2011年天津高考数学试题及答案(文科)
- 格式:doc
- 大小:990.50 KB
- 文档页数:10
参考答案 1.A提示:i 22i24)i 1)(i 1()i 1)(i 31(i 1i 31-=-=+-+-=--.2.D提示:如下图,画可行域(阴影部分),通过平移与03=-y x 平行的直线可知,y x z -=3在(2,2)A 点有最大值,故4max =z .也可将三角形区域的其它顶点坐标代入目标函数3z x y=-中去求值查对,看看自己求得的值是否三个值中最大的,如果不是最大的,那么求解必有错.3.C提示:根据条件执行3次,过程如下:第一次:7=x ;第二次:4=x ;第三次:1=x ;不满足条件输出2=y ,故选(C).4.C提示:经化简:}2|{>∈=x x A R ,则}02|{<>=⋃x x x B A 或,又{}0,2,C x x x =∈<>R或故C B A =⋃,故选(C ).5.B提示:首先确定:1,1,1<<>c b a ,又显然6.3log 2.3log 44<,故选(B).6.B提示:双曲线的左顶点为A )0,(a -,抛物线的焦点为)0,2(p B ,则42=+pa ;双曲线的一条渐近线为x ab y =,把)1,2(--代入后得b a 2=,而抛物线的准线为22-=-=px ,由此解得1,2==b a ,则5=c ,故双曲线的焦距为52.7.A提示:由6πT =,得31=ω,当π2x =时,1ππ2π,322k k ϕ⨯+=+∈Z ,解得π2π,3k k ϕ=+∈Z ,又πϕ-<≤ππ=3ϕ,所以,即1π()2sin()33f x x =+,π1ππ2π2π,2332k x k k -≤+≤+∈Z ,)(x f 单调递增,解得5π6π2k -≤x ≤π6π,2k k +∈Z ,令0=k ,则)(x f 在区间5ππ,22⎡⎤-⎢⎥⎣⎦上是增函数,那么)(x f 在区间[2π,0]-上是增函数.此题也可验证选项的正确性,如对于选项(A ),若2π0x -≤≤,则π1ππ3333x -≤+≤,)(x f 为增函数,故选(A). 8.B提示:解1)1()2(2≤---x x ,得21≤≤-x ,则⎩⎨⎧>-<-≤≤--=,或,,,211212)(2x x x x x x f 如下图,由图像可看出函数c y =与函数()f x 有两个交点时,c 的取值范围为]2,1(]1,2(⋃--.故应选(B ).9.3提示:{}1<3A x x <=∈R |-,则{}0,1,2A ⋂=Z ,那么A ⋂Z 中所有元素的和等于3.10.4提示:根据所给的几何体的三视图,可以想到这个几何体是一个如下图所示的复合体.底座是一个长、宽、高分别为2,1,1的长方体,上面是一个长、宽、高分别1,1,2的长方体,可得422=+=V .11.110提示:⎪⎩⎪⎨⎧=⨯⨯+=+,,20219202016211d a d a 解得⎩⎨⎧-==.2201d a ,则110291010110=⨯⨯+=d a S .12.18提示:因为()222log log log a b ab +=≥1,所以ab ≥2.而ba 93+≥b a b a 232932+=⋅≥ab2232当且仅当⎩⎨⎧==,2,93b a b a 即b a 2=时,取等号.又ab2232≥1832222=⨯,故最小值为18.也可由ab ≥2,得到a ≥2b,那么b a 93+≥b b 2233+≥bb 22332⋅≥18,当且仅当1=b 时,取等号.13.27 提示:设,x BE =则,2,4x FB x AF ==由圆的相交弦定理得FC DF FB AF ⋅=⋅,解得.21=x 由切割线定理知,2,CE EB EA =⋅解得27=CE . 14.5提示:建立如下图所示的坐标系,则),0,2(A 设),0(),,0(a C y P ,则),1(a B ,那么),1(),,2(y a PB y PA -=-=,)43,5(3y a -=+,从而22)43(25|3|y a PB PA -+=+≥25,当且仅当a y 43=时,取等号.15.解:(Ⅰ)4,6,6.(Ⅱ)(i )得分在区间[20,30)内的运动员编号为345101113,,,,,.A A A A A A 从中随机抽取2人,所有可能的抽取结果有:343531*********{,},{,},{,},{,},{,},{,},A A A A A A A A A A A A 410{,}A A ,411413510511513101110131113{,},{,},{,},{,},{,},{,},{,},{,}A A A A A A A A A A A A A A A A ,共15种.(ii )“从得分在区间[20,30)内的运动员中随机抽取2人,这2人得分之和大于50”(记为事件B )的所有可能结果有454104115101011{,},{,},{,},{,},{,}A A A A A A A A A A ,共5种.所以51().153P B ==16.解:(Ⅰ)由,2,B C b ==可得2c b a ==.所以222222331cos .23a a a b c a A bc +-+-===(Ⅱ)因为1cos ,(0,π)3A A =∈,所以sin 3A ==. 27cos 22cos 1.9A A =--=-故sin 22sin cos 9A A A ==所以πππ7c 44A A⎛⎫+= ⎪⎝⎭17.(Ⅰ)证明:连接,BD OM ,如下图,在平行四边形ABCD 中,因为O 为AC 的中点,所以O 为BD 的中点,又M 为PD 的中点,所以PB //MO .因为PB ⊄平面ACM ,MO ⊂平面ACM ,所以PB //平面ACM .(Ⅱ)证明:因为45ADC ∠=︒,且1A D A C ==,所以90DAC ∠=︒,即AD AC ⊥,又PO ⊥平面ABCD ,AD ⊂平面ABCD ,所以,PO AD AC PO O ⊥⋂=而,所以AD ⊥平面PAC .(Ⅲ)解:取DO 中点N ,连接MN ,AN ,因M 为PD 的中点,所以MN //PO ,且11,2MN PO PO ==⊥由平面ABCD ,得MN ⊥平面ABCD ,所以MAN ∠是直线AM 与平面A B C D 所成的角,在Rt DAO ∆中,11,2AD AO ==,所以DO =,从而12AN DO ==,在Rt ,tan MN APF MAN AN ∆∠===中,即直线AM 与平面ABCD所成角的正切值为18.解:(Ⅰ)设12(,0),(,0)(0)F c F c c ->,因为212||||PF F F =,2c =,整理得2210,1c cc a aa ⎛⎫+-==- ⎪⎝⎭得(舍)或11,.22c e a ==所以 (Ⅱ)由(Ⅰ)知2,a c b c==,可得椭圆方程为2223412x y c +=.又P (a b ,),2F (,0)c ,所以直线2PF的方程为).y x c =-,A B两点的坐标满足方程组2223412,).x y c y x c ⎧+=⎪⎨=-⎪⎩ 消去y 并整理,得2580x cx -=. 解得1280,5x x c ==,得方程组的解21128,0,5,.x c x y y ⎧=⎪=⎧⎪⎪⎨⎨=⎪⎪⎩=⎪⎩不妨设85A c ⎛⎫ ⎪ ⎪⎝⎭,(0,)B ,所以16||.5AB c ==于是5||||2.8MN AB c ==圆心(-到直线2PF的距离||2|.22c d+==因为222||42MN d ⎛⎫+= ⎪⎝⎭,所以223(2)16.4c c ++=整理得2712520c c +-=,得267c =-(舍),或 2.c =所以椭圆方程为221.1612x y +=19.(Ⅰ)解:当1t =时,322()436,(0)0,()1266f x x x x f f x x x '=+-==+-,(0) 6.f '=-所以曲线()y f x =在点(0,(0))f 处的切线方程为6.y x =-(Ⅱ)解:22()1266f x x tx t '=+-,令()0f x '=,解得.2tx t x =-=或因为0t ≠,所以下分两种情况讨论: (1) 若0,,2tt t x <<-则当变化时,(),()f x f x '的变化情况如下表:所以,()f x 的单调递增区间是(),,,;()2t t f x ⎛⎫-∞-+∞ ⎪⎝⎭的单调递减区间是,2t t ⎛⎫- ⎪⎝⎭.