQ,若AP=2,则四边形OPBQ面积的值可能为________.12、如图,长方形ABCD中,AB=4cm,BC=3cm,E为CD的中点.动点P从A点出发,以每秒1cm的速度沿A-B-C-E运动,最终到达点E.若点P运动的时间为x秒,则当x=_______时,∠APE的面积等于5.13、如图,若AB∠CD,BF平分∠ABE,DF平分∠CDE,∠BED=80°,则∠BFD=_______.14、如图,已知Rt∠ABC,D1是斜边AB的中点,过D1作D1E1∠AC于E1,连接BE1交CD1于D2;过D2作D2E2∠AC于E2,连接BE2交CD1于D3;过D3作D3E3∠AC于E3,…,如此继续,可以依次得到点E4、E5、…、E n,分别记∠BCE1、∠BCE2、∠BCE3…∠BCE n 的面积为S1、S2、S3、…S n.则S n= S∠ABC(用含n的代数式表示).三、解答题15、如图,AB ∥EF ,∠C=90°,试探究∠B 、∠D 、∠E 三个角之间的关系16、已知如图1,在ABC ∆中,AD 是BAC ∠的角平分线,AE 是BC 边上的高,30,70ABC ACB ∠=∠=o o .(1)求DAE ∠的度数.(2)如图2,若点F 为AD 延长线上一点,过点F 作FG BC ⊥于点G ,求AFG ∠的度数.17、已知如图1,∠ABC,∠ACB的平分线交于I,根据下列条件分别求出∠BIC的度数;你能发现∠BIC与∠A的关系吗?并说明理由.(1)变式一:如图2,点P是△ABC的中外两角∠DBC与∠ECB平分线的交点,试探索∠BPC 与∠A的数量关系,并说明理由.(2)变式二:如图3,已知在△ABC中,BD平分∠ABC,CD平分△ABC的外角∠ACE,BD、CD相交于D,试探索∠A与∠D的数量关系,并说明理由.18、(1)如图,小莉画了一个角∠MON=80°,点A、B分别在射线OM、ON上移动,∠AOB 的角平分线AC与BD交于点P.试问:随着点A、B位置的变化,∠APB的大小是否会变化?若保持不变,请求出∠APB的度数;若发生变化,求出变化范围.(2)聪明的小莉想出了一个画30°角的方法:∠画两条相交的直线OX、OY,使∠XOY=60°,∠在射线OX、OY上分别再任意取A、B点,∠作∠ABY的平分线BD,BD的反向延长线交∠OAB的平分线于点C,则∠C就是30°的角.你认为小莉的方法正确吗?请你说明理由.参考答案一、选择题1、B2、D3、C4、B5、A6、B二、填空题7、3 8、4 9、5 10、22°11、3或9或15 12、310或5 13、 40° 14、11+n 三、解答题15、解:将线段CD 向两方延长,分别交AB 、EF 于点M 、N .则∠BMN=90°-∠B ,∠MNE=∠CDE-∠E ,∵AB ∥EF ,∴∠BMN=∠MNE ,∴90°-∠B=∠CDE-∠E ,即∠B+∠CDE-∠E=90°16、解:(1)在ABC ∆中,30,70ABC ACB ∠=∠=o o Q180BAC ABC ACB ∴∠=-∠-∠o 180307080=--=o o o oAD Q 平分BAC ∠ 11804022BAD CAD BAC ∴∠=∠=∠=⨯=o o , 在ABD ∆中, 403070ADC BAD ABD ∠=∠+∠=+=o o oAE ∵为三角形的高, 90AED ∴∠=o .在AED ∆中,180DAE ADE AED ∠=-∠-∠=o 180709020--=o o o o .(2)90FG BC FGD ⊥∴∠=o Q90AED ∠=o Q FGD AED ∴∠=∠ //FG AE ∴ AFG DAE ∴∠=∠ 由(1)可知20DAE ∠=o20AFG ∠=o .17、解:(1)∠BIC=90°+21∠A ; 理由如下:在△BIC 中,∵∠BIC=180°-∠IBC-∠ICB , ∴2∠BIC=360°-2∠IBC-2∠ICB , ∵BO 平分∠ABC ,CO 平分∠ACB , ∴∠ABC=2∠IBC ,∠ACB=2∠ICB ,∴2∠BIC=360°-(∠ABC+∠ACB ),∵∠ABC+∠ACB=180°-∠A , ∴2∠BIC=180°+∠A ,∴∠BIC=90°+21∠A ; (2)∠BPC=90°-21∠A . 理由如下:∵BP 、CP 为△ABC 两外角∠ABC 、∠ACB 的平分线,∠A 为x °∴∠BCP=21(∠A+∠ABC )、∠PBC=21(∠A+∠ACB ), 由三角形内角和定理得,∠BPC=180°-∠BCP-∠PBC ,=180°-21[∠A+(∠A+∠ABC+∠ACB )], =180°-21(∠A+180°), =90°-21∠A ; (3)∠D=21∠A . 理由如下:∵BD 为∠ABC 的角平分线,CD 为△ABC 外角∠ACE 的平分线,两角平分线交于点D ,∴∠ABD=∠DBC ,∠ACD=21(∠A+2∠ABD ),∠AFB=∠DFC , ∵∠A=180°-∠AFB-∠ABF , ∴∠AFB+∠ABF=180°-∠A----①又∵∠D=180°-∠DFC-∠FCD=180°-∠DFC-21(∠A+2∠ABF ), 即2∠D=360°-2∠DFC-∠A-2∠ABF=360°-2(∠DFC+∠ABF )-∠A----②, 把①代入②得2∠D=∠A ,即∠D=21∠A . 18、(1)不变; ∵△AOB 的角平分线AC 与BD 交于点P ,∴∠PAB=21∠BAO ,∠PBA=21∠ABO , ∴∠APB=180°-(2ABO ∠+2BAO ∠) ∵∠ABO+∠BAO+80°=180°,∴∠APB=130°;(2)正确;∵∠ABD 是△ABC 的外角,∴∠ABD=∠C+∠BAC ①,又∵∠YBA 是△AOB 的外角,∴∠ABY=∠AOB+∠OAB ②,由BD 平分∠YBA ,AC 平分∠BAO ,∴∠YBD=∠ABD=21∠YBA ,∠BAC=∠OAC=∠OAB ,又∠AOB=60°, ②÷2得:21∠ABY=21∠AOB+21∠OAB , 即∠ABD=30°+∠BAC ③,由①和③得:∠C=30°.。
苏科版七年级数学下册单元质量检测卷(二)第7章平面图形的认识姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间90分钟,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题2分,共20分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.如图,下列不能判定DF∥AC的条件是()A.∠A=∠BDF B.∠2=∠4C.∠1=∠3D.∠A+∠ADF=180°2.已知l1∥l2,一块含30°的直角三角板如图所示放置,∠1=20°,则∠2=()A.30°B.35°C.40°D.45°3.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,若CD∥BE,∠1=40°,则∠2的度数是()A.90°B.100°C.105°D.110°4.如图,▱ABCD的对角线AC,BD交于点O,若AC=6,BD=8,则AB的长可能是()A.10B.8C.7D.65.如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=36°,则∠E=()A.82°B.84°C.97°D.90°6.如图,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3∴AB∥CD(内错角相等,两直线平行)B.∵AD∥BC∴∠2=∠4(两直线平行,内错角相等)C.∵∠BAD+∠ABC=180°∴AD∥BC(同旁内角互补,两直线平行)D.∵∠DAM=∠CBM∴AD∥BC(两直线平行,同位角相等)7.如图,已知直线l交直线a,b于A,B两点,且a∥b,E是a上的点,F是b上的点,满足∠DAE=∠BAE,∠DBF=∠ABF,则∠ADB的度数是()A.45°B.50°C.60°D.无法确定8.如图,在五边形ABCDE中,若去掉一个30°的角后得到一个六边形BCDEMN,则∠1+∠2的度数为()A.210°B.110°C.150°D.100°9.如图,已知GF⊥AB,∠1=∠2,∠B=∠AGH,则下列结论:①GH∥BC;②∠D=∠F:③HE平分∠AHG;④HE⊥AB,其中正确的有()A.1个B.2个C.3个D.4个10.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当∠BAD=15°时,BC∥DE,则∠BAD (0°<∠BAD<180°)符合条件的其它所有可能度数为()A.60°和135°B.45°、60°、105°、135°C.30°和45°D.