新北京课改版北京市七年级数学下册期末模拟试卷及答案解析.docx
- 格式:docx
- 大小:209.13 KB
- 文档页数:27
京改版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、方程组:的解是()A. B. C. D.2、()= 4a4-9b4,括号内应填()A.2a 2+3b 2B.2a 2-3b 2C.-2a 2-3b 2D.-2a 2+3b 23、一辆轿车行驶2小时的路程比一辆卡车行驶3小时的路程少40千米.如果设轿车平均速度为a千米/小时,卡车的平均速度为b千米/小时,则( )A.2a=3b+40B.3b=2a-40C.2a=3b-40D.3b=40-2a4、已知a<b,则下列式子正确的是( )A.a+5>b+5B.3a>3bC.-5a>-5bD. >5、我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定名同学参加决赛,他们的决赛成绩各不相同,其中小辉已经知道自己的成绩,但能否进前名,他还必须清楚这名同学成绩的()A.众数B.平均数C.方差D.中位数6、下列因式分解结果正确的是()A.2a 2﹣4a=a(2a﹣4)B.C.2x 3y﹣3x 2y 2+x 2y=x 2y(2x﹣3y)D.x 2+y 2=(x+y)27、下列计算结果正确的是()A.(a+b)2=a 2+b 2B.a m•a n=a mnC.(﹣a 2)3=(﹣a 3)2 D.(a﹣b)3•(b﹣a)2=(a﹣b)58、下列运算正确的是()A.﹣(x﹣y)2=﹣x 2﹣2xy﹣y 2B.a 2+a 2=a 4C.a 2•a 3=a6 D.(xy 2)2=x 2y 49、下列计算正确的是()A.a 2•a 3=a 6B.(﹣m 2)3=﹣m 6C.b 6÷b 3=b2 D.3a+3b=6ab10、不等式组的解集在数轴上表示正确的是()A. B. C. D.11、下列计算错误的是()A.(a 3b)·(ab 2)=a 4b 3B.xy 2-xy 2=xy 2C.a 5÷a 2=a 3D.(-mn 3)2=m 2n 512、下列方程组中,二元一次方程组一共有()个.( 1 ),(2),(3),(4).A.1个B.2个C.3个D.4个13、能被()整除A.76B.78C.79D.8214、下列调查中,最适合采用全面调查的是()A.对某池塘中现有鱼的数量的调查B.对某鞋厂生产的鞋底能承受的弯折次数的调查C.对全国中学生视力情况的调查D.对某班学生的身高情况的调查15、小刚用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每支钢笔5元,那么小刚最多能买钢笔( )A.12支B.13支C.14支D.15支二、填空题(共10题,共计30分)16、因式分解:________17、若9x2+mxy+16y2是一个完全平方式,则m的值是________.18、分解因式:ab2﹣2ab+a=________.19、某班数学兴趣小组对不等式组,讨论得到以下结论:①若a=5,则不等式组的解集为3<x≤5;②若a=2,则不等式组无解;③若不等式组无解,则a的取值范围为a<3;④若不等式组只有两个整数解,则a的值可以为5.1,其中,正确的结论的序号是________.20、一组数2、a、4、6、8的平均数是5,这组数的中位数是________.21、不等式3x-6≤9的解是________.22、如果实数x、y满足方程组,那么x2﹣y2=________.23、因式分解:3a2﹣3b2=________ 。
(新课标)京改版七年级数学下册期末质量监控试卷下面各题均有四个选项,其中只有一个..是符合题意的. 1.若a b >,则下列不等式成立的是A.33a b ->- B .22a b ->- C.44a b<D .22a b > 2.不等式2x ≤的解集在数轴上表示为A .B .C .D .3.某商品的商标可以抽象为如图所示的三条线段,其中AB ∥CD ,45EAB ∠=︒,则∠FDC 的度数是A .30°B .45°C .60°D .75°4.下列计算,正确的是A .623a a a ÷= B .222326a a a ⨯= C .2224()ab a b =D .2538a a a +=5.某中学篮球队13名队员的年龄情况如下: 年龄(单位:岁) 15161718人数3451则这个队队员年龄的众数和中位数是A .15,15.5B .17,16C .16,16.5D .17,17 6.下列每对数值中是方程31x y -=的解的是A. 2,1.x y =-⎧⎨=-⎩ B. ⎩⎨⎧-==.1,1y xC.1,1.x y =⎧⎨=⎩D.0,1.x y =⎧⎨=⎩7.下列因式分解正确的是 A .()321x x x x -=- B .()22244x x x -=-+C .()()2422x x x --=--+ D .()()23414x x x x +-=-+8.如图1是长方形纸带,∠DEF=15°,将纸带沿EF 折叠成图2,再沿BF 折叠成图3,则图 3中的∠CFE 的度数是图3图1BA BA BA A .165°B .150°D .120°二、填空题(本题共20分,每小题4分) 9.计算:()223m-= .10.x的3倍与4的和是负数,用不等式表示为 .11. 如图,直线AB 、CD 交于点O ,30AOC ∠=°,90DOE ∠=°,则BOE ∠=________°.12. 有5个数,前3个数每个数是4,后2个数每个数是9,则这5个数的平均数是_________.13.将正方形如图1作如下操作:第1次:分别连结各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形……,以此类推,根据以上操作,第4次操作得到的正方形个数是 个;若要得到2001个正方形,则需要操作的次数是 次;第n 次操作得到的正方形个数是 个(n 为正整数)....三、解答题:(本题共30分,每小题5分)14. 计算:3101(2)()343--+--+-.15.分解因式:22363a ab b -+.16.计算:()()()33482.x y x y x y xy xy +---÷17.求不等式组 1312113x x x x -≤+⎧⎪-⎨-<⎪⎩的整数解. 18.解方程组:523x y x y =-⎧⎨+=⎩,.19.已知251x x -=,求代数式2(1)(21)(2)x x x -+-+的值.四、解答题(本题共23分,20题5分,21题12分,22题6分) 20.在括号内填写理由.如图,已知∠B+∠BCD=180°,∠B=∠D. 求证:AD ∥BE.证明:∵∠B+∠BCD=180°( 已知 ),∴AB ∥ ( ). ∴∠DCE=∠B ( ).又∵∠B=∠D(已知),∴∠DCE= (等量代换).∴AD∥BE ( ).21.列方程(组)解应用题(本题共10分,每小题6分). (1)在中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板共需要3.5万元,购买2台电脑和1台电子白板共需要2.5万元.每台电脑、每台电子白板各多少万元?(2)在长为12m,宽为9m的长方形空地上,沿平行于长方形各边的方向分割出三个大小完全一样的小长方形花圃,其示意图如右图所示.求其中一个小长方形花圃的长和宽.22.某校课外活动小组为了了解学生最喜欢的球类运动的情况,随机抽查了该校学生,调查数据整理如图所示,请根据扇形统计图解答以下问题: 球类 篮球 足球 乒乓球 羽毛球 其他 人数(人)141295査了 名学生;(2)请补全数据整理表和扇形统计图; (3)若全校有学生300人,请通过计算该校选择篮球小组有多少人?