(2)若0,2tt t >-<则,当x 变化时,(),()f x f x '的变化情况如下表:所以,()f x 的单调递增区间是(),,,;()2t t f x ⎛⎫-∞-+∞⎪⎝⎭的单调递减区间是,.2t t ⎛⎫- ⎪⎝⎭(Ⅲ)证明:由(Ⅱ)可知,当0t >时,()f x 在0,2t ⎛⎫ ⎪⎝⎭内的单调递减,在,2t ⎛⎫+∞ ⎪⎝⎭内单调递增,以下分两种情况讨论: (1)当2t≥1t ,即≥2时,()f x 在(0,1)内单调递减. 2(0)10,(1)643f t f t t =->=-++≤644230.-⨯+⨯+<所以对任意[2,),()t f x ∈+∞在区间(0,1)内均存在零点.(2)当01,022t t <<<<即时,()f x 在0,2t ⎛⎫ ⎪⎝⎭内单调递减,在,12t ⎛⎫⎪⎝⎭内单调递增.若317(0,1],124t f t t ⎛⎫∈=-+- ⎪⎝⎭≤370.4t -<2(1)643f t t =-++≥643230.t t t -++=-+>所以(),12t f x ⎛⎫⎪⎝⎭在内存在零点.若()3377(1,2),110,244t t f t t t ⎛⎫∈=-+-<-+< ⎪⎝⎭(0)10f t =->.所以()0,2t f x ⎛⎫⎪⎝⎭在内存在零点.所以,对任意(0,2),()t f x ∈在区间(0,1)内均存在零点.综上,对任意(0,),()t f x ∈+∞在区间(0,1)内均存在零点.20.(Ⅰ)解:由13(1),2n n b n -+-=∈*N ,可得2,,1,n n b n ⎧=⎨⎩为奇数为偶数.又()1121nn n n n b a b a +++=-+, 当1n =时12,21,a a +=-由12,a =可得23;2a =-当2n =时,2325a a +=,可得38a =. (Ⅱ)证明:对任意n ∈*N , 21212221n n n a a --+=-+, ①2221221n n n a a ++=+. ②②-①,得21212132,n n n a a -+--=⨯即2132,n n c -=⨯于是14n nc c +=. 又16c =≠0,所以{}n c 是等比数列.(Ⅲ)证明:12a =,由(Ⅱ)知,当k k ∈*N 且≥2时,2113153752123()()()()k k k a a a a a a a a a a ---=+-+-+-++-13523212(14)23(2222)23214k k k ----=+++++=+⨯=-.故对任意2121,2.k k k a --∈=*N由①得212122221,k k k a --+=-+所以21212,2k k a k -=-∈*N . 因此,21234212()()().2k k k kS a a a a a a -=++++++=于是,212-12212.2k k k k k S S a --=-=+故21221221222121212121221.1222144(41)22k k k kk k k k k kk k kk kS S k k k a a ------+-++=+=-=----- 所以对任意,n ∈*N()()2121212212321212412342122221112111141244441441n nn nn n n n n n n S S S S a a a a S S S S S S a a a a a a n ----++++⎛⎫⎛⎫⎛⎫=++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫ ⎪ ⎪=--+--++-- ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭()()2221112141244441441111.4123n n nnn n n ⎛⎫⎛⎫⎛⎫ ⎪ ⎪=-+-+--+ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎛⎫≤-+=- ⎪⎝⎭。
2011年普通高等学校夏季招生全国统一考试数学(天津卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷本卷共8小题,每小题5分,共40分.参考公式:·如果事件A 、B 互斥,那么P (A ∪B )=P (A )+P (B ).·如果事件A ,B 相互独立,那么P (AB )=P (A )P (B ).·棱柱的体积公式V =Sh .其中S 表示棱柱的底面面积,h 表示棱柱的高.·圆锥的体积公式1.3V Sh =.其中S 表示棱锥的底面面积,h 表示圆锥的高. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,复数1-3i 1-i =( ) A .2+i B .2-i C .-1+2iD .-1-2i 2.设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的…( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.阅读如图的程序框图,运行相应的程序,则输出i 的值为( )A .3B .4C .5D .64.已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为 …( )A .-110B .-90C .90D .110 5.在622x x ⎛⎫- ⎪ ⎪⎝⎭的二项展开式中,x 2的系数为( ) A .154- B . 154 C .38- D . 38 6.如图,在△ABC 中,D 是边AC 上的点,且,23,2AB CD AB BD BC BD ===则sin C 的值为( )A .33 B .36C .63D .667.已知324log0.3log 3.4log 3.615,5,,5a b c⎛⎫=== ⎪⎝⎭则()A.a>b>c B.b>a>c C.a>c>b D.c>a>b8.对实数a和b,定义运算“⊗”:,1,, 1.a a ba bb a b-≤⎧⊗=⎨->⎩设函数()()22()2,.f x x x x x R=-⊗-∈,x∈R.若函数()y f x c=-的图象与x轴恰有两个公共点,则实数c的取值范围是()A.(-∞,-2]∪(-1,3 2 )B.(-∞,-2]∪(-1,3 4 -)C.(-1,14)∪(14,+∞)D.(-1,34-)∪[14,+∞)第Ⅱ卷本卷共12小题,共110分.二、填空题:本大题共6小题,每小题5分,共30分.9.一支田径队有男运动员48人,女运动员36人.若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________.10.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________ m3.11.已知抛物线C的参数方程为28,8.x ty t⎧=⎨=⎩(t为参数).若斜率为1的直线经过抛物线C的焦点,且与圆(x-4)2+y2=r2(r>0)相切,则r=________.12.如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且2,::4:2:1DF CF AF FB BE===,若CE与圆相切,则线段CE的长为________.13.已知集合{}|349, A x R x x=∈++-≤1|46,(0,)B x R x t tt⎧⎫=∈=+-∈+∞⎨⎬⎩⎭,则集合A∩B=________.。
2011年普通高等学校招生全国统一考试数学文试题(天津卷,解析版)注意事项:1答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上.并将准考证 号条形码粘贴在答题卡上的指定位置,用2B 铅笔将答题卡上试卷类型B 后的方框涂黑。