以上都有可能二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在横线上)11.如图,DA平分∠BDF,∠3=∠4,若∠1=50°,∠2=130°,则∠CBD=°.12.如图,已知∠1=80°,∠2=100°,∠3=105°,则∠4=.13.如图,点F在∠BAC的平分线AP上,点E在AB上,且EF∥AC,若∠BEF=40°,则∠AFE=°.14.如图所示,把长方形纸片ABCD纸沿对角线折叠,若∠BDE=20°,那么∠BED=.15.如图,∠ABC的平分线BF与△ABC中∠ACB的相邻外角∠ACG的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E,若BD=9cm,DE=4cm,求CE的长为cm.16.如图,三角形ABC中,D是AB上一点,F是BC上一点,E,H是AC上的点,EF的延长线交AB的延长线于点G,连接DE,DH,DE∥BC.若∠CEF=∠CHD,∠EFC=∠ADH,∠CEF:∠EFC=5:2,∠C=47°,则∠ADE的度数为.17.如图,AB和CD相交于点O,∠C=∠COA,∠BDC=∠BOD,AP,DP分别平分∠CAO和∠BDC,若∠C+∠P+∠B=165°,则∠C的度数是.18.如图,AD∥BC,∠ADC=120°,∠BAD=3∠CAD,E为AC上一点,且∠ABE=2∠CBE,在直线AC上取一点P,使∠ABP=∠DCA,则∠CBP:∠ABP的值为.三、解答题(本大题共8小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.如图,△ABC中,AD平分∠BAC,P为AD延长线上一点,PE⊥BC于E,已知∠ACB=80°,∠B=24°,求∠P的度数.20.如图,在△ABC的三边上有D,E,F三点,点G在线段DF上,∠1与∠2互补,∠3=∠C.(1)若∠C=40°,求∠BFD的度数;(2)判断DE与BC的位置关系,并说明理由.21.已知:如图∠AED=∠C,∠DEF=∠B,请你说明∠1与∠2相等吗?为什么?解:因为∠AED=∠C(已知)所以∥()所以∠B+∠BDE=180°()因为∠DEF=∠B(已知)所以∠DEF+∠BDE=180°()所以∥()所以∠1=∠2 ().22.AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC=80°.(1)若∠ABC=50°,求∠BED的度数;(2)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,若∠ABC=120°,求∠BED 的度数.23.南湖公园有很多的长方形草地,草地里修了很多有趣的小路,如图三个图形都是长为50米,宽为30米的长方形草地,且小路的宽都是1米.(1)如图1,阴影部分为1米宽的小路,长方形除去阴影部分后剩余部分为草地,则草地的面积为;(2)如图2,有两条宽均为1米的小路(图中阴影部分),求草地的面积.(3)如图3,非阴影部分为1米宽的小路,沿着小路的中间从入口E处走到出口F处,所走的路线(图中虚线)长为.24.探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F,若∠ABC=50°,求∠DEF的度数.请将下面的解答过程补充完整,并填空解:∵DE∥BC∴∠DEF=.()∵EF∥AB,∴=∠ABC.()∴∠DEF=∠ABC.(等量代换)∵∠ABC=50°,∴∠DEF=.应用:如图②,直线AB,BC,AC两两相交,交点分别为A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F,若∠ABC=65°,则∠DEF=.25.如图,AB∥CD,∠ABE=120°.(1)如图①,写出∠BED与∠D的数量关系,并证明你的结论;(2)如图②,∠DEF=2∠BEF,∠CDF=∠CDE,EF与DF交于点F,求∠EFD的度数;(3)如图③,过B作BG⊥AB于G点,∠CDE=4∠GDE,求的值.26.如图①,直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,点P在直线EF上,连结P A、PB.猜想:如图①,若点P在线段CD上,∠P AC=15°,∠PBD=40°,则∠APB的大小为度.探究:如图①,若点P在线段CD上,直接写出∠P AC、∠APB、∠PBD之间的数量关系.拓展:如图②,若点P在射线CE上或在射线DF上时,直接写出∠P AC、∠APB、∠PBD之间的数量关系.参考答案与解析一、选择题(本大题共10小题,每小题2分,共20分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.如图,下列不能判定DF∥AC的条件是()A.∠A=∠BDF B.∠2=∠4C.∠1=∠3D.∠A+∠ADF=180°【答案】B【分析】根据同位角相等、内错角相等、同旁内角互补,两直线平行即可判断.【解答】解:A.∠A=∠BDF,由同位角相等,两直线平行,可判断DF∥AC;B.∠2=∠4,不能判断DF∥AC;C.∠1=∠3由内错角相等,两直线平行,可判断DF∥AC;D.∠A+∠ADF=180°,由同旁内角互补,两直线平行,可判断DF∥AC;故选:B.【知识点】平行线的判定2.已知l1∥l2,一块含30°的直角三角板如图所示放置,∠1=20°,则∠2=()A.30°B.35°C.40°D.45°【答案】C【分析】先根据三角形外角的性质求出∠EDG的度数,再由平行线的性质得出∠4CEF度数,由直角三角形的性质即可得出结论.【解答】解:如图,根据对顶角的性质得:∠1=∠3,∠2=∠4,∵∠EDG是△ADG的外角,∴∠EDG=∠A+∠3=30°+20°=50°,∵l1∥l2,∴∠EDG=∠CEF=50°,∵∠4+∠FEC=90°,∴∠FEC=90°﹣50°=40°,∴∠2=40°.故选:C.【知识点】平行线的性质3.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,若CD∥BE,∠1=40°,则∠2的度数是()A.90°B.100°C.105°D.110°【答案】B【分析】根据平行线的性质即可求解.【解答】解:延长BC至G,如下图所示,由题意得,AF∥BE,AD∥BC,∵AF∥BE,∴∠1=∠3(两直线平行,同位角相等),∵AD∥BC,∴∠3=∠4(两直线平行,同位角相等),∴∠4=∠1=40°,∵CD∥BE,∴∠6=∠4=40°(两直线平行,同位角相等),∵这条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,∴∠5=∠6=40°,∴∠2=180°﹣∠5﹣∠6=180°﹣40°﹣40°=100°,故选:B.【知识点】平行线的性质4.如图,▱ABCD的对角线AC,BD交于点O,若AC=6,BD=8,则AB的长可能是()A.10B.8C.7D.6【答案】D【分析】根据三角形三边关系:任意两边之和大于第三边,任意两边之差小于第三边,可得出AB的取值范围,进而得出结论.【解答】解:∵四边形ABCD是平行四边形,∴OA=AC=3,OB=BD=4,在△AOB中:4﹣3<AB<4+3,即1<AB<7,∴AB的长可能为6.故选:D.【知识点】平行四边形的性质、三角形三边关系5.如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=36°,则∠E=()A.82°B.84°C.97°D.90°【答案】B【分析】根据平行线的性质即可求解.【解答】解:过E作直线MN∥AB,如下图所示,∵AB∥MN,∴∠3+∠4+∠BEM=180°(两直线平行,同旁内角互补),∵AB∥CD,∴MN∥CD,∴∠MEC=∠1+∠2(两直线平行,内错角相等),∴∠BEC=∠MEC+∠BEM=180°﹣∠3﹣∠4+∠1+∠2,∵∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∴∠1=∠2,∠3=∠4,∴∠BEC=180°﹣2∠4+2∠1,∴∠4﹣∠1=90°﹣,∵四边形BECF内角和为360°,∴∠4+∠BEC+∠180°﹣∠1+∠F=360°,∴+∠F=90°,由,∴,故选:B.【知识点】平行线的性质6.如图,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3∴AB∥CD(内错角相等,两直线平行)B.