五、解答题(本题共23分,第23题7分,第24题8分,第25题8分)23.如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B=30°.求∠C 的度数(请写出每一步的理由,已知除外).CEB ADa b图324.阅读材料:对于任意两个数a b 、的大小比较,有下面的方法: 当0a b ->时,一定有a b >; 当0a b -=时,一定有a b =; 当0a b -<时,一定有a b <.反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”. 问题解决:(1)图1长方形的周长M= ;图2长方形的周长N= ;用“求差法”比较M 、N 的大小(b >c).(2)如图3,把边长为a +b(a ≠b)的大正方形分割成两个边长分别是a 、b 的小正方形及两个长方形,试比较两个小正方形面积图2 a +bb +3cb +ca -c图1之和A 与两个长方形面积之和B 的大小.25.问题情境:如图1,AB ∥CD ,130PAB ∠=︒,120PCD ∠=︒.求APC ∠度数.小明的思路是:如图2,过P 作PE ∥AB ,通过平行线性质,可得5060110APC ∠=︒+︒=︒.问题迁移:(1)如图3,AD ∥BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,ADP α∠=∠,BCP β∠=∠.CPD ∠、α∠、β∠之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出CPD ∠、α∠、β∠间的数量关系.NPN备用图。
京改版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、一组数据:3、4、4、5,若添加一个数据4,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差2、 3﹣2的相反数是()A.9B.﹣9C.D.﹣3、下列各式运算正确的是()A. =B.(﹣a 2b)3=﹣a 6b 3C.a 2•a 3=a 6D.- =4、已知是方程组的解,则a+b的值是()A.﹣1B.2C.3D.45、学了多项式乘多项式后,老师设计一接力游戏,用合作的方式完成下题.规定:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一个,最终完成这个题目.过程如下:接力中,自己负责的一步出现错误的是()A.甲B.乙C.丙D.丁6、在党和国家的领导下,全国人民的共同努力,全国疫情进入尾声,各行各业纷纷复工复产,经济形势也越来越好.下列调查中,不适合用抽样调查方式的是()A.调查全国餐饮企业员工的复工情况.B.调查全国医用口罩日生产量 C.北京市高三学生全面复学,调查和检测某学校高三学生和老师的体温 D.调查疫情期间北京地铁的客流量7、下列计算正确的是()A. B. C. D.8、当1≤x≤2时,ax+2>0,则a的取值范围是()A.a>﹣1B.a>﹣2C.a>0D.a>﹣1且a ≠09、若方程组的解x,y满足0<x+y<1,则k的取值范围是()A.﹣1<k<0B.﹣4<k<﹣1C.0<k<1D.k>﹣410、下列计算正确的是()A.(﹣5b)3=﹣15b 3B.(2x)3(﹣5xy 2)=﹣40x 4y2 C.28x 6y 2+7x 3y=4x 2y D.(12a 3﹣6a 2+3a)÷3a=4a 2﹣2a11、不等式组:的解集用数轴表示为()A. B. C.D.12、若A为一数,且A=25×76×114,则下列选项中所表示的数,何者是A的因子?()A.2 4×5B.7 7×11 3C.2 4×7 4×11 4D.2 6×7 6×11 613、已知,则化简代数式的结果是()A. B. C. D.14、下列计算正确的是()A. B. C. D.15、小明拿一张50元的人民币到银行等额换取5元或10元的人民币,请问小明换钱方式有()种.A.4B.5C.6D.7二、填空题(共10题,共计30分)16、若a m=2,a n=3,则a3m﹣2n的值是________.17、若(x+a)(x+2)=x2﹣5x+b,则a=________,b=________.18、某组数据的方差计算公式为S2= [(x1-1)2+(x2-1)2+…+(x8-1)2],则该组数据的样本容量是________,平均数是________.19、阅读下面材料:在数学课上,老师提出如下问题:已知:如图,四边形ABCD是平行四边形.求作:菱形AECF,使点E,F分别在BC,AD上.小军的作法如下:①连接AC;②作AC的垂直平分线EF分别交BC,AD于E,F;③连接AE,CF.所以四边形AECF是菱形.老师说:“小军的作法符合题意.”以下是一种证明思路,请结合作图过程补全填空,由作图和已知可以得到:△AOF≌△COE(依据:________);∴AF=CE;∵________;∴四边形AECF是平行四边形(依据:________);∵EF垂直平分AC;∴________(依据:________);∴四边形AECF是菱形.20、分解因式:﹣2x2+4xy﹣2y2=________.21、如果x n+x2+1是四次多项式,则n=________.22、已知关于x、y的方程组,则代数式22x•4y=________.23、方程组的解为________.24、生命在于运动,小张同学用手机软件记录了4月份每天行走的步数(单位:万步),将记录结果绘制成如下图所示的统计图.在这组数据中,众数是________万步.25、已知一组数据6,2,4,2,3,5,2,4,这组数据的中位数为________ .三、解答题(共5题,共计25分)26、计算:27、当a、b为何值时,多项式a2+b2-4a+6b+18有最小值?并求出这个最小值.28、已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A等于多少?(2)若|a+1|+(b﹣2)2=0,求A的值.29、解不等式组并在数轴上表示解集.30、七年级某班的教室里,一位同学的五次数学成绩分别是:62,62,98,99,100.其中它的中位数,众数,平均数分别是多少?参考答案一、单选题(共15题,共计45分)1、D2、D3、B4、B5、A6、C8、A9、B10、D11、A12、C13、A14、B15、C二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