2选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
咎在试题卷、草稿纸上无效。
3填空题和解答题用0 5毫米黑色墨水箍字笔将答案直接答在答题卡上对应的答题区 域内。
答在试题卷、草稿纸上无效。
4考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷(共60分)一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只 有一项是满足题目要求的.1.i 是虚数单位,复数131ii--= A.2i - B. 2i + C.12i -- D. 12i -+【答案】A 【解析】因为13(13)(1)212i i i i i --+==--,故选A. 2.设变量,x y 满足约束条件140340x x y x y ≥⎧⎪+-≤⎨⎪-+≤⎩,则目标函数3z x y =-的最大值为A.-4B.0C.43D.4【答案】D【解析】画出不等式表示的平面区域,容易求出最大值为4,选D.3.阅读右边的程序框图,运行相应的程序,若输入x的值为-4,则输出y的值为A.0.5B.1C.2D.46.已知双曲线22221(0,0)x y a b a b-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为A. B.【答案】B【解析】由题意知,抛物线的准线方程为2x =-,所以4p =,又42pa +=,所以2a =,又因为双曲线的一条渐近线过点(-2,-1),所以双曲线的渐近线方程为12y x =±,即12b a =,所以1b =,即25c =,2c =,选B.7.已知函数()2sin(),,f x x x R ωϕ=+∈其中0,.ωπϕπ>-<≤若()f x 的最小正周期为6π,且当2x π=时, ()f x 取得最大值,则A. ()f x 在区间[2,0]π-上是增函数B. ()f x 在区间[3,]ππ--上是增函数C. ()f x 在区间[3,5]ππ上是减函数D. ()f x 在区间[4,6]ππ上是减函数二、填空题:本大题共6小题,每小题5分,共30分.9. 已知集合{}||1|2,A x R x Z =∈-<为整数集,则集合A Z ⋂中所有元素的和等于 . 【答案】3【解析】因为{}|13A x x =-<<,所以{}0,1,2A Z ⋂=,故其和为3.10. 一个几何体的三视图如图所示(单位:m),则该几何体的体积为3m .【答案】4【解析】由三视图知,该几何体是由上、下两个长方体组合而成的,容易求得体积为4.11. 已知{}n a 是等差数列,n S 为其前n 项和,n N *∈.若316a =,2020S =,则10S 的值为 .【答案】110三、解答题:本大题共6小题,共80分. 15.(本小题满分13分) 编号分别为1216,,,A A A 的16名篮球运动员在某次训练比赛中的得分记录如下:(Ⅰ)将得分在对应区间内的人数填入相应的空格:(Ⅱ)从得分在区间[20,30)内的运动员中随机抽取2人, (i) 用运动员编号列出所有可能的抽取结果; (ii)求这2人得分之和大于50的概率.16.(本小题满分13分)在ABC ∆中,内角A,B,C 的对边分别为,,a b c .已知B=C, 2b =. (Ⅰ)求cos A 的值;(Ⅱ)求cos(2)4Aπ+的值.【解析】(Ⅰ)由B=C,2b =,可得c b ==,所以 222222331cos 23a a a b c a A bc +-+-===.(Ⅱ)因为1cos 3A =,(0,)A π∈,所以sin A =, 27cos 22cos 19A A =-=-,故sin 22sin cos 9A A A ==,所以cos(2)cos 2cos sin 2sin 444A A A πππ+=-=818+-. 【命题意图】本小题主要考查余弦定理、两角和的余弦公式、同角三角函数的基本关系、二倍角的正弦、余弦公式等基础知识,考查基本运算能力. 17.(本小题满分13分)如图,在四棱锥P-ABCD 中,底面ABCD 为平行四边形,45ADC ∠=,AD=AC=1,O 为AC 的中点,PO ⊥平面ABCD,PO=2,M 为PD 的中点.(Ⅰ)证明PB ∥平面ACM ; (Ⅱ)证明AD ⊥平面PAC;(Ⅲ)求直线AM 与平面ABCD 所成角的正切值.【解析】(Ⅰ)证明:连接BD,MO.在平行四边形ABCD 中,因为O 为AC 的中点,所以O 为BD 的中点,又M 为PD 的中点,所以PB∥MO,因为PB ⊄平面ACM ,MO ⊂平面ACM ,所以PB∥平面ACM .(Ⅱ)证明:因为45ADC ∠=,AD=AC=1,所以AD⊥AC,又PO⊥平面ABCD,AD ⊂平面ABCD,所以PO⊥AD,而 AC PO O ⋂=,所以AD⊥平面PAC.(Ⅲ)取DO 点N,连接MN,AN,因为M 为PD 的中点,所以MN∥PO,且MN=12PO=1,由PO⊥平面ABCD,得MN⊥平面ABCD,所以MAN ∠是直线AM 与平面ABCD 所成的角.在Rt DAO ∆中,AD=1,AO=12,所以4DO =,从而124AN DO ==.在Rt ANM ∆中,tan MN MAN AN ∠===5,即直线AM与平面ABCD . 【命题意图】本小题主要考查直线与平面平行、直线与平面垂直、直线与平面所成的角等基础知识,考查空间想象能力、运算能力和推理论证能力. 18.(本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点(,)P a b 满足212||||PF F F =.(Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线2PF 与椭圆相交于A,B 两点.若直线2PF 与圆22(1)(16x y ++=相交于M,N 两点,且|MN|=58|AB|,求椭圆的方程.19.(本小题满分14分)已知函数322()4361,,f x x tx t x t x R =+-+-∈其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间;(Ⅲ)证明:对任意(0,)t ∈+∞,()f x 在区间(0,1)内均在零点.【解析】(Ⅰ)当1t =时,32()436,(0)0,f x x x x f =+-= 2'()1266,'(0)6f x x x f =+-=-, 所以曲线()y f x =在点(0,(0))f 处的切线方程为6y x =-. (Ⅱ) 22'()1266,f x x tx t =+-令'()0f x =,解得x t =-或2t,因为0t ≠,以下分两种情况讨论: (1)若0t <,则tt <-.当x 变化时, '()f x ,()f x 的变化情况如下表: 所以()f x 的单调递增区间是(,)2-∞,(,)t -+∞;()f x 的单调递减区间是(,)2t -. (2)若0t >,则2tt >-.当x 变化时, '()f x ,()f x 的变化情况如下表: 所以()f x 的单调递增区间是(,)t -∞-,(,)2+∞;()f x 的单调递减区间是(,)2t -.所以()f x 在(,1)2t 内存在零点. 若(1,2)t ∈,37()(1)24t f t t =-+-<37104t -+<, (0)10,f t =->所以()f x 在(0,)2t内存在零点,所以,对任意(0,2)t ∈,()f x 在区间(0,1)内均在零点.综上, 对任意(0,)t ∈+∞,()f x 在区间(0,1)内均在零点.【命题意图】本小题主要考查导数的几何意义、利用导数研究函数的单调性、曲线的切线方程、函数的零点、解不等式等基础知识,考查运算能力及分类讨论的思想方法. 20.(本小题满分14分)已知数列{}n a 与{}n b 满足11(2)1nn n n n b a b a +++=-+,13(1),2n n b n N -+-=∈*,且12a =. (Ⅰ)求23,a a 的值;(Ⅱ)设2121n n n c a a +-=-,n N ∈*,证明{}n c 是等比数列; (Ⅲ)设n S 为{}n a 的前n 项和,证明21212122121()3n n n n S S S S n n N a a a a *--++++≤-∈.。