∵AD∥BC∴∠2=∠4(两直线平行,内错角相等)C.∵∠BAD+∠ABC=180°∴AD∥BC(同旁内角互补,两直线平行)D.∵∠DAM=∠CBM∴AD∥BC(两直线平行,同位角相等)【答案】D【分析】根据平行线的判定与性质逐一进行推论即可.【解答】解:A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行);所以A正确;B.∵AD∥BC,∴∠2=∠4(两直线平行,内错角相等);所以B正确;C.∵∠BAD+∠ABC=180°,∴AD∥BC(同旁内角互补,两直线平行);所以C正确;D.∵∠DAM=∠CBM,∴AD∥BC(同位角相等,两直线平行),所以D错误.故选:D.【知识点】平行线的判定与性质7.如图,已知直线l交直线a,b于A,B两点,且a∥b,E是a上的点,F是b上的点,满足∠DAE=∠BAE,∠DBF=∠ABF,则∠ADB的度数是()A.45°B.50°C.60°D.无法确定【答案】A【分析】根据平行线的性质求出∠EAB+∠ABF=180°,根据∠DAE=∠BAE和∠DBF=∠ABF求出∠DAB+∠ABD=135°,根据三角形内角和定理求出即可.【解答】解:∵a∥b,∴∠EAB+∠ABF=180°,∵∠DAE=∠BAE,∠DBF=∠ABF,∴∠DAB+∠ABD=×180°=135°,∴∠ADB=180°﹣(∠DAB+∠ABD)=180°﹣135°=45°,故选:A.【知识点】平行线的性质8.如图,在五边形ABCDE中,若去掉一个30°的角后得到一个六边形BCDEMN,则∠1+∠2的度数为()A.210°B.110°C.150°D.100°【答案】A【分析】解法一:根据多变的内角和定理可求解∠B+∠C+∠D+∠E=510°,∠1+∠2+∠B+∠C+∠D+∠E =(6﹣2)×180°=720°,进而可求解.解法二:利用三角形的内角和定理和平角的定义也可求解.【解答】解:解法一:∵∠A+∠B+∠C+∠D+∠E=(5﹣2)×180°=540°,∠A=30°,∴∠B+∠C+∠D+∠E=510°,∵∠1+∠2+∠B+∠C+∠D+∠E=(6﹣2)×180°=720°,∴∠1+∠2=720°﹣510°=210°,解法二:在△ANM中,∠ANM+∠AMN=180°﹣∠A=180°﹣30°=150°,∴∠1+∠2=360°﹣(∠AMN+∠ANM)=360°﹣150°=210°故选:A.【知识点】多边形内角与外角9.如图,已知GF⊥AB,∠1=∠2,∠B=∠AGH,则下列结论:①GH∥BC;②∠D=∠F:③HE平分∠AHG;④HE⊥AB,其中正确的有()A.1个B.2个C.3个D.4个【答案】B【分析】根据平行线的判定得出GH∥BC,根据平行线的性质得出∠1=∠HGM,∠1=∠D,再逐个判断即可.【解答】解:∵∠B=∠AGH,∴GH∥BC,故①正确;∴∠1=∠HGM,∵∠1=∠2,∴∠2=∠HGM,∴DE∥GF,∵GF⊥AB,∴HE⊥AB,故④正确;∵GF∥DE,∴∠D=∠1,∵∠1=∠CMF,根据已知条件不能推出∠F=∠CMF,即不能推出∠D=∠F,故②错误;∵∠AHG=∠2+∠AHE,根据已知不能推出∠2=∠AHE,故③错误;即正确的有2个,故选:B.【知识点】平行线的判定与性质10.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当∠BAD=15°时,BC∥DE,则∠BAD (0°<∠BAD<180°)符合条件的其它所有可能度数为()A.60°和135°B.45°、60°、105°、135°C.30°和45°D.以上都有可能【答案】B【分析】根据题意画出图形,再由平行线的判定定理即可得出结论.【解答】解:当AC∥DE时,∠BAD=∠DAE=45°;当BC∥AD时,∠DAB=∠B=60°;当BC∥AE时,∵∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;当AB∥DE时,∵∠E=∠EAB=90°,∴∠BAD=∠DAE+∠EAB=45°+90°=135°.故选:B.【知识点】平行线的判定二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在横线上)11.如图,DA平分∠BDF,∠3=∠4,若∠1=50°,∠2=130°,则∠CBD=°.【答案】65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC,可得结果.【解答】解:∵∠1=50°,∴∠DBE=180°﹣∠1=180°﹣50°=130°,∵∠2=130°,∴∠DBE=∠2,∴AE∥CF,∴∠4=∠ADF,∵∠3=∠4,∴∠EBC=∠4,∴AD∥BC,∵AD平分∠BDF,∴∠ADB=∠ADF,∵AD∥BC,∴∠ADB=∠CBD,∴∠4=∠CBD,∴∠CBD=∠EBC==65°.故答案为:65.【知识点】平行线的判定与性质12.如图,已知∠1=80°,∠2=100°,∠3=105°,则∠4=.【答案】75°【分析】由同旁内角互补,两直线平行可得l1∥l2,可得∠3+∠6=180°,即可求解.【解答】解:如图,∵∠2=∠5=100°,∠1=80°,∴∠1+∠2=180°,∴l1∥l2,∴∠3+∠6=180°,∴∠6=180°﹣∠3=75°,∴∠4=∠6=75°,故答案为:75°.【知识点】平行线的判定与性质13.如图,点F在∠BAC的平分线AP上,点E在AB上,且EF∥AC,若∠BEF=40°,则∠AFE=°.【答案】20【分析】根据平行线的性质和角平分线的性质,可以得到∠AFE的度数.【解答】解:∵AP平分∠BAC,∴∠BAP=∠CAP,∵EF∥AC,∴∠EF A=∠CAP,∴∠BAP=∠EF A,∵∠BEF=40°,∠BEF=∠BAP+∠EF A,∴∠BAP=∠EF A=20°,即∠AFE=20°,故答案为:20.【知识点】平行线的性质14.如图所示,把长方形纸片ABCD纸沿对角线折叠,若∠BDE=20°,那么∠BED=.【答案】140°【分析】由AD∥BC,利用“两直线平行,内错角相等”可得出∠CBD的度数,由折叠的性质可得出∠EBD 的度数,结合∠CBE=∠CBD+∠EBD可得出∠CBE的度数,由AD∥BC,利用“两直线平行,同旁内角互补”可求出∠BED的度数.【解答】解:∵AD∥BC,∴∠CBD=∠BDE=20°.由折叠的性质可知:∠EBD=∠CBD=20°,∴∠CBE=∠CBD+∠EBD=40°.∵AD∥BC,∴∠BED=180°﹣∠CBE=140°.故答案为:140°.【知识点】平行线的性质、翻折变换(折叠问题)15.如图,∠ABC的平分线BF与△ABC中∠ACB的相邻外角∠ACG的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E,若BD=9cm,DE=4cm,求CE的长为cm.【答案】5【分析】只要证明△BDF和△CEF为等腰三角形,即可解决问题.【解答】证明:∵BF、CF分别平分∠ABC、∠ACG,∴∠DBF=∠CBF,∠FCE=∠FCG,∵DE∥BC,∴∠DFB=∠CBF,∠EFC=∠FCG,∴∠DBF=∠DFB,∠FCE=∠EFC,∴BD=FD,EF=CE,∴△BDF和△CEF为等腰三角形;∵DF=BD,CE=EF,∴BD﹣CE=FD﹣EF=DE,∴EF=DF﹣DE=BD﹣DE=9﹣4=5(cm),∴EC=5(cm),故答案为:5.【知识点】等腰三角形的判定与性质、平行线的性质16.如图,三角形ABC中,D是AB上一点,F是BC上一点,E,H是AC上的点,EF的延长线交AB的延长线于点G,连接DE,DH,DE∥BC.若∠CEF=∠CHD,∠EFC=∠ADH,∠CEF:∠EFC=5:2,∠C=47°,则∠ADE的度数为.【答案】76°【分析】根据平行线的性质和三角形的内角和解答即可.【解答】解:∵∠CEF=∠CHD,∴DH∥GE,∴∠ADH=∠G,∵∠EFC=∠ADH,∵∠BFG=∠EFC,∴∠G=∠BFG,∴∠ABC=∠G+∠BFG=2∠EFC,∵∠CEF:∠EFC=5:2,∠C=47°,∴∠EFC=38°,∴∠ABC=76°,∵DE∥BC,∴∠ADE=∠ABC=76°,故答案为:76°.【知识点】平行线的性质17.如图,AB和CD相交于点O,∠C=∠COA,∠BDC=∠BOD,AP,DP分别平分∠CAO和∠BDC,若∠C+∠P+∠B=165°,则∠C的度数是.【答案】70°【分析】设∠C=∠AOC=∠BOD=∠BDO=x,∠CAP=∠P AB=y,∠P=z,则∠B=2y,构建方程组解决问题即可.