京改版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、若a*b=a2+2ab,则x2*y所表示的代数式分解因式的结果是()A.x 2(x 2+2y)B.x(x+2)C.y 2(y 2+2x)D.x 2(x 2﹣2y)2、计算-3a2·a3的结果为()A.-3a 5B.3a 6C.-3a 6D.3a 53、下列等式一定成立的是()A. B. C. D.4、已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A. B. C.m<4 D.m>45、若多项式(2x﹣1)(x﹣m)中不含x的一次项,则m的值为()A.2B.﹣2C.D.6、多项式xy4+2x3y3-9xy+8的次数是()A.3B.4C.5D.67、以下式子化简正确的是()A.-(x-3)=-x-3B.4(a+b)+2(a+b)-(a+b)=5(a+b)C.-5(-1-0.2x)=-5+xD.(a+b)+(a-b)-(-a+b)=3a+b8、下列分解因式正确的是()A.x 2+y 2=(x+y)(x﹣y)B.m 2﹣2m+1=(m+1)2C.(a+4)(a ﹣4)=a 2﹣16D.x 3﹣x=x(x 2﹣1)9、已知a,b,c均为实数,且a>b,c≠0,则下列结论不一定正确的是()A.a+c>b+cB.﹣a<﹣bC.a 2>b 2D. >10、在抗击“新冠肺炎”时期,开展停课不停学活动,戴老师从3月1号到7号在网上答题个数记录如下日期1号2号3号4号5号6号7号答题个数68 55 50 56 54 48 68在戴老师每天的答题个数所组成的这组数据中,众数和中位数依次是()A.68,55B.55,68C.68,57D.55,5711、若(x-y)2+M=x2+2xy+y2,则M等于()A.4xyB.-4xyC.2xyD.-2xy12、计算:()﹣1﹣(π﹣1)0,结果正确是()A.2B.1C.﹣D.﹣13、下列因式分解正确的是()A.16m 2-4=(4m+2)(4m-2)B.m 4-1=(m²+1)(m²-1)C.m²-6m+9=(m-3)²D.1-a²=(a+1)(a-1)14、下列计算正确的是()A.a 3+a 2=a 5B.a 4﹣a 2=a 2C.2a﹣3a=﹣aD.a 5•a 5=2a 515、若max{S1, S2,…,Sn}表示实数S1, S2,…,Sn中的最大者.设A=(a1, a2, a3),b=,记A⊗B=max{a1b1, a2b2, a3b3},设A=(x-1,x+1,1),B=,若A⊗B=x-1,则x的取值范围为()A.1- ≤x≤1B.1≤x≤1+C.1- ≤x≤1D.1≤x≤1+二、填空题(共10题,共计30分)16、已知关于x的不等式3x-5k>-7的解集是x>1,则k的值为________.17、若点P(1﹣m,2+m)关于x轴对称的点的坐标在第一象限,则m的取值范围是________.18、分解因式:ab﹣b=________.19、已知,用含的代数式表示,则________.20、若不等式组的解集是-3<x<1,则a+b=________.21、不等式组的整数解是________.22、已知x m=3,x n=2,则x2m+n=________.23、 ________;________.24、计算的结果等于________.25、若P(7a+14,a-2)在第四象限,则a的取值范围是________三、解答题(共5题,共计25分)26、(x﹣2y)6÷(2y﹣x)3.27、当k取何值时,等式的b是负数.28、解方程组:29、先化简,再求值:4(x﹣3)(x+2)﹣(2x+3)(2x﹣3),其中x=﹣2.30、先化简,再求值:(x+2)2﹣4x(x+1),其中x= .参考答案一、单选题(共15题,共计45分)1、A2、A3、D4、C5、D7、B8、C9、C10、A11、A12、B13、C14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
2023-2024学年北京市海淀区七年级(下)期末数学试卷一、选择题(本题共30分,每小题3分)1.(3分)16的算术平方根是()A.4B.±4C.8D.±82.(3分)在平面直角坐标系中,点P(﹣1,2)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)如图,若m∥n,∠1=105°,则∠2=()A.55°B.60°C.65°D.75°4.(3分)不等式x﹣3≥0的解集在数轴上可以表示为()A.B.C.D.5.(3分)下列调查方式中,你认为最合适的是()A.了解北京市每天的流动人口数量,采用全面调查B.旅客乘坐飞机前的安检,采用抽样调查C.搭载神舟十八号载人飞船的长征二号F遥十八运载火箭零部件检查,采用全面调查D.测试某型号汽车的抗撞击能力,采用全面调查6.(3分)已知,,是二元一次方程x+2y=5的三个解,是二元一次方程2x﹣y=0的三个解,则二元一次方程组的解是()A.B.C.D.7.(3分)若m<n,则下列不等式正确的是()A.2m>2n B.m﹣3>n﹣3C.6﹣m<6﹣n D.8.(3分)小华同学在做家庭暑期旅游攻略时,绘制了西安市周边部分城市位置的示意图,如图所示,分别以正东,正北方向为x轴,y轴的正方向建立平面直角坐标系.如果表示武汉市的点的坐标为(4,0),表示西安市的点的坐标为(2,2),则表示贵阳市的点的坐标是()A.(0,0)B.(1,﹣2)C.(3,1)D.(﹣2,1)9.(3分)如图,正方形ABCD的面积为3,顶点A在数轴上,且点A表示的数为1,数轴上有一点E在点A的左侧,若AD=AE,则点E表示的数为()A.B.﹣1C.D.010.(3分)近年来汽车工业不断进行技术改革和升级,新能源汽车走进千家万户,与之配套的充电设施也在不断建设中.从充电设施的应用场景看,充电设施可分为私人随车配建充电桩和公共充电桩.据新能源汽车国家大数据联盟统计,2018﹣2023年我国充电设施累计数量情况如图所示.根据上述信息,给出下列四个结论:①2018﹣2023年,每年充电设施累计数量呈上升趋势;②2023年新增公共充电桩数量超过90万台;③2018﹣2023年,每年新增的随车配建充电桩数量逐年上升;④2018﹣2023年,随车配建充电桩累计数量占充电设施累计数量的百分比最高的年份是2023年.其中所有正确的结论是()A.②③B.①②④C.①②③D.①③④二、填空题(本题共18分,每小题3分)11.(3分)如图,小明在长方形的篮球场上沿直线进行折返跑训练,他从场地一边的P点处出发,选择到对面的(填A,B或C)点处折返一次回到P点时,跑过的路程最短.12.(3分)如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠COB=度.13.(3分)已知是关于x,y的二元一次方程ax﹣y=1的一个解,那么a的值是.14.(3分)我们知道,由角的数量关系可得两条直线的位置关系.如图,为使AB∥DC成立,请写出一组角的数量关系作为条件:.15.(3分)几个人共同购买一件物品,若每人出9元,则多出3元;若每人出7元,则还差5元.设人数为x人,购买费用为y元,可列方程组为(只列不解).16.(3分)如图,在平面直角坐标系xOy中,已知点A(1,1),B(4,4),C(5,2),连接AB,BC,P (x,y)为折线段A﹣B﹣C上的动点(P不与点A,C重合),记t=|y+a|,其中a为实数.(1)当a=﹣2时,t的最大值为;(2)若t存在最大值,则a的取值范围为.三、解答题(本题共52分,第17-18题,每小题4分,第19-21题,每小题4分,第22题6分,第23-24题,每小题4分,第25题6分,第26题7分)解答应写出文字说明、演算步骤或证明过程.17.(4分)计算:.18.(4分)解方程组:.19.(5分)解不等式组:.20.(5分)如图,在平面直角坐标系xOy中,已知点A(﹣2,2),B(﹣3,1),将线段AB向右平移2个单位,再向上平移1个单位,得到线段A1B1.(1)在图中画出线段A1B1,并直接写出点B1的坐标;(2)点M在y轴上,若三角形A1B1M的面积为1,直接写出点M的坐标.21.(5分)如图,三角形ABC中,∠ACB=90°,过点C作AB的平行线l,在线段AB上任取一点D(不与点A,B重合),过点D作AC的垂线交AC于点E,交直线l于点F.(1)依题意补全图形;(2)求证:∠B=∠CFE.22.(6分)根据以下学习素材,完成下列两个任务:学习素材素材一某校组织学生去农场进行学农实践,体验草莓采摘、包装和销售.同学们了解到该农场在包装草莓时,通常会采用精包装和简包装两种包装方式.