1. i 是虚数单位,复数13i 1i-=-( ). A .2i - B .2i + C .12i -- D .12i -+3.阅读右边的程序框图,运行相应的程序,若输入x 的值为4-,则输出y 的值为( ). A .0.5B .1C .2D .44.设集合{}20A x x =∈->R ,{}0B x x =∈<R ,(){}20C x x x =∈->R ,则“x A B ∈ ”是“x C ∈”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.已知2log 3.6a =,4log 3.2b =,4log 3.6c =,则 ( ).A .a b c >>B .a c b >>C .b a c >>D .c a b >> 6.已知双曲线22221x y a b-=()0,0a b >>的左顶点与抛物线()220y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为()2,1--,则双曲线的焦距为 ( ).A .B .C .D .7.已知函数()()2sin f x x ωϕ=+,x ∈R ,其中0ω>,ππϕ-<≤.若()f x 的最小正周期为6π,且当π2x =时,()f x 取得最大值,则( ). A .()f x 在区间[]2π,0-上是增函数 B .()f x 在区间[]3π,π--上是增函数C .()f x 在区间[]3π,5π上是减函数D .()f x 在区间[]4π,6π上是减函数8.对实数a 和b ,定义运算“⊗”:,1,, 1.a ab a b b a b -≤⎧⊗=⎨->⎩设函数()()()221f x x x =-⊗-,x ∈R .若函数()y f x c =-的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ).A .(]()1,12,-+∞B .(](]2,11,2--C .()(],21,2-∞-D .[]2,1--9.已知集合{}12A x x =∈-<R ,Z 为整数集,则集合A Z 中所有元素的和等于 .10.一个几何体的三视图如右图所示(单位:m ),则该几何体的体积为 3m .11.已知{}n a 是等差数列,n S 为其前n 项和,n +∈N .若316a =,2020S =,则10S 的值为 .12.已知22log log 1a b +≥,则39a b +的最小值为 .13.(同理12)如图,已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一点,且DF CF ==::4:2:1AF FB BE =,若CE 与圆相切,则线段CE 的长为.14.(同理14) 已知直角梯形ABCD 中,//AD BC ,90ADC ∠=︒,2AD =,1BC =,P 是腰DC 上的动点,则3PA PB + 的最小值为 .16.(本小题满分13分) 在ABC ∆中,内角,,A B C 的对边分别为,,a b c .已知B C =,2b .(Ⅰ) 求cos A 的值;(Ⅱ) 求πcos 24A ⎛⎫+ ⎪⎝⎭的值.17.(本小题满分13分)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,45ADC ∠=︒,1AD AC ==,O 为AC 的中点,PO ABCD ⊥平面,2PO =,M 为PD 的中点.(Ⅰ) 证明://PB ACM 平面; (Ⅱ) 证明:AD PAC ⊥平面;(Ⅲ) 求直线AM 与平面ABCD 所成角的正切值.N O MD C BA P19.(本小题满分14分) 已知函数()3224361f x x tx t x t =+-+-,其中t ∈R . (Ⅰ) 当1t =时,求曲线()y f x =在点()()0,0f 处的切线方程;(Ⅱ) 当0t ≠时,求()f x 的单调区间;(Ⅲ) 证明:对任意()0,t ∈+∞,()f x 在区间()0,1内存在零点.。
2011年天津高考文科数学试题及答案详细解析(天津卷)参考公式: 如果事件A ,B 互斥,那么 棱柱的体积公式V Sh =()()()P A B P A P B ⋃=+其中S 表示棱柱的底面面积。
h 表示棱柱的高。
一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.1.i 是虚数单位,复数131ii--= A .2i - B .2i + C .12i -- D .12i -+2.设变量x ,y 满足约束条件1,40,340,x x y x y ≥⎧⎪+-≤⎨⎪-+≤⎩则目标函数3z x y =-的最大值为A .-4B .0C .43D .43.阅读右边的程序框图,运行相应的程序,若输入x 的值为-4,则输出y 的值为 A .,0.5 B .1 C .2 D .4 4.设集合{}{}|20,|0A x R x B x R x =∈->=∈<,{}|(2)0C x R x x =∈->,则“x A B ∈⋃”是“x C ∈”的 A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件5.已知244log 3.6,log 3.2,log 3.6a b c ===则A .a b c >>B .a c b >>C .b a c >>D .c a b >>6.已知双曲线22221(0,0)x y a b a b-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )A.B.C.D.7.已知函数()2sin(),f x x x R ωϕ=+∈,其中0,,()f x ωπϕπ>-<≤若的最小正周期为6π,且当2x π=时,()f x 取得最大值,则( )A .()f x 在区间[2,0]π-上是增函数B .()f x 在区间[3,]ππ--上是增函数C .()f x 在区间[3,5]ππ上是减函数D .()f x 在区间[4,6]ππ上是减函数8.对实数a b 和,定义运算“⊗”:,1,,1.a ab a b b a b -≤⎧⊗=⎨->⎩设函数2()(2)(1),f x x x x R =-⊗-∈。
2011天津高考数学文科一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.i 是虚数单位,复数13i1i-=- ( ). A .2i - B .2i + C .12i -- D .12i -+【测量目标】复数的代数形式四则运算.【考查方式】给出复数的代数形式,对其进行化简. 【参考答案】A 【试题解析】()()()()13i 1i 13i 42i2i 1i 1i 1i 2-+--===---+.故选A . 2.设变量,x y ,满足约束条件1,40,340,x x y x y ⎧⎪+-⎨⎪-+⎩………则目标函数3z x y =-的最大值为 ( ).A .4-B .0C .43D .4【测量目标】二元线性规划求目标函数的最值.【考查方式】考查了二元一次不等式的几何意义,能用平面区域表示二元一次不等式组. 【参考答案】D【试题解析】画出可行域为图中的ABC △的区域,直线3y x z =-经过()2,2A 时,4z =最大.故选D .3.阅读右边的程序框图,运行相应的程序,若输入x 的值为4-,则输出y 的值 为 ( ).A .0.5B .1C .2 D.4 【测量目标】循环结构的程序框图.【考查方式】给出程序框图输入值,求输出值. 【参考答案】C【试题解析】运算过程依次为:输入4x =-43⇒->437x ⇒=--=73⇒>734x =-=43⇒> 431x ⇒=-=13⇒<122y ⇒==⇒输出2.故选C.4.设集合{}20A x x =∈->R ,{}0B x x =∈<R ,(){}20C x x x =∈->R ,则“x A B ∈ ”是“x C ∈”的 ( ). A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【测量目标】充分必要条件.