【解答】解:∵∠C=∠COA,∠BDC=∠BOD,∠AOC=∠BOD,∴∠C=∠AOC=∠BOD=∠BDO,设∠C=∠AOC=∠BOD=∠BDO=x,∴∠B=∠CAO,设∠CAP=∠P AB=y,∠P=z,则∠B=2y,则有,解得,∴∠C=70°,故答案为70°.【知识点】三角形内角和定理18.如图,AD∥BC,∠ADC=120°,∠BAD=3∠CAD,E为AC上一点,且∠ABE=2∠CBE,在直线AC上取一点P,使∠ABP=∠DCA,则∠CBP:∠ABP的值为.【答案】2或4【分析】分两种情况进行解答,分别画出图形,结合图形,利用三角形内角和、平行线的性质,等量代换,得出各个角之间的倍数关系.【解答】解:如图,①当∠ABP1=∠DCA时,即∠1=∠2,∵∠D=120°,∴∠1+∠3=180°﹣120°=60°,∵∠BAD=3∠CAD,∠ABE=2∠CBE,AD∥BC,∴3∠3+3∠EBC=180°,∴∠3+∠EBC=60°,∴∠EBC=∠1=∠2=∠P1BE,∴∠CBP1:∠ABP1的值为2,②当∠ABP2=∠DCA时,∴∠CBP2:∠ABP2的值为4,故答案为:2或4.【知识点】平行线的性质三、解答题(本大题共8小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.如图,△ABC中,AD平分∠BAC,P为AD延长线上一点,PE⊥BC于E,已知∠ACB=80°,∠B=24°,求∠P的度数.【分析】在△ABC中,利用三角形内角和定理可求出∠BAC的度数,结合角平分线的定义可得出∠CAD的度数,在△ACD中,利用三角形内角和定理可求出∠ADC的度数,结合对顶角相等可得出∠PDE 的度数,再在△PDE中利用三角形内角和定理可求出∠P的度数.【解答】解:在△ABC中,∠ACB=80°,∠B=24°,∴∠BAC=180°﹣∠ACB﹣∠B=76°.∵AD平分∠BAC,∴∠CAD=∠BAC=38°.在△ACD中,∠ACD=80°,∠CAD=38°,∴∠ADC=180°﹣∠ACD﹣∠CAD=62°,∴∠PDE=∠ADC=62°.∵PE⊥BC于E,∴∠PED=90°,∴∠P=180°﹣∠PDE﹣∠PED=28°.【知识点】三角形内角和定理、角平分线的定义、对顶角、邻补角20.如图,在△ABC的三边上有D,E,F三点,点G在线段DF上,∠1与∠2互补,∠3=∠C.(1)若∠C=40°,求∠BFD的度数;(2)判断DE与BC的位置关系,并说明理由.【分析】(1)由∠1与∠2互补,利用“同旁内角互补,两直线平行”可得出AC∥DF,再利用“两直线平行,同位角相等”可求出∠BFD的度数;(2)由(1)可知∠BFD=∠C,结合∠C=∠3可得出∠BFD=∠3,再利用“内错角相等,两直线平行”即可找出DE∥BC.【解答】解:(1)∵∠1与∠2互补,∴AC∥DF,∴∠BFD=∠C=40°;(2)DE∥BD,理由如下:由(1)可知:∠BFD=∠C,∵∠C=∠3,∴∠BFD=∠3,∴DE∥BC.【知识点】平行线的判定与性质21.已知:如图∠AED=∠C,∠DEF=∠B,请你说明∠1与∠2相等吗?为什么?解:因为∠AED=∠C(已知)所以∥()所以∠B+∠BDE=180°()因为∠DEF=∠B(已知)所以∠DEF+∠BDE=180°()所以∥()所以∠1=∠2 ().【答案】【第1空】DE【第2空】BC【第3空】同位角相等,两直线平行【第4空】两直线平行,同旁内角互补【第5空】等量代换【第6空】EF【第7空】AB【第8空】同旁内角互补,两直线平行,【第9空】两直线平行,内错角相等【分析】先判断出DE∥BC得出∠B+∠BDE=180°,再等量代换,即可判断出EF∥AB即可.【解答】解:因为∠AED=∠C(已知)所以DE∥BC(同位角相等,两直线平行)所以∠B+∠BDE=180°(两直线平行,同旁内角互补)因为∠DEF=∠B(已知)所以∠DEF+∠BDE=180°(等量代换)所以EF∥AB(同旁内角互补,两直线平行)所以∠1=∠2 (两直线平行,内错角相等).故答案为:DE,BC,同位角相等,两直线平行,两直线平行,同旁内角互补,等量代换EF,AB,同旁内角互补,两直线平行,两直线平行,内错角相等.【知识点】平行线的判定与性质22.AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC=80°.(1)若∠ABC=50°,求∠BED的度数;(2)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,若∠ABC=120°,求∠BED的度数.【分析】(1)作EF∥AB,如图1,利用角平分线的定义得到∠ABE=25°,∠EDC=40°,利用平行线的性质得到∠BEF=∠ABE=25°,∠FED=∠EDC=40°,从而得到∠BED的度数;(2)作EF∥AB,如图2,利用角平分线的定义得到∠ABE=60°,∠EDC=40°,利用平行线的性质得到∠BEF=120°,∠FED=∠EDC=40°,从而得到∠BED的度数.【解答】解:(1)作EF∥AB,如图1,∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠ABC=25°,∠EDC=∠ADC=40°,∵AB∥CD,∴EF∥CD,∵∠BEF=∠ABE=25°,∠FED=∠EDC=40°,∴∠BED=25°+40°=65°;(2)作EF∥AB,如图2,∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠ABC=60°,∠EDC=∠ADC=40°,∵AB∥CD,∴EF∥CD,∵∠BEF=180°﹣∠ABE=120°,∠FED=∠EDC=40°,∴∠BED=120°+40°=160°.【知识点】平行线的性质、平移的性质23.南湖公园有很多的长方形草地,草地里修了很多有趣的小路,如图三个图形都是长为50米,宽为30米的长方形草地,且小路的宽都是1米.(1)如图1,阴影部分为1米宽的小路,长方形除去阴影部分后剩余部分为草地,则草地的面积为;(2)如图2,有两条宽均为1米的小路(图中阴影部分),求草地的面积.(3)如图3,非阴影部分为1米宽的小路,沿着小路的中间从入口E处走到出口F处,所走的路线(图中虚线)长为.【答案】【第1空】1470平方米【第2空】108米【分析】(1)结合图形,利用平移的性质求解;(2)结合图形,利用平移的性质求解;(3)结合图形,利用平移的性质求解.【解答】解:(1)将小路往左平移,直到E、F与A、B重合,则平移后的四边形EFF1E1是一个矩形,并且EF=AB=30,FF1=EE1=1,则草地的面积为:50×30﹣1×30=1470(平方米);故答案为:1470平方米;(2)小路往AB、AD边平移,直到小路与草地的边重合,则草地的面积为:(50﹣1)×(30﹣1)=1421(平方米);(3)将小路往AB、AD、DC边平移,直到小路与草地的边重合,则所走的路线(图中虚线)长为:30﹣1+50+30﹣1=108(米).故答案为:108米.【知识点】生活中的平移现象24.探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F,若∠ABC=50°,求∠DEF的度数.请将下面的解答过程补充完整,并填空解:∵DE∥BC∴∠DEF=.()∵EF∥AB,∴=∠ABC.()∴∠DEF=∠ABC.(等量代换)∵∠ABC=50°,∴∠DEF=.应用:如图②,直线AB,BC,AC两两相交,交点分别为A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F,若∠ABC=65°,则∠DEF=.【答案】【第1空】∠EFC【第2空】两直线平行,内错角相等【第3空】∠EFC【第4空】两直线平行,同位角相等【第5空】50°【第6空】115°【分析】探究:依据两直线平行,内错角相等;两直线平行,同位角相等,即可得到∠DEF=50°.应用:依据两直线平行,同位角相等;两直线平行,同旁内角互补,即可得到∠DEF=180°﹣65°=115°.【解答】解:探究:∵DE∥BC,∴∠DEF=∠EFC.(两直线平行,内错角相等)∵EF∥AB,∴∠EFC=∠ABC.(两直线平行,同位角相等)∴∠DEF=∠ABC.(等量代换)∵∠ABC=50°,∴∠DEF=50°.故答案为:∠EFC,两直线平行,内错角相等,∠EFC,两直线平行,同位角相等,50°;应用:∵DE∥BC,∴∠ABC=∠ADE=60°.