素材二精包装简包装每盒2斤,每盒售价25元每盒3斤,每盒售价35元问题解决任务一在活动中,学生共卖出了700斤草莓,销售总收入为8500元,请问精包装和简包装各销售了多少盒?任务二现在需要对75斤草莓进行分装,既有精包装也有简包装,且恰好将这75斤草莓整盒分装完.每个精包装盒的成本为1元,每个简包装盒的成本为0.5元.若要将购买包装盒的成本控制在18元以内,请你设计出一种符合要求的分装方案,并说明理由.23.(5分)为了解某长跑俱乐部成员的跑步成绩情况,某学校的长跑社团收集了该俱乐部2023年和2024年半程马拉松“大师赛”的比赛成绩,分为两个研究小组进行调查研究.(1)第一个研究小组随机抽取了该俱乐部2023年一些成员的比赛成绩,部分统计结果如下:成绩x(分钟)频数(人)频率80<x≤8520.0485<x≤900.0890<x≤95895<x≤100170.34100<x≤105100.20105<x≤11030.06110<x≤11550.10115<x≤12010.02合计1①请把上面的频数分布直方图补充完整;②在2023年,该俱乐部共有280名成员,根据上面的统计结果估计该年俱乐部中成绩x满足90<x≤95的人数为(结果精确到个位);(2)第二个研究小组从该俱乐部2023年和2024年均参加了半程马拉松“大师赛”的选手中抽取了30名选手的跑步成绩,绘制了统计图(如图所示).请根据如图解答下面的问题:①小赵2024年的比赛用时比2023年的比赛用时(填“多”“少”);②将这30名选手中2024年成绩优于2023年成绩的人数记为m,其余选手人数记为n,则m n(填“>”“=”“<”).24.(5分)甲、乙两位同学玩填数游戏,每人各自从左到右依次填写四个实数x1,x2,x3,x4,如表所示.x1x2x3x4所填的四个数满足:从第二个数开始,每一个数都大于或等于前面填写的任意一个数的2倍.(1)若甲同学填写的四个数中,x1=2,x2=4,,请写出一个符合要求的x3的值:;(2)若乙同学填写的前两个数满足x1=﹣2,x1+x2<﹣3,求x2的取值范围;(3)若甲、乙两位同学各自填写的四个数都是非零整数,且他们所填写的第一个数互为相反数,则这两位同学填写的这八个数之和的最小值为.25.(6分)已知C为射线AB上方一点,过点C作AB的平行线MN,点O在射线AC上运动(不与点A,C重合),点D在射线CM上,连接OD,满足∠COD=m∠BAC(0<m<1).(1)如图1,点O在线段AC上,∠BAC=60°,若,依题意补全图形,并直接写出∠MDO的度数;(2)点E,F在射线CN上,连接AE,OF,满足∠COF=(1﹣m)∠CAE.①如图2,点O在线段AC上,AE⊥AB,写出一个m的值,使得∠MDO+∠NFO恒为定值,并求出此定值;②如图3,∠BAC=70°,∠CAE=50°,若直线OD和直线OF中至少有一条与直线AE平行或垂直,直接写出m的值.26.(7分)在平面直角坐标系xOy中,对于点A(x1,y1),B(x2,y2),令m=x1+x2,n=y1+y2,将|m﹣n|称为点A与点B的特征值.对于图形M和图形N,若点A为图形M上的任意一点,点B为图形N上的任意一点,且点A与点B的特征值存在最大值,则将该最大值称为图形M与图形N的特征值.(1)已知点A(3,2),B(2,﹣4).①点A与点B的特征值为;②已知点C在y轴上,若点A与点C的特征值为5,则点C的坐标为;(2)已知点D(6,0),E(4,0),将线段DE以每秒1个单位的速度向左平移,经过t(t>0)秒后得到线段D1E1.①已知点F(2,4),0<t≤8,求点F与线段D1E1的特征值h的取值范围;②已知面积为2的正方形的对角线交点为G(2t,2t),且该正方形至少有一条边与坐标轴平行,记该正方形与线段D1E1的特征值为k,则k的最小值为;当k≤6时,t的取值范围为.2023-2024学年北京市海淀区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)1.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,直接利用此定义即可解决问题.【解答】解:∵4的平方是16,∴16的算术平方根是4.故选:A.【点评】此题主要考查了算术平方根的定义,此题要注意平方根、算术平方根的联系和区别.2.【分析】应先判断出所求点P的横坐标、纵坐标的符号,进而判断其所在的象限.【解答】解:∵点P(﹣1,2)的横坐标﹣1<0,纵坐标2>0,∴点P在第二象限.故选:B.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.【分析】由m∥n,根据“两直线平行,同旁内角互补”得到∠1+∠2=180°,然后把∠1=105°代入计算即可得到∠2的度数.【解答】解:∵m∥n,∴∠1+∠2=180°(两直线平行,同旁内角互补),而∠1=105°,∴∠2=180°﹣105°=75°.故选:D.【点评】本题考查了平行线的性质:两直线平行,同旁内角互补.4.【分析】按照解一元一次不等式的步骤进行计算,即可解答.【解答】解:x﹣3≥0,x≥3,∴该不等式的解集在数轴上表示如图所示:,故选:C.【点评】本题考查了解一元一次不等式,在数轴上表示不等式的解集,熟练掌握解一元一次不等式的步骤是解题的关键.5.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A.了解北京市每天的流动人口数量,适合采用抽样调查的方式,故该项不符合题意;B.旅客乘坐飞机前的安检,适合采用全面调查的方式,故该项不符合题意;C.搭载神舟十八号载人飞船的长征二号F遥十八运载火箭零部件检查,适合采用全面调查的方式,故该项符合题意;D.测试某型号汽车的抗撞击能力,适合采用抽样调查的方式,故该项不符合题意;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破,坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.【分析】找出两个方程的公共解,即为这两个方程组成方程组的解.【解答】解:根据题意得:二元一次方程组的解是.故选:D.【点评】此题考查了解二元一次方程组,以及二元一次方程的解,弄清方程组解的定义是解本题的关键.7.【分析】根据不等式的基本性质逐项判断即可得到答案.【解答】解:A、∵m<n,∴2m<2n,故A不符合题意;B、∵m<n,∴m﹣3<n﹣3,故B不符合题意;C、∵m<n,∴﹣m>﹣n,∴6﹣m>6﹣n,故C不符合题意;D、∵m<n,∴,故D符合题意;故选:D.【点评】本题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于基础题型.8.【分析】根据题意建立正确的直角坐标系,即可得出答案.【解答】解:如图,建立直角坐标系,则贵阳市的点的坐标是(1,﹣2).故选:B.【点评】本题主要考查坐标确定位置,建立正确的直角坐标系是解题的关键.9.【分析】根据题意可得:AD=,当点A表示的数为1,数轴上有一点E在点A的左侧,且AD=AE,因此点E表示的数为:1﹣.【解答】解:∵正方形ABCD的面积为3,∴AD=,∵点A表示的数为1,数轴上有一点E在点A的左侧,且AD=AE,∴点E表示的数为:1﹣,故选:A.【点评】本题考查的是实数与数轴,熟练掌握数轴上各点的分布特点是解题的关键.10.【分析】根据形统计图和折线统计图和百分比的应用解答即可.