【考查方式】考查了必要条件,充分条件的关系及集合的概念 【参考答案】C【试题解析】{0A B x x =∈<R 或}2x >,(){}{20=0C x x x x x =∈->∈<R R 或}2x >所以A B C = .所以“x A B ∈ ”是“x C ∈”的充分必要条件.故选C.5.已知2log 3.6a =,4log 3.2b =,4log 3.6c =,则 ( ). A .a b c >> B .a c b >> C .b a c >> D .c a b >> 【测量目标】对数函数化简与求值.【考查方式】考查了对数函数的运算性质与单调性,利用中间值判断对数的大小. 【参考答案】B【试题解析】因为224log 3.6log 3.6a ==,而23.6 3.6 3.2>>,又函数4log y x =是()0,+∞上的增函数,则2444log 3.6log 3.6log 3.2>>. 所以a c b >>.故选B .6.已知双曲线22221x y a b-=()0,0a b >>的左顶点与抛物线()220y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为()2,1--,则双曲线的焦距为 ( ).A .B .C .D .【测量目标】圆锥曲线之间的位置关系.【考查方式】考查了双曲线与抛物线的定义、标准方程,知道其简单的几何性质. 【参考答案】B【试题解析】因为双曲线的一条渐近线与抛物线的准线的交点坐标为()2,1--,则22p-=-, 所以4p =.(步骤1)又因为双曲线22221x y a b-=()0,0a b >>的左顶点与抛物线()220y px p =>的焦点的距离为4,则42pa +=,所以2a =.(步骤2) 因为点()2,1--在双曲线的一条渐近线上,则()12ba-=-,即2a b =,所以1,b c ==2c =(步骤3)7.已知函数()()2sin f x x ωϕ=+,x ∈R ,其中0ω>,π<πϕ-….若()f x 的最小正周期为6π,且当π2x =时,()f x 取得最大值,则 ( ). A .()f x 在区间[]2π,0-上是增函数 B .()f x 在区间[]3π,π--上是增函数 C .()f x 在区间[]3π,5π上是减函数 D .()f x 在区间[]4π,6π上是减函数 【测量目标】三角函数的最值.【考查方式】考查了正弦函数的性质(如单调性,最值,周期等) 【参考答案】A【试题解析】由题设得ππ,222π6π,ωϕω⎧+=⎪⎪⎨⎪=⎪⎩ 解得13ω=,π3ϕ=.所以已知函数为()π2sin 33x f x ⎛⎫=+ ⎪⎝⎭.(步骤1) 其增区间满足πππ2π2π2332x k k -+++剟,k ∈Z .(步骤2) 解得5π6ππ6π2k x k -++剟,k ∈Z .(步骤3)取0k =得5ππ2x -剟,所以5π,π2⎡⎤-⎢⎥⎣⎦为一个增区间,因为[]5π2π,0,π2⎡⎤-⊆-⎢⎥⎣⎦,所以()f x 在区间[]2π,0-上是增函数.故选A.(步骤4) 8.对实数a 和b ,定义运算“⊗”:,1,,1,a ab a b b a b -⎧⊗=⎨->⎩…设函数()()()221f x x x =-⊗-,x ∈R .若函数()y f x c =-的图象与x 轴恰有两个公共点,则实数c 的取值范围是 ( ).A .(]()1,12,-+∞B .(](]2,11,2--C .()(],21,2-∞-D .[]2,1--【测量目标】函数图像的应用.【考查方式】考查了给一个新公式结合二次函数图像,了解函数的零点与方程根的联系. 【参考答案】B【试题解析】由题设()22,12,1,12x x f x x x x ⎧--=⎨-<->⎩或剟(步骤1)画出函数的图象,函数图象的四个端点(如图)为()2,1A ,,()2,2B ,()1,1C --,()1,2D --.(步骤2)从图象中可以看出,直线y c =穿过点B ,点A 之间时,直线y c =与图象有且只有两个公共点,同时,直线y c =穿过点C ,点D 时,直线y c =与图象有且只有两个公共点,所以实数c 的取值范围是(](]2,11,2-- .故选B.(步骤3)第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分.9.已知集合{}12A x x =∈-<R ,Z 为整数集,则集合A Z 中所有元素的和等于 .【测量目标】集合的基本运算.【考查方式】考查了集合的概念及交集运算. 【参考答案】3【试题解析】解集合A 得13x -<<,则{}0,1,2A =Z ,所有元素的和等于0123++=.10.一个几何体的三视图如右图所示(单位:m ),则该几何体的体积为 3m .【测量目标】由三视图求几何体的体积.【考查方式】考查了学会掌握三视图的画法及几何体的体积计算公式. 【参考答案】4【试题解析】几何体是由两个长方体组合的.体积为1211124V =⨯⨯+⨯⨯=.11.已知{}n a 是等差数列,n S 为其前n 项和,n ∈N +.若316a =,2020S =,则10S 的值为 .【测量目标】等差数列的通项公式及前n 项和公式. 【考查方式】考查了已知等差数列求前n 项和. 【参考答案】110【试题解析】设公差为d ,由题设31201216,2019020.a a d S a d =+=⎧⎨=+=⎩解得2d =-,120a =.()10110451020452110S a d =+=⨯+⨯-=.12.已知22log log 1a b +…,则39ab+的最小值为 . 【测量目标】基本不等式求最值.【考查方式】考查了用基本不等式解决最值问题及对数函数运算性质. 【参考答案】18【试题解析】因为22log log 1a b +…,则2log 1ab …,2ab …,24a b …3918a b +=厖,当且仅当39,2,a b a b ⎧=⎨=⎩即2a b =时,等号成立,所以39a b+的最小值为18.13.如图,已知圆中两条弦AB 与CD 相交于点F ,E 是AB延长线上一点,且DF CF ==::4:2:1AF FB BE =,若CE 与圆相切,则线段CE 的长为 .【测量目标】圆的性质的应用.【考查方式】考查了直线与圆的位置关系及运用代数方法解决几何问题的思想.【参考答案】2【运算性质】因为::4:2:1AF FB BE =,所以设BE a =,2FB a =,4AF a =.由相交弦定理,242DF CF AF FB a a ===, 所以12a =,12BE =,772AE a ==.因为CE 与圆相切,由切割线定理,2177224CE AE BE === .所以2CE =. 14. 已知直角梯形ABCD 中,//AD BC ,90ADC ∠=︒,2AD =,1BC =,P 是腰DC 上的动点,则3PA PB +的最小值为 .【测量目标】平面向量在平面几何的应用.【考查方式】考查了几何与代数相结合求解最值问题 【参考答案】5【试题解析】解法1 .以D 为坐标原点,DA 所在直线为x 轴,DC 所在直线为y 轴,建立如图的直角坐标系.由题设,()2,0A ,设()0,C c ,()0,P y ,则()1,B c .()2,PA y =- ,()1,PB c y =-. ()35,34PA PB c y +=-.(步骤1)35PA PB += ,(步骤2)当且仅当34cy =时,等号成立,于是, 当34cy =时,3PA PB + 有最小值5.(步骤3)解法2 . 以相互垂直的向量,为基底表示3PA PB +,得()533332P A P B D A D P P C C B D A P C D P +=-++=+- .(步骤1) 又P 是腰DC 上的动点,即PC 与共线,于是可设PC DP λ=,有53(31)2PA PB DA DP λ+=+- .所以2222553(31)(31)42PA PB DA DP DA DP λλ⎡⎤+=+-+⨯-⎣⎦(步骤2) 即 ()()22222533125314PA PB DA DP DP λλ⎡⎤+=+-=+-⎣⎦ . 