(两直线平行,同位角相等)∵EF∥AB,∴∠ADE+∠DEF=180°.(两直线平行,同旁内角互补)∴∠DEF=180°﹣65°=115°.故答案为:115°.【知识点】平行线的性质、相交线25.如图,AB∥CD,∠ABE=120°.(1)如图①,写出∠BED与∠D的数量关系,并证明你的结论;(2)如图②,∠DEF=2∠BEF,∠CDF=∠CDE,EF与DF交于点F,求∠EFD的度数;(3)如图③,过B作BG⊥AB于G点,∠CDE=4∠GDE,求的值.【分析】(1)如图①,延长AB交DE于点F,根据平行线的性质即可得结论∠BED+∠D=120°;(2)设∠BEF=α,∠CDE=β,可得∠DEF=2α,∠DEB=3α,∠CDE=3β,∠EDF=2β,结合(1)可知∠BED+∠CDE=120°,进而可得结论;(3)根据已知条件和三角形的外角可得∠G+30°=∠E+(120°﹣∠E),进而可得结论.【解答】解:(1)结论:∠BED+∠D=120°,证明:如图①,延长AB交DE于点F,∵AB∥CD,∴∠BFE=∠D,∵∠ABE=120°,∴∠BFE+∠BED=∠ABE=120°,∴∠D+∠BED=120°;(2)如图②,∵∠DEF=2∠BEF,∠CDF=∠CDE,即∠CDE=3∠CDF,设∠BEF=α,∠CDF=β,∴∠DEF=2α,∠DEB=3α,∠CDE=3β,∠EDF=2β,由(1)知:∠BED+∠CDE=120°,∴3α+3β=120°,∴α+β=40°,∴2α+2β=80°,∴∠EFD=180°﹣∠DEF﹣∠EDF=180°﹣(2α+2β)=180°﹣80°=100°,答:∠EFD的度数为100°;(3)如图③,∵BG⊥AB,∴∠ABG=90°,∵∠ABE=120°.∴∠GBE=∠ABE﹣∠ABG=30°,∵∠CDE=4∠GDE,∴∠GDE=∠CDE,∵∠G+∠GBE=∠E+∠GDE,∴∠G+30°=∠E+∠CDE,由(1)知:∠BED+∠CDE=120°,∴∠CDE=120°﹣∠E,∴∠G+30°=∠E+(120°﹣∠E),∴∠G=∠E,∴=.【知识点】平行线的性质、垂线26.如图①,直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,点P在直线EF上,连结P A、PB.猜想:如图①,若点P在线段CD上,∠P AC=15°,∠PBD=40°,则∠APB的大小为度.探究:如图①,若点P在线段CD上,直接写出∠P AC、∠APB、∠PBD之间的数量关系.拓展:如图②,若点P在射线CE上或在射线DF上时,直接写出∠P AC、∠APB、∠PBD之间的数量关系.【答案】55【分析】猜想:如图①,根据平行线的性质和∠P AC=15°,∠PBD=40°,即可得∠APB的大小;探究:如图①,结合猜想即可写出∠P AC、∠APB、∠PBD之间的数量关系;拓展:如图②,分两种情况画出图形,当点P在射线CE上或在射线DF上时,结合探究过程即可写出∠P AC、∠APB、∠PBD之间的数量关系.【解答】解:猜想:如图①,过点P作PG∥l1,∵l1∥l2,∴l1∥l2∥PG,∴∠APG=∠P AC=15°,∠BPG=∠PBD=40°,∴∠APB=∠APG+∠BPG=∠P AC+∠PBD=15°+40°=55°,∴∠APB的大小为55度,故答案为:55;探究:如图①,∠P AC=∠APB﹣∠PBD,理由如下:∵l1∥l2∥PG,∴∠APG=∠P AC,∠BPG=∠PBD,∴∠APB=∠APG+∠BPG=∠P AC+∠PBD,∴∠P AC=∠APB﹣∠PBD;拓展:∠P AC=∠PBD﹣∠APB或∠P AC=∠APB+∠PBD,理由如下:如图,当点P在射线CE上时,过点P作PG∥l1,∴l1∥l2∥PG,∴∠APG=∠P AC,∠BPG=∠PBD,∴∠P AC=∠APG=∠BPG﹣∠APB,∴∠P AC=∠PBD﹣∠APB;当点P在射线DF上时,过点P作PG∥l1,∴l1∥l2∥PG,∴∠APG=∠P AC,∠BPG=∠PBD,∴∠P AC=∠APG=∠APB+∠BPG,∴∠P AC=∠APB+∠PBD,综上所述:当点P在射线CE上或在射线DF上时,∠P AC=∠PBD﹣∠APB或∠P AC=∠APB+∠PBD.【知识点】平行线的性质31。
第7 章平面图形的认识(二)一、选择题(本大题共 6 小题,每小题 4 分,共 24 分;在每个小题列出的四个选项中,只有一项符合题意)1.如图7-Z-1 所示的四个图形中,∠1和∠2是同位角的是( )图 7-Z-1A.②③B.①②③C.①②④D.①④2.下列图形中,不能通过其中一个四边形平移得到的是( ),A) ,B),C) ,D)图 7-Z-23.如图 7-Z-3,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C,D,E,则下列说法不正确的是( )图 7-Z-3A.AC 是△ABC 的高 B.DE 是△BCD 的高C.DE 是△ABE 的高 D.AD 是△ACD 的高4. 如图7-Z-4,BE∥AF,D 是AB 上一点,且DC⊥BE 于点C,若∠A=35°,则∠ADC 的度数为( )图7-Z-4A.105°B.115°C.125°D.135°5.若一个多边形的每一个外角都是24°,则此多边形的内角和为( )A.2160°B.2340°C.2700°D.2880°6.将一张长方形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360°B.540°C.720°D.900°二、填空题(本大题共 6 小题,每小题 5 分,共 30 分)7.如图 7-Z-5,直线AB,CD 被直线EF 所截,若要AB∥CD,需增加条件:.(填一个即可)图 7-Z-58.若一个三角形的三边长分别为2,3,x,则x 的值可以为.(只需填一个整数)9.如图7-Z-6,点D,E 分别在AB,BC 上,DE∥AC,AF∥BC,∠1=70°,则∠2=°.图 7-Z-610.如图7-Z-7,已知AB∥CD,直线EF 与AB,CD 分别交于点E,F,EG 平分∠BEF.若∠1=50°,则∠2的度数为.图 7-Z-711.如图7-Z-8 所示,∠A+∠B+∠C+∠D+∠E+∠F=.图 7-Z-812.某中学校园内有一块长30 m,宽22 m 的草坪,中间有两条宽2 m 的小路,把草坪分成了4 块,如图7-Z-9 所示,则草坪的面积为.图 7-Z-9三、解答题(共 46 分)13.(8 分)如图 7-Z-10,在方格纸内将△ABC 水平向右平移 4 个单位长度得到△A′B′C′(每个小方格的边长为 1 个单位长度).(1)画出△A′B′C′;(2)画出AB 边上的中线CD 和高线CE(利用网格和直尺画图);(3)△BCD 的面积为.图 7-Z-1014.(8 分)如图 7-Z-11,已知∠1=∠2,∠B=100°,求∠D 的度数.图 7-Z-1115.(8 分)已知一个多边形的所有内角的和与它的外角之和为1620°,求这个多边形的边数n..(10 分)如图 7-Z-12,四边形ABCD 中,∠BAD=100°,∠BCD=70°,点M,N 分别在AB,BC 上,将△BMN 沿MN 翻折,得到△FMN.若MF∥AD,FN∥DC,求∠B 的度数.图 7-Z-1217.(12 分)如图 7-Z-13,在△ABC 中,AD⊥BC 于点D,AE 平分∠BAC,∠B=70°,∠C=30°.求:(1)∠BAE 的度数; (2)∠DAE 的度数.图 7-Z-13教师详解详析1.C [解析] 根据同位角的定义进行判断.2.D 3.C 4.C 5. B6.D [解析] ①将长方形沿对角线剪开,得到两个三角形,两个多边形的内角和为180°+180°=360°;②将长方形从一顶点剪向对边,得到一个三角形和一个四边形,两个多边形的内角和为180°+360°=540°;③将长方形沿一组对边剪开,得到两个四边形,两个多边形的内角和为360°+360°=720°.故选D.7.答案不唯一,如∠EGB=∠EHD 等8.答案不唯一,如 2 或3 或4,只要填其中一个即可[解析] 根据三角形的三边关系“三角形两边之和大于第三边;三角形两边之差小于第三边”得 3-2<x<3+2,即 1<x<5.因为x 为整数,所以x=2 或 3 或 4.9.70 [解析] 因为DE∥AC,所以∠C=∠1=70°.又因为AF∥BC,所以∠2=∠C=70°.故答案为 70.10.65° [解析] 因为AB∥CD(已知),所以∠1+∠BEF=180°(两直线平行,同旁内角互补).又因为∠1=50°(已知),所以∠BEF=130°(等式的性质).