【解答】解:由题意得:①2018﹣2023年,每年充电设施累计数量呈上升趋势,说法正确;②2023年新增公共充电桩数量=272.6﹣179.7=92.9超过90万台,说法正确;③2018﹣2023年,每年新增的随车配建充电桩数量逐年上升,说法错误;④2018﹣2023年,随车配建充电桩累计数量占充电设施累计数量的百分比最高的年份是2023年,说法正确.所以正确结论的序号是①②④.故选:B.【点评】本题考查了条形统计图和折线统计图的综合运用,百分比的应用,能弄清各个统计图之间的关系是解题的关键.二、填空题(本题共18分,每小题3分)11.【分析】根据垂线的性质即可得到结论.【解答】解:∵PB⊥AC,∴PA>PB,PC>PB,∴他从场地一边的P点处出发,选择到对面的B(填A,B或C)点处折返一次回到P点时,跑过的路程最短.故答案为:B.【点评】本题考查了矩形到现在,垂线段最短,熟练掌握垂线段最短是解题的关键.12.【分析】根据垂线、角之间的和与差,即可解答.【解答】解:∵OE⊥AB,∴∠AOE=∠EOB=90°,∵∠EOD=38°,∴∠BOD=∠EOB﹣∠EOD=90°﹣38°=52°,∴∠BOC=180°﹣∠DOB=180°﹣52°=128°,故答案为:128.【点评】本题考查了垂线,解决本题的关键是利用角之间的关系解答.13.【分析】根据二元一次方程的解的定义,将代入关于x,y的二元一次方程ax﹣y=1即可求出a 的值.【解答】解:∵是关于x,y的二元一次方程ax﹣y=1的解,∴a﹣2=1,解得a=3,故答案为:3.【点评】本题考查二元一次方程的解,掌握二元一次方程解的定义是正确解答的关键.14.【分析】根据平行线的判定定理即可得到结论.【解答】解:∵∠1=∠5或∠1+∠2=180°或∠3+∠4=180°,∴AB∥DC,故答案为:∠1=∠5或∠1+∠2=180°或∠3+∠4=180°(答案不唯一).【点评】本题考查了平行线的判定,熟练掌握平行线的判定定理是解题的关键.15.【分析】根据“每人出9元,则多出3元;若每人出7元,则还差5元”找到等量关系,可得方程组.【解答】解:根据题意,列方程组为:.故答案为:.【点评】本题主要考查由实际问题抽象出二元一次方程组,由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.16.【分析】(1)当a=﹣2时,t=|y﹣2|,根据绝对值的几何意义,可知t表示P(x,y)与直线y=2之间的距离,当点P在点B(4,4)时,距离最大,由此得解;(2)先求出当点A和B到直线y=﹣a距离相等时,此时a=﹣2.5,t有最大值,然后画图分析可知,当直线y=﹣a在直线l1:y=2.5上方时,点A距离直线y=﹣a距离最大,由于点P不与点A重合,此时t=|y+al取不到最大值,当直线y=﹣a在直线l1:y=2.5下方时,当P与点B重合时可以取到最大值,由此得解.【解答】解:(1)当a=﹣2时,t=|y﹣2|,根据绝对值的意义,可知t表示P(x,y)与直线y=2之间的距离,∴当点P与点B(4.4)重合时,距离最大,此时t=y B﹣2=4﹣2=2.故答案为:2;(2)如图,直线l1:y=2.5,此时,折线段A﹣B﹣C上,点A、B距离直线l1:y=2.5的距离最大,都是1.5,当a=﹣2.5时,t=|y﹣2.5|,表示P(x,y)与直线l1:y=2.5之间的距离,∴当点P与点B(4,4)重合时,t取得最大值为4﹣2.5=1.5,如图:当直线l2:y=﹣a,在直线l1:y=2.5上方,即﹣a>2.5,a<2.5时,此时,折线段A﹣B﹣C上,点A距离直线l2距离最大,∴若a<﹣2.5,t=|y+a|,t表示P(x,y)与直线l2:y=﹣a之间的距离,由于P不与点A重合,∴此时t不存在最大值.当直线l2:y=﹣a,在直线l1:y=2.5下方,即﹣a<2.5,a>2.5时,此时,折线段A﹣B﹣C上,点B 距离直线距离最大,∴若a>﹣2.5,t=|y+a|,t表示P(x,y)与直线:y=﹣a之间的距离,此时t存在最大值,即当p在点B处时取得最大值.综上所述,当a≥﹣2.5时,t存在最大值.故答案为:a≥﹣2.5.【点评】本题考查了平面直角坐标系中点与直线间的距离,以及绝对值的几何意义,理解并掌握绝对值的几何意义是解题的关键.三、解答题(本题共52分,第17-18题,每小题4分,第19-21题,每小题4分,第22题6分,第23-24题,每小题4分,第25题6分,第26题7分)解答应写出文字说明、演算步骤或证明过程.17.【分析】先计算二次根式、立方根和绝对值,再计算加减.【解答】解:=3+2+﹣1=4+.【点评】此题考查了实数的混合运算能力,关键是能准确确定运算顺序和方法,并能进行正确地计算.18.【分析】方程组利用代入消元法求出解即可.【解答】解:,由①得:y=2x﹣4③,把③代入②得:x+2(2x﹣4)=﹣3,解得:x=1,把x=1代入③得:y=2﹣4=﹣2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.【分析】分别求出每个不等式的解集,再求其解集的公共部分即可.【解答】解:,解①得x<2.5;解②得x≥﹣1;所以,原不等式组的解集为﹣1≤x<2.5.【点评】此题考查了解一元一次不等式组,求不等式组的解集要根据以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.20.【分析】(1)根据平移的性质作图,即可得出答案.(2)设点M的坐标为(0,m),根据题意可列方程为=1,求出m的值,即可得出答案.【解答】解:(1)如图,线段A1B1即为所求.由图可得,点B1的坐标为(﹣1,2).(2)设点M的坐标为(0,m),∵三角形A1B1M的面积为1,∴=1,解得m=5或1,∴点M的坐标为(0,5)或(0,1).【点评】本题考查作图﹣平移变换,熟练掌握平移的性质是解答本题的关键.21.【分析】(1)根据几何语言画出对应的几何图形即可;(2)先证明DF∥BC,再根据平行线的性质得到∠B=∠ADF,∠ADF=∠CFE,所以∠B=∠CFE.【解答】(1)解:如图,(2)证明:∵∠ACB=90°,∴AC⊥BC,∵DF⊥AC,∴DF∥BC,∴∠B=∠ADF,∵AB∥l,∴∠ADF=∠CFE,∴∠B=∠CFE.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的性质和直角三角形的性质.22.【分析】任务一:设精包装销售了x盒,简包装销售了y盒,根据“在活动中,学生共卖出了700斤草莓,销售总收入为8500元”,可列出关于x,y的二元一次方程组,解之即可得出结论;任务二:设可以分装成m盒精包装,则分装成盒简包装,根据购买包装盒的成本控制在18元以内,可列出关于m的一元一次不等式,解之可得出m的取值范围,再结合m,均为正整数,即可得出结论.【解答】解:任务一:设精包装销售了x盒,简包装销售了y盒,根据题意得:,解得:.答:精包装销售了200盒,简包装销售了100盒;任务二:分装成3盒精包装,23盒简包装(或分装成6盒精包装,21盒简包装),理由如下:设可以分装成m盒精包装,则分装成盒简包装,根据题意得:m+0.5×≤18,解得:m≤,又∵m,均为正整数,∴m可以为3,6,∴共有2种分装方案,方案1:分装成3盒精包装,23盒简包装;方案2:分装成6盒精包装,21盒简包装.答:分装成3盒精包装,23盒简包装(或分装成6盒精包装,21盒简包装).【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:任务一:找准等量关系,正确列出二元一次方程组;任务二:根据各数量之间的关系,正确列出一元一次不等式.23.