由于P 是腰DC 上的动点,显然当31=λ,即13PC DP = 时,所以3PA PB +有最小值5.(步骤3)解法3 .如图,3PB PF =,设E 为AF 的中点,Q 为AB 的中点,则12QE BF PB ==,32PA PB PA PF PE +=+=, ①(步骤1)因为PB PQ PE += ,PB PQ QB -= .则22222222PB PQ PB PQ PB PQ PE QB ++-=+=+ . ②(步骤2)(实际上,就是定理:“平行四边形的对角线的平方和等于各边的平方和”) 设T 为DC 的中点,则TQ 为梯形的中位线,()1322TQ AD BC =+=. 设P 为CT 的中点,且设,CP a PT b ==,则221PB a =+ ,2294PQ b =+ ,()2214QB a b =++ ,代入式②得()()222222912221244PB PQ a b PE a b ⎛⎫+=+++=+++ ⎪⎝⎭ ,(步骤3)于是()22252544PE a b =+- …,于是25PE …,当且仅当a b =时,等号成立. 由式①,325PA PB PE +=…,所以3PA PB +有最小值5.(步骤4)三、解答题:本大题共6小题,共80分。
2011年天津高考文科数学试题及答案详细解析一.选择题文数1. L4[2011·天津卷] i 是虚数单位,复数131ii--= 【答案】A 【解析】13(13)(1)4221(1)(1)2i i i ii i i i --+-===---+. 文数2. E5[2011·天津卷] 设变量x ,y 满足约束条件【答案】D【解析】可行域如图:联立40340x y x y ++=⎧⎨-+=⎩解得⎩⎨⎧==22y x 当目标直线3z x y =-移至(2.2)时,3z x y =-有最大值4.文数3.L1 [2011·天津卷] 阅读右边的程序框图,运行相应的程序, 【答案】C【解析】当4x =-时,37x x =-=; 当7x =时,34x x =-= 当4x =时,31|3|<=-=x x , ∴22y '==.文数4. A2[2011·天津卷] 设集合{}{}|20,|0A x R x B x R x =∈->=∈< 【答案】C【解析】∵{}20A x kx =∈->,{}0B x kx =∈<,∴{0A B x x ⋃=<,或}2x >,又∵}{{(2)00C x k x x x k x =∈->=∈<或}2x >, ∴A B C ⋃=,即“x A B ∈⋃”是“x C ∈”的充分必要条件. 文数5.B7 [2011·天津卷] 已知244log 3.6,log 3.2,log 3.6a b c === 【答案】Bxyo12 34 -1-2-3-412 3 4 x=1x-3y+4=0x+y-4=0【解析】∵ 3.6222log log 1a =>=,又∵4log x y =为单调递增函数, ∴ 3.2 3.64444log log log 1<<=,∴b c a <<.文数6.H8 [2011·天津卷]【答案】B【解析】双曲线22215x y a -=的渐近线为by x a=±,由双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1)得22p-==,即4p =, 又∵42=+a p ,∴2a =,将(-2,-1)代入by x a=得1b =, ∴22415c a b =+=+=,即225c =.文数7.C4 [2011·天津卷]【答案】A【解析】∵πωπ62=,∴31=ω.又∵12,322k k z πππ⨯+=+∈且4ππ-<<,∴当0k =时,1,()2sin()333f x x ππϕ==+,要使()f x 递增,须有122,2332k x k k z πππππ-≤+≤+∈,解之得566,22k x k k z ππππ-≤≤+∈,当0k =时,522x ππ-≤≤,∴()f x 在5[,]22ππ-上递增.文数8. B5[2011·天津卷]【答案】B【解析】()()⎪⎩⎪⎨⎧>----≤----=112,112,2)(2222x x x x x x x x f⎩⎨⎧>-<-≤≤--=2,1,121,22x x x x x 或 则()f x 的图象如图,∵函数c x f y -=)(的图象与x 轴恰有两个公共点,∴函数()y f x =与y c =的图象有两个交点,由图象可得21,12,c c -<≤<≤或. 二.填空题文数9.A1 [2011·天津卷] 已知集合{}|12,A x R x Z =∈-<为整数集, 【答案】3【解析】{}}{1213A x k x x x ∈-<=-<<.∴{}2,1,0=Z A I ,即.3210=+= 文数10.G2 [2011·天津卷] 一个几何体的三视图如图所示(单位:m ),则 【答案】4【解析】2111124v =⨯⨯+⨯⨯=.文数11. D2[2011·天津卷] 已知{}n a 为等差数列,n S 为 【答案】110【解析】设等差数列的首项为1a ,公差为d ,由题意得,()⎪⎩⎪⎨⎧=-⨯⨯+==+=202219202016212013a S d a a ,解之得120,2a d ==-,∴101091020(2)1102s ⨯=⨯+⨯-=. 文数12. [2011·天津卷] 已知22log log 1a b +≥,则39a b+的【答案】18【解析】∵1log log log 222≥=+abba, ∴2ab ≥, ∴18323233233932222=≥=⋅≥+=++abb a b a b aba.文数13. N1 [2011·天津卷] 如图已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一点,且::4:2:1.DF CF AF FB BE ===若CE 与圆相切,则CE 的长为________.【答案】27 【解析】设k AF 4=,k BF 2=,k BE =,由BF AF FC DF •=•得282k =,即21=k . ∴27,21,1,2====AE BE BF AF , 由切割定理得4727212=⨯=•=EA BE CE ,∴27=CE . 文数14. F2[2011·天津卷] 已知直角梯形ABCD 中,AD //BC , 【答案】5【解析】建立如图所示的坐标系,设PC h =,则(2,0),(1,)A B h ,设(0,),(0)P y y h ≤≤则(2,),(1,)PA y PB h y =-=-u u u r u u u r,∴2325(34)255PA PB h y +=+-≥=u u u r u u u r .三、解答题文数15. K2[2011·天津卷] 编号为1216,,,A A A ⋅⋅⋅的16名篮球运动员在某次训练比赛中的得 文数16. C9[2011·天津卷] 在△ABC 中,内角,,A B C 的对边分别为,,a b c 文数17. G12[2011·天津卷] 如图,在四棱锥P ABCD -中,底面ABCD 为 平行四边形,045ADC ∠=,1AD AC ==, 文数18.H5[2011·天津卷]ABCD oxy文数19. B12[2011·天津卷] 已知函数32()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. 文数20. D5[2011·天津卷]。
2011年普通高等学校招生全国统一考试(天津卷)数学(文)试题解析本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项: 1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式: 如果事件A ,B 互斥,那么 棱柱的体积公式V Sh =()()()P A B P A P B ⋃=+ 其中S 表示棱柱的底面面积。
h 表示棱柱的高。