又因为EG 平分∠BEF(已知),所以∠FEG=∠BEG=65°(角平分线的定义).因为AB∥CD(已知),所以∠2=∠BEG=65°(两直线平行,内错角相等).11.360°12.560 m2 [解析] (30-2)×(22-2)=560(m2).13.解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,CD,CE 即为所求.(3)414.解:由∠1=∠AEF,∠1=∠2,得∠AEF=∠2,所以AB∥CD(同位角相等,两直线平行),所以∠B+∠D=180°(两直线平行,同旁内角互补).因为∠B=100°,所以∠D=80°.15.解:根据题意,得(n-2)·180°+360°=1620°,解得n=9.16.解:因为MF∥AD,FN∥DC,所以∠BMF=∠A=100°,∠BNF=∠C=70°(两直线平行,同位角相等).因为△BMN 沿MN 翻折,得到△FMN,1所以∠BMN=2∠BMF=50°,1∠BNM=2∠BNF=35°.在△BMN 中,∠B=180°-(∠BMN+∠BNM)=180°-(50°+35°)=180°-85°=95°.17.解:(1)因为∠B+∠C+∠BAC=180°,所以∠BAC=180°-∠B-∠C=180°-70°-30°=80°.因为AE 平分∠BAC,1所以∠BAE=2∠BAC=40°.(2)因为AD⊥BC,所以∠ADB=90°.而∠ADB+∠B+∠BAD=180°,所以∠BAD=180°-∠ADB-∠B=20°,所以∠DAE=∠BAE-∠BAD=40°-20°=20°.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
第七章平面图形的认识(二)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10小题,每小题3分,共30分。
在每小题列出的四个选项中只有一项是符合题意的)1. (自编题)在具备下列条件的线段a,b,c中,一定能组成一个三角形的是()A、a+b>cB、a-b<cC、a:b:c=1:2:3D、a=b=2c解析:由三角形的三边关系:“两边之和大于第三边、两边之差小于第三边”,进行判别。
答案:D2、(原创题)如果三角形的一个角的度数等于另两个角的度数之和,那么这个三角形一定是()(A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)等腰三角形解析:由三角形内角和为108度,易知,这个角的度数为90度。
答案:B3、(原创题)一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线解析:由三角形的高、中线、角平分线的特征可知,选A。
答案:A4、(原创题)下列说法不正确的是()A、同旁内角相等,两直线平行B、内错角相等,两直线平行C、同位角相等,两直线平行D、若两个角的和是180°,则这两个角互补解析:由两直线平行的条件及补角的意义可知,选A。
答案:A5、(自编题)如图7-1,在△ABC中,D、E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有()7-1A.4对 B.5对 C.6对 D.7对解析:各个三角形的高是点A到直线BC的距离,若底相等,则面积相等。
进行分类,可得4对三角形面积相等。
答案:A6、(原创题)若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是()A.18 B.15 C.18或15 D.无法确定解析:进行分类,有两种情形:7、7、4;4、4、7。
于是得,其周长为18或15 。
答案:C7、(自编题)如图7-2,△ABC经过平移到△GHI的位置,则有()A、点C和点H是对应点B、线段AC和GH对应C、∠A和∠G对应D、平移的距离是线段BI的长度7-2解析: 由平移的性质则知,只有C 是正确的。
七年级数学下册第7章平面图形的认识(二)提高练习(无答案)(新版)苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学下册第7章平面图形的认识(二)提高练习(无答案)(新版)苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学下册第7章平面图形的认识(二)提高练习(无答案)(新版)苏科版的全部内容。
(A )D CB A(B )D CBA (C )D CBA(D )DCB A第七章 平面图形的认识(二) 提高练习班级:________姓名:___________学号:______得分:__________一、选择题:(每题3分,共30分)1、下列图形中,不能通过其中一个四边形平移得到的是: ( )2、在下列各图的△ABC 中,正确画出A C边上的高的图形是:( )3、如图,在宽为20m,长为30m 的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为:( ) A 、600m 2 ﻩﻩB 、551m 2ﻩﻩﻩC 、550m 2ﻩﻩD 、500m 24、将一张长方形纸片如图所示折叠后,再展开.如果∠1=56°,那么∠2等于:( )A 、56° ﻩﻩB 、68°ﻩC 、62°ﻩﻩD 、66°5、a、b 、c 、d四根竹签的长分别为2cm 、3cm 、4c m、6cm 。
从中任意选取三根首尾依次相接围成不同的三角形,则围成的三角形共有: ( ) A 、1个 ﻩ ﻩB 、2个 C 、3个ﻩﻩ D 、4个6、若一个多边形每一个外角都与它的相邻的内角相等,则这个多边形的边数是:( )A 、6 ﻩ ﻩB 、5ﻩﻩﻩC 、4 ﻩ ﻩD 、37、下列叙述中,正确的有:(D )D第3题图21第4题图( )①三角形的一个外角等于两个内角的和;②一个五边形最多有3个内角是直角;③任意一个三角形的三条高所在的直线相交于一点,且这点一定在三角形的内部;④ΔABC 中,若∠A=2∠B=3∠C,则这个三角形ABC 为直角三角形. A 、0个ﻩ B 、1个ﻩ ﻩC、2个ﻩ ﻩ D 、3个 8、如图,OP∥QR∥ST,则下列各式中正确的是:( )A、∠1+∠2+∠3=180° ﻩﻩ ﻩB 、∠1+∠2-∠3=90° C 、∠1-∠2+∠3=90°ﻩ D、∠2+∠3-∠1=180°9、如图是一块电脑主板的示意图,每一转角处都是直角,数据如图所示,则该主板的周长是:( )A、88mm ﻩﻩB 、96mm C 、80m mﻩ D 、84m m10、一幅三角板如图所示叠放在一起,则图中∠α的度数为:( )A 、75° ﻩﻩB 、60°ﻩﻩﻩ C、65°ﻩD 、55°二、填空题(每题2分,共20分)1、如图,面积为6cm 2的直角三角形ABC 沿B C方向平移至三角形D EF 的位置,平移距离是BC 的2倍,则图中四边形ACED 的面积为_______ cm 2.2、如图,l 1∥l 2,A B⊥l 2,垂足为O,BC 交l 2于点E,若∠ABC =140°,则∠1=_____°. 3、光线a 照射到平面镜C D上,然后在平面镜A B和CD 之间来回反射,这时光线的入射角等于反射角。
第七章平面图形的认识(二)一、选择题(每小题2分,共20分)1.如图,Z1与Z2是()A.对顶角B.同位角C.内错角D.同旁内角【答案】B【解析】试题分析:在三线八角中,在截线的同侧,并瓦在被截线的同一方的两个角是同位角,所以Z1与Z2是同位角,故选:B.考点:三线八角.2.如图,直线AB、CD相交于点O, Zl=80°,如果DE〃AB,那么ZD的度数是()A. 80°B. 90°C. 100°D. 110°【答案】C【解析】・・・Zl=80。
,AZBOD=Z1=80°VDE/7AB,.•.ZD=180-ZBOD=100°,故选C.3.小明和小丽是同班同学,小明的家距学校2千米远,小丽的家距学校5千米远,设小明家距小丽家x千米远,贝!Jx的值应满足()A. x = 3B. x = 7C. x = 3或x = 7D. 3<x<7【答案】D【解析】试题分析:设小明家距小丽家x千米远,根据题意得:5-2<x<5+2,解得:3<x<7・故选:D.考点:不等式组的应用.4•如图是“福娃欢欢啲五幅图案,②、③、④、⑤屮可以通过平移图案①得到的是()① ② ③ ④ ⑤A.②B.③C.④D.⑤【答案】D【解析】A选项:②是rh旋转得到,故错误;B选项:③是市轴对称得到,故错误;c选项:④是由旋转得到,故错误;D选项:⑤形状和大小没有变化,由平移得到,故正确.故选D.5.在AABC屮,= -ZB = -2LC,贝I仏ABC是( )3 、A.钝角三角形B.直角三角形C.锐角三角形D.无法确定【答案】A【解析】设ZA=x°,则ZB=3x° , ZC=5x°・由ZA+ZB+ZC=180° ,得:x+3x+5x=180,所以x二20,故ZC二20° X5=100° ,•••△ABC是钝角三角形.故选A.6.如图,若有一条公共边的两个三角形称为一对“共边三角形则图中以BC为公共边的“共边三角形''有A. 2对B. 3对C. 4对D. 6对【答案】B【解析】以BC为公共边的“共边三角形”有:ABDC^ABEC. ZXBDC与ABAC、ABEC与厶BAC三对. 故选B.7.如图,直线乙A= 125。