【分析】(1)①用成绩为80<x≤85频数除以频率得到参与调查的人数,再乘以成绩在85<x≤90分钟的频率,即可求出成绩在85<x≤90分钟的频数,进而补全统计图即可;②用280乘以样本中成绩在90<x≤95频率即可得到答案;(2)①根据统计图读出数据即可得到答案;②根据统计图比较m和n的多少即可得到答案.【解答】解:(1)①被调查的人数为:2÷0.04=50(人),成绩在“85<x≤90”组的人数为50×0.08=4(人),成绩在“90<x≤95”组的频率为8÷50=0.16,补全频数分布直方图如下:②成绩x满足90<x≤95的人数为:280×0.16≈45(人),故答案为:45人;(2)①由统计图可知,小赵2024年的比赛用时为80分钟,小赵2023年的比赛用时大于90分钟,∴小赵2024年的比赛用时比2023年的比赛用时少,故答案为:少;②如图所示,由统计图可知在AB左上方的点少于右下方的点,即2024年成绩比2023年成绩好的人数多于不好的人数,∴m>n,故答案为:>.【点评】本题主要考查了频数分布直方图,频数分布表,频数分布折线图等知识,能从图表中获取有用信息是解题的关键.24.【分析】(1)依据题意,可得,从而x3≥8,且2x3≤,故8≤x3≤,进而可以判断得解;(2)依据题意,由x2≥2x1,则x2≥﹣4,又x1+x2<﹣3,从而﹣2+x2<﹣3,可得x2<﹣1,进而可以判断得解;(3)依据题意,设甲填写的四个数为x1,x2,x3,x4,乙填写的四个数为y1,y2,y3,y4,再设x1=a,则x2≥2a,x3≥4a,x4≥8a,又x1与y1互为相反数,则y1=﹣a,则y2≥﹣2a,y3≥﹣2a,y4≥﹣2a,结合x1+y1=0,x2+y2≥2a+(﹣2a),即x2+y2≥0,同理,x3+y3≥2a,x4+y4≥6a,进而可得x1+x2+x3+x4+y1+y2+y3+y4≥8a,故可判断得解.【解答】解:(1)由题意,,∴x3≥8,且2x3≤.∴8≤x3≤.∴x3可以取此范围内的任一值,如x3=10.故答案为:10(答案不唯一).(2)由题意,∵x2≥2x1,∴x2≥﹣4.又∵x1+x2<﹣3,∴﹣2+x2<﹣3.∴x2<﹣1.综上,﹣4≤x2<﹣1.(3)由题意,设甲填写的四个数为x1,x2,x3,x4,乙填写的四个数为y1,y2,y3,y4,设x1=a(a>0),则x2≥2a,x3≥4a,x4≥8a.∵x1与y1互为相反数,∴y1=﹣a,则y2≥﹣2a,y3≥﹣2a,y4≥﹣2a.又∵x1+y1=0,x2+y2≥2a+(﹣2a),即x2+y2≥0,同理,x3+y3≥2a,x4+y4≥6a,∴x1+x2+x3+x4+y1+y2+y3+y4≥8a.∵x1,x2,x3,x4,y1,y2,y3,y4,都是非零整数,当a=1时,8a=8为最小值,∴这八个数之和的最小值为8.故答案为:8.【点评】本题主要考查了实数的性质及数字变化规律,解题时要熟练掌握并能灵活运用是关键.25.【分析】(1)当m=时,∠COD=∠BAC=30°,MN∥AB,得∠ACM=180°﹣∠BAC=120°,即可求解.(2)①根据平行线的定理得∠CAE=90°﹣∠BAC,∠MDO=∠DCO+∠COD,即可求解.②分情况讨论,当直线OD⊥AE时,设直线AE与直线OD交于I,当OF⊥AE时,设设直线AE与直线OF交于R,根据平行线的定理即可求解.【解答】解:(1)当m=时,∠COD=∠BAC=30°,∵MN∥AB,∴∠ACM=180°﹣∠BAC=120°,∴∠MDO=∠ACM+∠COD=150°,故∠MDO的度数为150°.(2)①∵AE⊥AB,∴∠EAB=90°,∵MN∥AB,∴AE⊥MN,∴∠AEM=90°,∴∠CAE=90°﹣∠BAC,∵∠MDO=∠DCO+∠COD,∠NFO=∠NCO+∠COF,∠MDO+∠NFO=∠DCO+∠NCO+∠DOC+∠COF=180°+m∠BAC+(1﹣m)∠CAE=270°﹣m×90°+(1﹣2m)∠BAC,上述∠BAC无关,∴1﹣2m=0,∴m=.当m=时,∠MDO+∠NFO=225°,故m为时,使得∠MDO+∠NFO恒为定值,定值为:225°.②∠BAC=70°,∠CAE=50°,当直线OD⊥AE时,设直线AE与直线OD交于I,∴∠OIA=90°,∴∠IOA=40°,∴∠COD=∠AOI=40°,∵∠COD=m∠BAC,∴m=.当OF∥AE,∴∠COF=∠CAE=(1﹣m)∠CAE,∴1﹣m=1,∴m=0(舍去).当OF⊥AE时,设设直线AE与直线OF交于R,∴∠ARO=90°,∴∠AOR=∠COF=40°,∵∠COF=∠CAE=(1﹣m)∠CAE,∴m=,当OD∥AE,∴∠DOC=∠CAE=50°,∵MN∥AB,∴∠OCD=∠BAC=70°,∵∠COD=m∠BAC,∴m=.故m的值为:,,.【点评】本题考查了平行线的性质,解题关键在于熟练掌握平行线的定理.26.【分析】(1)①根据特征值的定义即可求解;②根据特征值的定义即可求解;(2)①线段DE经过t秒后得到线段D1E1,D1(6﹣t,0).E1(4﹣t,0),设点P(x,0)为线段D1E1上的任意一点,点P(x,0)与F(2,4)的特征值为:|x+2﹣4|=|x﹣2|,|x﹣2|的最大值为点F与线段D1E1的特征值h.|x﹣2|的几何意义为P(x,0)与点(2,0)之间的距离,故在运动过程中,特征值h 的最小值是当线段D1E1的中点在(2,0)时取得,而最大值是在线段D1E1的端点取得,可求得当t=8,P(x,0)在端点E1(﹣4,0)时,特征值h取得最大值,由此求得其取值范围;②先根据已知条件,得到正方形的边长为,当t变化时,该正方形ABMN的中心在一三象限角平分线l上运动,证明对于在正方形ABMN上(包含边和内部)的任意一点P(x,y),横纵坐标差的绝对值,且在点A和M取得最大值,得到,设线段D1E1上任意一点为Q(c,0),点P(x,y)与点Q(c,0)的特征值为:|m﹣n|=|x+c﹣y|=|x﹣y+c|,|x﹣y+c|的最大值为正方形与线段D1E1的特征值为k.当线段D1E1运动时,把|x﹣y+c|看成一个整体,则相当于在原来线段DE的基础上,点E向左平移个单位,点D向右平移个单位,即对应为端点,,经过时间t,,,长度为的线段D1E1在x轴上向左运动,|x﹣y+c|的几何意义则是线段D1E1在x轴上向左运动过程中,线段D1E1上点与原点O的距离,当线段D'E'的中点位置在原点O时,正方形与线段D1E1的特征值k取得最小值;当k≤6时,根据线段D1E1的运动过程可知,|x﹣y+c|的最大值是在线段的端点取得,当线段D1E1在y轴右侧时,|x﹣y+c|的最大值在点D1取得,当线段D1E1在y轴左侧时,|x﹣y+c|的最大值在点E1取得,将端点的坐标值代入,解不等式即可得解.【解答】解:(1)①∵点A(3,2),B(2,﹣4),∴m=3+2=5,n=2﹣4=﹣2,∴|m﹣n|=|5﹣(﹣2)|=7,∴点A与点B的特征值为7;故答案为7.②∵已知点C在y轴上,设C(0,y),又点A(3,2),∴m=3+0=3,n=y+2,∴|m﹣n|=|3﹣(y+2)|=|1﹣y|,∵点A与点C的特征值为5,∴|m﹣n|=|1﹣y|=5,∴1﹣y=5或﹣5,解得y=﹣4或6,∴点C的坐标为(0,﹣4)或(0,6).故答案为:(0,﹣4)或(0,6).(2)解:①∵D(6,0),E(4,0),线段DE经过t秒后得到线段D1E1,∴D1(6﹣t,0),E1(4﹣t,0),设点P(x,0)为线段D1E1上的任意一点,则4﹣t≤x≤6﹣t.∵F(2,4),∴点P(x,0)与F(2,4)的特征值为:|x+2﹣4|=|x﹣2|.∴|x﹣2|的最大值为点F与线段D1E1的特征值h.∵0<t≤8,∴﹣8≤﹣t<0,∴﹣6≤4﹣t﹣2<2,﹣4≤6﹣t﹣2<4.∴当t=8时,h取得最大值6.