一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.1.i 是虚数单位,复数131ii--= ( )A .2i -B .2i +C .12i --D .12i -+【答案】A 【解析】 13(13)(1)4221(1)(1)2i i i ii i i i --+-===---+2.设变量x ,y 满足约束条件1,40,340,x x y x y ≥⎧⎪+-≤⎨⎪-+≤⎩则目标函数3z x y =-的最大值为( )A .-4B .0C .43D .4 【答案】D【解析】可行域如图:联立40340x y x y ++=⎧⎨-+=⎩解得⎩⎨⎧==22y x 当目标直线3z x y =-移至(2.2)时,3z x y =-有最大值4.3.阅读右边的程序框图,运行相应的程序,若输入x 的值为-4,则输出y 的值为( ) A .,0.5 B .1 C .2 D .4 【答案】C【解析】当4x =-时,37x x =-=; 当7x =时,34x x =-= 当4x =时,31|3|<=-=x x ,∴22y '==.4.设集合{}{}|20,|0A x R x B x R x =∈->=∈<,{}|(2)0C x R x x =∈->, 则“x A B ∈⋃”是“x C ∈”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件【答案】C【解析】∵{}20A x kx =∈->,{}0B x kx =∈<,∴{0A B x x ⋃=<,或}2x >,又∵}{{(2)00C x k x x x k x =∈->=∈<或}2x >, ∴A B C ⋃=,即“x A B ∈⋃”是“x C ∈”的充分必要条件.5.已知244log 3.6,log 3.2,log 3.6a b c ===则( )A .a b c >>B .a c b >>C .b a c >>D .c a b >> 【答案】B【解析】∵ 3.6222log log 1a =>=,又∵4log xy =为单调递增函数, ∴ 3.2 3.64444log log log 1<<=, ∴b c a <<.6.已知双曲线22221(0,0)x y a b a b-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )A .B .C .D .【答案】B【解析】双曲线22215x y a -=的渐近线为b y x a =±,由双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1)得22p-==,即4p =,又∵42=+a p ,∴2a =,将(-2,-1)代入by x a=得1b =,∴c =2c =.7.已知函数()2sin(),f x x x R ωϕ=+∈,其中0,,()f x ωπϕπ>-<≤若的最小正周期为6π,且当2x π=时,()f x 取得最大值,则 ( )A .()f x 在区间[2,0]π-上是增函数B .()f x 在区间[3,]ππ--上是增函数C .()f x 在区间[3,5]ππ上是减函数D .()f x 在区间[4,6]ππ上是减函数【答案】A 【解析】∵πωπ62=,∴31=ω.又∵12,322k k z πππ⨯+=+∈且4ππ-<<,∴当0k =时,1,()2sin()333f x x ππϕ==+,要使()f x 递增,须有122,2332k x k k z πππππ-≤+≤+∈,解之得566,22k x k k z ππππ-≤≤+∈,当0k =时,522x ππ-≤≤,∴()f x 在5[,]22ππ-上递增.8.对实数a b 和,定义运算“⊗”:,1,, 1.a ab a b b a b -≤⎧⊗=⎨->⎩设函数2()(2)(1),f x x x x R =-⊗-∈。
2011年普通高等学校招生全国统一考试(天津卷)数学(文史类)一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的. 1.i 是虚数单位,复数131ii--=A .2i -B .2i +C .12i --D .12i -+2.设变量x ,y 满足约束条件1,40,340,x x y x y ≥⎧⎪+-≤⎨⎪-+≤⎩则目标函数3z x y =-的最大值为A .-4B .0C .43D .4 3.阅读右边的程序框图,运行相应的程序,若输入x 的值为-4,则输出y 的值为A .,0.5B .1C .2D .44.设集合{}{}|20,|0A x R x B x R x =∈->=∈<,{}|(2)0C x R x x =∈->, 则“x A B ∈⋃”是“x C ∈”的 A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件5.已知244log 3.6,log 3.2,log 3.6a b c ===则A .a b c >>B .a c b >>C .b a c >>D .c a b >>6.已知双曲线22221(0,0)x y a b a b-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的准线的交点坐标为(-2,-1),则双曲线的焦距为A .23B .25C .43D .457.已知函数()2sin(),f x x x R ωϕ=+∈,其中0,,()f x ωπϕπ>-<≤若的最小正周期为6π,且当2x π=时,()f x 取得最大值,则A .()f x 在区间[2,0]π-上是增函数B .()f x 在区间[3,]ππ--上是增函数C .()f x 在区间[3,5]ππ上是减函数D .()f x 在区间[4,6]ππ上是减函数8.对实数a b 和,定义运算“⊗”:,1,, 1.a ab a b b a b -≤⎧⊗=⎨->⎩设函数2()(2)(1),f x x x x R =-⊗-∈。
2011年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式: 如果事件A ,B 互斥,那么棱柱的体积公式V Sh =()()()P A B P A P B ⋃=+其中S 表示棱柱的底面面积。
h 表示棱柱的高。
一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.1.i 是虚数单位,复数131i i--=A .2i -B .2i +C .12i --D .12i -+2.设变量x ,y 满足约束条件1,40,340,x x y x y ≥⎧⎪+-≤⎨⎪-+≤⎩则目标函数3z x y =-的最大值为A .-4B .0C .43D .43.阅读右边的程序框图,运行相应的程序,若输入x 的值为-4,则输出y 的值为 A .,0.5 B .1 C .2 D .44.设集合{}{}|20,|0A x R x B x R x =∈->=∈<,{}|(2)0C x R x x =∈->, 则“x A B ∈⋃”是“x C ∈”的 A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件5.已知244log 3.6,log 3.2,log 3.6a b c ===则A .a b c >>B .a c b >>C .b a c >>D .c a b >>6.已知双曲线22221(0,0)x y a b ab-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )A .B .C .D .7.已知函数()2sin(),f x x x R ωϕ=+∈,其中0,,()f x ωπϕπ>-<≤若的最小正周期为6π,且当2x π=时,()f x 取得最大值,则( )A .()f x 在区间[2,0]π-上是增函数B .()f x 在区间[3,]ππ--上是增函数C .()f x 在区间[3,5]ππ上是减函数D .()f x 在区间[4,6]ππ上是减函数8.对实数a b 和,定义运算“⊗”:,1,,1.aab a b b a b -≤⎧⊗=⎨->⎩设函数2()(2)(1),f x x x x R =-⊗-∈。