第7章平面图形的认识(二) 单元综合卷(B)一、选择题。
(每题3分,共21分)l.如图,△DEF经过怎样的平移得到△ABC ( )A.把△DEF向左平移4个单位,再向下平移2个单位B.把△DEF向右平移4个单位,再向下平移2个单位C.把△DEF向右平移4个单位,再向上平移2个单位D.把△DEF向左平移4个单位,再向上平移2个单位2.如图,直线a、b被直线c所截,下列说法正确的是( )A.当∠1=∠2时,一定有a∥b B.当a∥b时,一定有∠1=∠2C.当a∥b时,一定有∠1+∠2=90︒D.当∠1+∠2=180︒时,一定有a∥b 3.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么这两次拐弯的角度可能是( )A.先向左转130︒,再向左转50︒B.先向左转50︒,再向右转50︒C.先向左转50︒,再向右转40︒D.先向左转50︒,再向左转40︒4.现有3 cm、4 cm、7 cm、9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )A.1个B.2个C.3个D.4个5.将一张长方形纸片如图所示折叠后,再展开,如果∠1=56︒,那么∠2等于( ) A.56︒B.68︒C.62︒D.66︒6.如图所示,一块试验田的形状是三角形(设其为△ABC),管理员从BC边上的一点D出发,沿DG→CA→BD的方向走了一圈回到D处,则管理员从出发到回到原处在途中身体( )A.转过90︒B.转过180︒C.转过270︒D.转过360︒7.如图,在长方形网格中,每个小长方形的长为2、宽为1,A、B两点在网格点上,若点C也在网格格点上,以A、B、C为顶点的三角形的面积为2,则满足条件的点C的个数是( )A.2个B.3个C.4个D.5个二、填空题。
(每空3分,共21分)8.如图,(1)∠B=∠1,那么根据,可得AD∥BC;(2) ∠D=∠1,那么根据,可得AB∥CD.9.若(a一1)2+︱b—2︱=0,则a、b为边长的等腰三角形的周长为.10.如图,直线a∥b,EF⊥CD于点F,∠2=65︒,则∠1的度数是.11.若一个三角形的三个内角的度数之比为2:3:4,则相应的外角度数的比是.12.如图,将边长为3个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,则四边形ABFD的周长为.13.将一副三角板如图所示摆放(其中一块三角板的一条直角边与另一块三角板的斜边摆放在一直线上),那图中∠a= .14.某机器零件的横截面积如图所示,按要求线段AB和DC的延长线相交成直角才算合格.若一名工人测得∠A=23︒,∠D=31︒,∠AED=143︒,则该零件(填“合格”或“不合格”).三、解答题。
第七章平面图形的认识(二) 提高测试卷 (3)(总分:100分时间:60分钟) 得分:_________一、选择题(本题共10小题,每小题2分,共20分)1.如图,下列说法错误的是( )A.∠1和∠3是同位角B.∠1和∠5是同位角C.∠1和∠2是同旁内角D.∠5和∠6是内错角2.如图,直线a、b与直线c相交,给出下列条件:①.∠1=∠2.∠3=∠6;③∠4+∠7= 1800;④.∠5+∠3=1800.其中能判断e#6的是( )A.①②③④B.①③④C.①③D..②④3.在下列实例中,属于平移过程的个数有( )①时针运行过程;②电梯上升过程;③火车直线行驶过程;④地球自转过程;⑤生产过程中传送带上的电视机的移动过程.A.1个B.2个C.3个D.4个4.(2010·山西)现有四根木棒,长度分别为4 cm,6 cm,8 cm,10 cm,从中任取三根木棒,能组成三角形的个数为( )A. 1个B.2个C.3个D.4个5.(2010·荆州)一根直尺EF压在三角板300的角∠BAC上,与两边AC,AB交于M、N,那么∠CME+∠BNF是( )A.1500B.1800C.1350 D.不能确定6.一个多边形的每个内角都相等,每个内角与相邻外角的差为1000,那么这个多边形是( )A.七边形B.八边形C.九边形D.十边形7.(2010.聊城)如图,l∥m,∠1=1150, ∠2=950,则∠3= ( )A.1200B.1300C.1400 D.15008.如图所示,能经过平移得到左边的图形的是( )9.若一个三角形中,三个内角的度数比是1:2:3,则这个三角形中最大的内角度数为( )A.300B.450C.600D.90010.一个n边形削去一个角后变成(n+1)边形,其内角和变为2 5200,则原九边形的边数是( )A.7 B.10 C.14 D.15二、填空题(本题共8小题,每小题3分,共24分)11.(2010·衡阳)如图所示,AB∥CD,∠ABE=660,∠D=540,则∠E的度数为_________.12.(2010·三明)如图,已知∠C=1000,若增加一个条件,使得AB∥CD,试写出符合要求的一个条件:____________________________________.13.如图,是一块电脑主板的示意图,每一转角处都是直角,数据如图所示,则该主板的周长是_________.14.(2010·日照)如图,C岛在A岛的北偏东500方向,C岛在B岛的北偏西400方向,则从C岛看A、B两岛的视角∠ACB等于_________.15.若正多边形的一个外角等于360,那么这个正多边形的内角和等于_________度.16.如图,在△ABC中,∠ABC和∠ACB的外角平分线交于D,∠A=400,那么∠D=_________.17.若三角形的三边a、b、c分别是3 cm、(x-1)cm、6 cm,则x应满足的取值范围是_________.18.从一个多边形的一个顶点出发,作了15条对角线,则这个多边形的内角和为_________度.三、解答题(本题共8小题,每小题7分,共56分)19.如图,AB∥CD,HP平分∠DHF,若∠AGH=800,求∠DHP的度数.20.如图,AD∥BC,∠A=∠C,那么A B与DC平行吗?为什么?21.如图所示,将方格纸中的图形向右平移4格,再向上平移3格,画出平移后的图形.22.如图,在△ABC中,BD⊥AC,垂足为D,∠A=400,∠ABC=∠C,求∠DBC的度数.23.如图,已知DC是△ABC中∠BCA相邻外角的平分线,试说明∠ABC >∠A成立的理由.24. 已知正规边形每个内角与它的外角的差为900,求这个多边形内角的度数和边数.25. 如图,某工人在加工如图所示的零件时,规定∠A=900,∠B=320, ∠C=210,在加工过程中,他量得∠BDC=1480,就断定该零件不合格,你能运用三角形的有关知识说明不合格的理由吗?26. 有一位同学在数学竞赛辅导书上看到这样一道题:“已知△ABC的三边长分别是a、b、c, 且a、b、c的值满足等式|b+c-2a|f+(b+c-5)2=0,求b的取值在什么范围?”你能解答这道题吗?参考答案一、1. B 2. B 3. C 4. C 5. A 6. C 7. D 8. C 9. D 10. D二、11. 12012. ∠FEB=1000等,答案不唯一13. 88mm14. 90015.144016. 70017. 4<x<1018. 2880三、19. 50020. AB与DC平行,理由略21. 略22.∠DBC=20023.因为∠ABC>∠BCD,∠ECD>∠A, 又因∠BCD=∠ECD,所以∠ABC>∠A 24.内角为1350,边数为825.若合格,应满足∠BDC=∠A+∠B+∠C=1430,而1480≠143026.54<b<154初中数学试卷马鸣风萧萧。
初中数学试卷
灿若寒星整理制作
第七章平面图形的认识(二) 单元提优训练
(时间:90分钟总分:100分)
一、填空题(每题2分,共30分)
1.如图,l1∥l2.若∠2=2∠1,则∠1=_______,∠2=_______.