∵点P(x,0)为线段D1E1上的任意一点,且D1E1的长度为2.∴当点D1和点E1关于(2,0)对称时,即D1(3,0)、E1(1,0),此时h取得最小值1.∴点F与线段D1E1的特征值h的取值范围为:1≤h≤6.②∵已知面积为2的正方形的对角线交点为G(2t,2t),且该正方形至少有一条边与坐标轴平行,∴正方形的边长为,当t变化时,该正方形ABMN的中心在一三象限角平分线上运动,作一三象限角平分线l的平行线l2,当平行线l2在下方时,在直线l2上,且在正方形ABMN上(除点A 和M点外,包含正方形的边和正方形内部)任取点F、S,过F、S分别作x轴,y轴垂线,连接HF,如图所示,∵NF∥HS,HN∥SF,∴∠SHF=∠NFH,∠NHF=∠SFH,又HF=HF,∴△HNF≌△FSH,∴HS=NF,∵x F﹣y F=FL﹣FK=NF+NL﹣NP,又∵N在一三象限角平分线上,∴NL=NP,∴,同理可得,当平行线l2在一三象限角平分线l上方时,同理可证,,此时,当点在线段BN上时,有x﹣y=0,∴当正方形ABMN上(除点A和M点外,包含正方形的边和正方形内部)任意一点P(x,y),横纵坐标差的绝对值|x﹣y|小于正方形边长,即,当在A点时,有,当在M点时,有,综上所述,对于在正方形ABMN上的任意一点P(x,y),横纵坐标差的绝对值,且在点A和M取得最大值在线段BN上时取得最小值O,即,设线段D1E1上任意一点为Q(c,0),则m=x+c,n=y,∴点P(x,y)与点Q(c,0)的特征值为:|m﹣n|=|x+c﹣y|=|x﹣y+c|,∴|x﹣y+c|的最大值为正方形与线段D1E1的特征值为k.∵线段D1E1长度为2,当t=0时,即线段D1E1还未开始运动时,此时Q(c,0)在线段DE上,4≤c≤6,而,∴当线段D1E1运动时,把|x﹣y+c|看成一个整体,则相当于在原来线段DE的基础上,点E向左平移个单位,点D向右平移个单位,即对应的端点,E′(4﹣,0),经过时间t,,,长度为的线段D1E1在x轴上向左运动,如图所示,∴|x﹣y+c|的几何意义则是线段D1E1在x轴上向左运动过程中,线段D1E1上点与原点O的距离,在这个过程中,|x﹣y+c|的最大值中的最小值,即正方形与线段D1E1的特征值k的最小值,是当线段D1E1的中点位置在原点O时,此时端点D1、E1与原点O距离都是,∴正方形与线段D1E1的特征值为k最小值为,当k≤6时,根据线段D1E1的运动过程可知,|x﹣y+c|的最大值是在线段的端点取得,当线段D1E1在y轴右侧时,|x﹣y+c|的最大值在点D1取得,D1的坐标为,距离原点的距离为,此时,解得,当线段D1E1在y轴左侧时,|x﹣y+c|的最大值在点E1取得,,距离原点距离为,此时,解得t综上所示,当k≤6时,的取值范围为.故答案为:.。
京改版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、学校需要了解学生眼睛患上近视的情况,下面抽取样本方式比较合适的是A.从全校的每个班级中随机抽取几个学生作调查B.在低年级学生中随机抽取一个班级作调查C.在学校门口通过观察统计佩戴眼镜的人数D.从学校的男同学中随机抽取50名学生作调查2、若a>b,则下列各式中正确的是()A.a-c<b-cB.ac>bcC.- (c≠0)D.a(c 2+1)>b (c 2+1)3、已知a,b,c是△ABC的三边长,满足a2+b2=6a+8b﹣25,则最长边c的范围()A.1<c<7B.4≤c<7C.4<c<7D.1<c≤44、下列运算正确的是()A. -2 =B.(π﹣3.14)0=0C.a 2•a 5=a 10D.(a+b)2=a 2+b 25、在下列计算中,正确的是()A.b 3•b 3=b 6B.x 4•x 4=x 16C.(﹣2x 2)2=﹣4x 4D.3x 2•4x 2=12x 26、化简a2•(﹣a)4的结果是()A.﹣a 6B.a 6C.a 8D.﹣a 87、下列运算正确的是()A. B. C. D.8、解以下两个方程组,,较为简便的方法是()A.①②均用代入法B.①②均用加减法C.①用代入法,②用加减法 D.①用加减法,②用代入法9、若a>b,则下列各不等式中不成立的是()A.a-1<b-1B. a> bC.-8a<-8bD.-1-a<-1-b10、下列式子中,能用平方差公式计算的是()A.(﹣x+1)(x﹣1)B.(﹣x﹣1)(x+1)C.(﹣x﹣1)(﹣x+1)D.(x﹣1)(1﹣x)11、下列计算错误的是()A.(6a+1)(6a-1)=36a 2-1B.(-m-n)(m-n)=n 2-m 2C.(a 3-8)(-a 3+8)=a 9-64D.(-a 2+1)(-a 2-1)=a 4-112、下列计算正确的是( )A. B. C. D.13、疫情无情,人间有爱,为全力支援武汉开展新型冠状病毒感染肺炎医疗救治工作,打赢疫情防控战,温岭市某学校数学组25名老师积极捐款,捐款情况如下表所示,下列说法错误的是( )捐款数额(单位:元) 100 200 300 500 1000人数(单位:人) 2 12 8 2 1A.众数是200B.中位数是300C.极差是900D.平均数是28014、今天数学课上,老师讲了单项式乘以多项式,放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题;﹣3xy•(4y﹣2x﹣1)=﹣12xy2+6x2y+__________,空格的地方被钢笔水弄污了,你认为横线上应填写()A.3xyB.﹣3xyC.﹣1D.115、若整数同时满足不等式与,则该整数x是().A.1B.2C.3D.2和3二、填空题(共10题,共计30分)16、已知单项式3x2y3与﹣5x2y2的积为mx4y n,那么m﹣n=________.17、不等式的非负整数解为________.18、如果关于的不等式的正整数解恰有2个,则的取值范围是________.19、若a+b=5,ab=3,则(a﹣2)(b﹣2)=________20、不等式的正整数解为________.21、分解因式:________·22、关于x的方程3x+4a=2的解是正数,则a________ .23、计算:= ________.24、已知一组数据:a、4、5、6、7的平均数为5,则这组数据的中位数是________.25、分解因式:xy2﹣2xy+x=________.三、解答题(共5题,共计25分)26、解不等式组27、解不等式组并将其解集在数轴上表示出来.28、解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得▲;(Ⅱ)解不等式②,得▲;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为▲.29、解不等式组,并把解集在数轴上表示出来.30、已知关于的方程组的解也是二元一次方程的一个解,求的值.参考答案一、单选题(共15题,共计45分)1、A2、D3、C4、A5、A6、B7、D8、C9、A10、C11、C12、B13、B14、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、。