若函数()y f x c =-的图象与x 轴恰有两个公共点,则实数c 的取值范围是 ( )A .(1,1](2,)-⋃+∞B .(2,1](1,2]--⋃C .(,2)(1,2]-∞-⋃D .[-2,-1]第Ⅱ卷注意事项: 1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2.本卷共12小题,共110分。
二、填空题:本大题共6小题,每小题5分,共30分. 9.已知集合{}|12,A x R x Z =∈-<为整数集,则集合A Z ⋂中所有元素的和等于________10.一个几何体的三视图如图所示(单位:m ),则该几何体的体积为__________3m11.已知{}n a 为等差数列,n S 为其前n 项和,*n N ∈,若32016,20,a S ==则10S 的值为_______12.已知22log log 1a b +≥,则39a b +的最小值为__________ 13.如图已知圆中两条弦A B 与C D 相交于点F ,E 是A B 延长线上一点,且::4:2:1.D F C F AF FB BE ===若C E 与圆相切,则C E 的长为__________14.已知直角梯形A B C D 中,A D //B C ,090ADC ∠=,2,1AD BC ==,P 是腰D C 上的动点,则3PA PB +的最小值为____________三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤. 15.(本小题满分13分)编号为1216,,,A A A ⋅⋅⋅的16名篮球运动员在某次训练比赛中的得分记录如下: (Ⅱ)从得分在区间[)20,30内的运动员中随机抽取2人, (i )用运动员的编号列出所有可能的抽取结果;(ii )求这2人得分之和大于50的概率. 16.(本小题满分13分)在△ABC 中,内角,,A B C 的对边分别为,,a b c ,已知,2B C b ==(Ⅰ)求cos A 的值;(Ⅱ)cos(2)4A π+的值.17.(本小题满分13分)如图,在四棱锥P A B C D -中,底面A B C D 为 平行四边形,045ADC ∠=,1A D A C ==,O 为A C 中点,P O ⊥平面A B C D , 2P O =,M 为P D 中点.(Ⅰ)证明:P B //平面A C M ;(Ⅱ)证明:AD ⊥平面PAC ;(Ⅲ)求直线A M 与平面A B C D 所成角的正切值.18.(本小题满分13分)设椭圆22221(0)x y a b ab+=>>的左、右焦点分别为F 1,F 2。
点(,)P a b 满足212||||.PF F F =(Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线PF 2与椭圆相交于A ,B 两点,若直线PF 2与圆22(1)(16x y ++-=相交于M ,N 两点,且5||||8M N A B =,求椭圆的方程。
19.(本小题满分14分)已知函数32()4361,f x x tx tx t x R =+-+-∈,其中t R ∈.(Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间;(Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点.20.(本小题满分14分)已知数列{}{}n n a b 与满足1*1113(1)(2)1,,, 2.2n nn n n n n b a b a b n N a -+++-+=-+=∈=且(Ⅰ)求23,a a 的值;(Ⅱ)设*2121,n n n c a a n N +-=-∈,证明{}n c 是等比数列;(Ⅲ)设n S 为{}n a 的前n 项和,证明*21212122121().3n n n nS S S S n n N a a a a --++++≤-∈参考答案一、选择题:本题考查基本知识和基本运算,每小题5分,满分40分。
1—4 ADCC 5—8 BBAB二、填空题:本题考查基本知识和基本运算,每小题5分,满分30分。
9.3 10.4 11.110 12.18 13.214.5三、解答题(15)本小题主要考查用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式的等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力,满分13分。
(Ⅰ)解:4,6,6(Ⅱ)(i )解:得分在区间[20,30)内的运动员编号为345101113,,,,,.A A A A A A 从中随机抽取2人,所有可能的抽取结果有:343531*********{,},{,},{,},{,},{,},{,},A A A A A A A A A A A A 410{,}A A ,411413510511513101110131113{,},{,},{,},{,},{,},{,},{,},{,}A A A A A A A A A A A A A A A A ,共15种。
(ii )解:“从得分在区间[20,30)内的运动员中随机抽取2人,这2人得分之和大于50”(记为事件B )的所有可能结果有:454104115101011{,},{,},{,},{,},{,}A A A A A A A A A A ,共5种。
所以51().153P B ==(16)本小题主要考查余弦定理、两角和的余弦公式、同角三角函数的基本关系、二倍角的正弦、余弦公式等基础知识,考查基本运算能力,满分13分。
(Ⅰ)解:由,2,2B C b c b ====可得所以222222331cos .2322a a ab c aA bc+-+-===(Ⅱ)解:因为1cos ,(0,)3A A π=∈,所以sin 3A ==27cos 22cos 1.sin 22sin cos 99A A A A A =--=-==故所以78cos 2cos 2cos sin 2sin 444929218A A A πππ+⎛⎫⎛⎫+=-=-⨯-⨯=- ⎪ ⎪⎝⎭⎝⎭(17)本小题主要考查直线与平面平行、直线与平面垂直、直线与平面所成的角等基础知识,考查空间想象能力、运算能力和推理论证能力。
满分13分。
(Ⅰ)证明:连接BD ,MO ,在平行四边形ABCD 中,因为O 为AC 的中点,所以O 为BD 的中点,又M 为PD 的中点,所以PB//MO 。
因为P B ⊄平面ACM ,M O ⊂平面ACM ,所以PB//平面ACM 。
(Ⅱ)证明:因为45AD C ∠=︒,且AD=AC=1,所以90D AC ∠=︒,即AD AC ⊥,又PO ⊥平面ABCD ,A D ⊂平面ABCD ,所以,PO AD AC PO O ⊥⋂=而,所以AD ⊥平面PAC 。
(Ⅲ)解:取DO 中点N ,连接MN ,AN ,因为M 为PD 的中点,所以MN//PO ,且11,2M N P O P O ==⊥由平面ABCD ,得M N ⊥平面ABCD ,所以M A N ∠是直线AM 与平面ABCD 所成的角,在R t D A O ∆中,11,2A D A O ==,所以2D O =,从而124AN DO ==,在,tan 54M N Rt AN M M AN AN∆∠===中,即直线AM 与平面ABCD 所成角的正切值为5(18)本小题主要考查椭圆的标准方程和几何性质、直线的方程、两点间的距离公式、点到直线的距离公式、直线与圆的位置关系等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的数学思想,考查解决问题能力与运算能力,满分13分。
(Ⅰ)解:设12(,0),(,0)(0)F c F c c ->,因为212||||PF F F =,2c =,整理得2210,1c c c a a a ⎛⎫+-==- ⎪⎝⎭得(舍)或11,.22c e a ==所以(Ⅱ)解:由(Ⅰ)知2,a c b ==,可得椭圆方程为2223412x yc +=,直线FF 2的方程为).y x c =-A ,B两点的坐标满足方程组2223412,).x y c y x c ⎧+=⎪⎨=-⎪⎩消去y 并整理,得2580x cx -=。