2.小明不小心将形状是梯形的玻璃打碎成两部分(如图).若量得上半部分的∠A=123°,∠D=104°,则原梯形玻璃下半部分的∠B=_______,∠C=_______.
3.如图,用吸管吮吸易拉罐内的饮料时,吸管与易拉罐上部夹角∠1=74°,那么吸管与易拉罐下部夹角∠2=_______ .
4.如图,AB∥CD,∠A=35°,∠C=78°,则∠M=_______.
5.如图,CD平分∠ACB,DE∥BC,∠AED=80°,则∠EDC=_______.
6.如图,AB∥CD,∠BAE=40°,∠ECD=62°,EF平分∠AEC,则∠AEF=_______.7.若—个多边形的每个外角都是72°,则这个多边形是_______边形,它的内角和为_______.
8.如图,已知△ABC的∠ABC和∠ACB的外角平分线交于点D,∠A=40°,则∠D=_______.
9.三角形两边的长分别为1和8.若该三角形第三边长为偶数,则该三角形的周长为_______.
10.如图,AB∥CD,直线MN与AB、CD分别交于E、F,GE⊥MN,∠1=130°,则
∠2的度数为_______.
11.如图,等边三角形ABC沿边AB的方向平移到△BDE的位置,则图中∠CBE=_______,连接CE后,线段CE与AD的关系是_______.
12.如图,AB∥CD,∠D=80°,∠CAD:∠BAC=3:2,则∠CAD=_______.
13.如图,把△ABC平移到△DEF的位置,若AB=5 cm,则DE=_______;如果∠A=65°,∠B=30°,那么∠F=_______.
14.如图,把△ABC沿RS的方向平移到△DEF的位置,则AB∥_______,BC=_______;如果∠A=80°,那么∠D=_______.
15.如图,已知DE∥AB,∠ACD=75°,∠B=25°,则∠ACB的度数为_______.二、选择题(每题2分,共22分)
16.经过平移,图形上的每个点都沿同一方向移动
了一定距离,下列说法中正确的是( )
A.不同的点移动的距离不同
B.不同的点移动的距离相同
C.不同的点移动的距离可能相同,也可能不同
D.无法确定
17.已知在△ABC中有两个角的大小分别为40°和70°,则这个三角形是( ) A.直角三角形B.等边三角形
C钝角三角形D.等腰三角形
18.如图,AB∥CD,则α、β、γ三角之间的关系是( )
A.α+β=180°-γ
B.α+β=180°+γ
C.α+β+γ=360°
D.α+β+γ=270°
19.下列角平分线中互相垂直的是( )
A.对顶角的平分线
B.两条平行线被第三条直线所截,内错角的平分线
C.两条平行线被第三条直线所截,同位角的平分线
D.两条平行线被第三条直线所截,同旁内角的平分线
20.已知等腰三角形的一个底角是30°,则这个三角形的顶角等于( )
A.150°B.120°C.75°D.30°
21.下列说法:①钝角三角形有两条高在三角形内部;②三角形的三条高最多有两条不在
三角形内部;③三角形的三条高的交点不在三角形内部,就在三角形外部;④钝角三角形三个内角的平分线的交点一定不在三角形内部.其中正确的个数为( )
A.1个B.2个C.3个D.4个
22.下列给出的三条线段长度的相关条件能组成一个三角形的是( )
A.4,11,7 B.1:4:6
C.11
2
,2,3
1
2
D.
1
2
,
1
3
,
1
5
23.下列叙述错误的是( )
A.△ABC中,∠A +∠B<∠C,此三角形不一定为钝角三角形
B.三角形可分为锐角三角形、直角三角形和钝角三角形
C.若三角形的一个外角小于与它相邻的一个内角,则这个三角形为钝角三角形
D.直角三角形只有一条高在三角形内
24.等腰三角形的一边长等于5,另一边长等于9,它的周长是( )
A.19 B.14 C.23 D.19或23
25.如图,∠1=∠2,∠DAB=∠BCD.给出下列结论:①AB∥DC;②AD∥BC;③∠B=∠D;④∠D=∠DAC.其中,正确的结论有( )
A.1个B.2个
C.3个D.4个
26.如图,∠1+23=90°,∠2-∠3=90°,∠4=115°,那么23的度数是( ) A.45°B.65°C.60°D.75°
三、解答题(共48分)
27.(5分)如图,∠A+∠B=180°,∠D-∠C=25°.求∠C、∠D的度数.
28.(5分)如图,∠A=70°,∠1=70°,∠2 =110°,你能判定图中哪些直线平行?写出推理过程.
29.(5分)如图,AD∥BC,∠A=96°,∠D=104°,BE、CE分别是∠ABC和∠BCD
的角平分线,求∠BEC的度数.
30.(6分)如图,AB∥CD,∠1:∠2:∠3=1:2:3.
(1)求∠3的度数;
(2)∠EBA与∠2相等吗?为什么?
31.(6分)如图,把一张长方形纸片ABCD沿EF折叠,C点落在C'处,D点落在D'处,ED'交BC于点G.已知∠EFG=50°,试求∠DEG与∠BGD'的度数.
32.(6分)如图,AD⊥BC,EG⊥BC,垂足分别为D、G,∠E=∠AFE.试说明AD是△ABC的角平分线.
33.(7分)如图,CE平分∠ACD,F为CA延长线上一点,FG∥CE交AB于点G,∠ACD=100°,∠AGF=20°,你能求出∠B的度数吗?若能,请写出求解过程;若不能,请说明理由.
34.(8分)如图,O是△ABC的3条角平分线的交点,OG⊥BC,垂足为G.
(1)猜想∠BOC与90°+1
2
∠BAC之间的数量关系,并说明理由;
(2)∠DOB与∠GOC相等吗?为什么?
参考答案
一、1.60°120°2.57°76°3.74°4.43°5.40°6.51°
7.五540°8.70°9.17 10.40°11.60°CE∥AD且CE=1
2
AD
12.60°13.5cm 85°14.DE EF80°15.80°
二、16.B 17.D 18.B 19.D20.B21.A22.D 23.A 24.D 25.C 26.B
三、27.∠C=77.5°,∠D=102.5°28.AC∥DE,AB∥EF,推理略
29.∠BEC=100°30.(1)∠3=108°(2)∠EBA=180°-∠1-∠2=180°-36°-72°=72°,故∠EBA=∠2.31.∠DEG=100°,∠BGD'=80°32.因为AD ⊥BC,EG⊥BC,所以AD∥EG,从而∠E=∠CAD,∠AFE=∠BAD.由∠E=∠AFE知,∠CAD=∠BAD,即AD平分∠BAC,所以AD是△ABC的角平分线.33.∠B=30°34.(1)相等,理由略(2)相等,理由略。