北京市七年级下册期末模拟数学试卷一.选择题(共10小题,满分30分,每小题3分)1.利用数轴求不等式组的解集表示正确的是()A. B.C.D.2.下列运算正确的是()A.2x﹣3x=﹣1 B.x3•x2=x5 C.(﹣a)2=﹣a2D.(a2)3=a53.若a<b,则下列不等式变形错误的是()A.a﹣2<b﹣2 B.<C.3﹣2a<3﹣2b D.2a﹣3<2b﹣34.下列各式中,从左到右的变形是因式分解的是()A.(x+2y)(x﹣2y)=x2﹣4y2B.x2y﹣xy2﹣1=xy(x﹣y)﹣1C.a2﹣4ab+4b2=(a﹣2b)2 D.2a2﹣2a=2a2(1﹣)5.若∠A,∠B互为补角,且∠A<∠B,则∠A的余角是()A.(∠A+∠B) B.∠B C.(∠B﹣∠A)D.∠A6.若方程ax﹣5y=3的一个解是,则a的值是()A.13 B.﹣13 C.﹣7 D.77.为了解我市七年级学生的视力情况,市教育局组织抽查了14个街镇和3处市直初中学校的2000名学生的视力情况进行统计分析,下面四个说法正确的是()A.全市七年级学生是总体B.2000名学生是总体的一个样本C.每名学生的视力情况是总体的一个个体D.样本容量是2000名8.如图,五边形ABCDE中,AB∥DE,BC⊥CD,∠1、∠2分别是与∠ABC、∠EDC相邻的外角,则∠1+∠2等于()A.150°B.135°C.120°D.90°9.某水资源保护组织对石家庄某小区的居民进行节约水资源的问卷调查.某居民在问卷上的选项代号画“√”,这个过程是收集数据中的()A.确定调查范围B.汇总调查数据C.实施调查D.明确调查问题10.小亮在“五一”假期间,为宣传“摈弃不良习惯,治理清江污染”的环保意识,对到利川市清江流域游玩人群的垃圾处理习惯(A带回处理、B焚烧掩埋、C就地扔掉,三者任选其一)进行了随机抽样调查.小亮根据调查情况进行统计,绘制的扇形统计图和频数分布直方图尚不完整,如图示.请结合统计图中的信息判断,下列说法错误的是()A.抽样调查的样本数据是240B.“A带回处理”所在扇形的圆心角为18°C.样本中“C就地扔掉”的人数是168D.样本中“B焚烧掩埋”的人数占“五一”假到利川市清江流域游玩人数的25%二.填空题(共8小题,满分16分,每小题2分)11.若0.000000168=1.68×10n,则n的值为.12.计算:(﹣6a2b5)÷(﹣2a2b2)=.13.分解因式:y3﹣4x2y=.14.已知a+b=3,且a﹣b=﹣1,则a2﹣b2=.15.从一个边长为2a+b的大正方形中剪出一个边长为b的小正方形,剩余的正好能剪拼成四个宽为a的长方形,那么这个长方形的长为.16.如图,已知∠1=∠2,∠B=30°,则∠3=.17.设甲数为x,乙数为y,列出二元一次方程:(1)甲数的2倍与乙数的相反数的和等于3;(2)甲数的一半与乙数的差的是7.18.在一张足够大的纸上,第一次画出一个大的正方形,第二次将大的正方形画成四个较小的正方形,第三次将其中一个较小的正方形再次画成四个更小的正方形…(1)第三次后纸上一共个正方形;(2)第n次后纸上一共个正方形.三.解答题(共10小题,满分54分)19.(4分)(1)计算:﹣4sin30°+(2015﹣π)0﹣(﹣1)2+()﹣1(2)解不等式:x﹣1≤x﹣.20.(5分)先化简,再求值:(x+1)2﹣(x+1)(x﹣1),其中x=1.21.(5分)已知不等式的最小整数的解是关于x的方程x﹣3ax=15的解,求代数式9a2﹣18a﹣160的值.22.(5分)解不等式组,并把解集在数轴上表示出来.23.(5分)用加减消元法解方程:(1);(2).24.(5分)如图,AB∥CD,∠1+∠2=180°,试给出∠EFM与∠NMF的大小关系,并证明你的结论.25.(5分)列二元一次方程组解应用题:某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间没人每天35元,一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1510元,两种客房各租住了多少间?26.(5分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分.依据统计数据绘制了如下尚不完整的统计图表.分数7分8分9分10分人数(人)11018(1)在图①中,“7分”所在扇形的圆心角等于;(2)请你将图②中的统计图补充完整;(3)请求出甲、乙两校的平均分、中位数,并从平均分和中位数的角度分析哪个学校成绩较好;(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?27.(7分)当m、n为何值时,方程组的解与方程组的解相同?28.(8分)已知直线AB∥CD,点E在直线AB上,点EG在直线CD上,∠EFC、∠EGD的平分线FM、GN分别交直线AB于M、N.(1)如果△EFG为等边三角形(如图1),那么∠1+∠2=.如果△EFG 为等腰三角形(如图2),且顶角∠FEG=36°,那么∠1+∠2=.(2)如果△EFG为任意三角形(如图3),那么∠1+∠2与∠FEG有什么关系?试说明理由;(3)当三角形的一个内角α是另一个内角β的两倍时,我们称此三角形为“倍角三角形”,其中α为“倍角”,如果△EFG是有一个角为30°的“倍角三角形”,且∠FEG为“倍角”,请利用(2)中的结论求∠1+∠2的度数.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.利用数轴求不等式组的解集表示正确的是()A. B.C.D.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.【解答】解:,由①得:x≤1,∴不等式组的解集为﹣3<x≤1,表示在数轴上,如图所示:,故选D【点评】此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2.下列运算正确的是()A.2x﹣3x=﹣1 B.x3•x2=x5 C.(﹣a)2=﹣a2D.(a2)3=a5【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=﹣x,错误;B、原式=x5,正确;C、原式=a2,错误;D、原式=a6,错误,故选B【点评】此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.若a<b,则下列不等式变形错误的是()A.a﹣2<b﹣2 B.<C.3﹣2a<3﹣2b D.2a﹣3<2b﹣3【分析】利用不等式基本性质变形得到结果,即可作出判断.【解答】解:由a<b,得到a﹣2<b﹣2,选项A正确;得到<,选项B正确;得到3﹣2a>3﹣2b,选项C错误;得到2a﹣3<2b﹣3,选项D正确,故选C【点评】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.4.下列各式中,从左到右的变形是因式分解的是()A.(x+2y)(x﹣2y)=x2﹣4y2B.x2y﹣xy2﹣1=xy(x﹣y)﹣1C.a2﹣4ab+4b2=(a﹣2b)2 D.2a2﹣2a=2a2(1﹣)【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、是因式分解,故本选项正确;D、右边不是整式积的形式,不是因式分解,故本选项错误;故选C.【点评】本题考查了因式分解的知识,解答本题的关键是掌握因式分解的定义.5.若∠A,∠B互为补角,且∠A<∠B,则∠A的余角是()A.(∠A+∠B) B.∠B C.(∠B﹣∠A)D.∠A【分析】根据互为补角的和得到∠A,∠B的关系式,再根据互为余角的和等于90°表示出∠A的余角,然后把常数消掉整理即可得解.【解答】解:根据题意得,∠A+∠B=180°,∴∠A的余角为:90°﹣∠A=﹣∠A,=(∠A+∠B)﹣∠A,=(∠B﹣∠A).故选C.【点评】本题主要考查了互为补角的和等于180°,互为余角的和等于90°的性质,利用消掉常数整理是解题的关键.6.若方程ax﹣5y=3的一个解是,则a的值是()A.13 B.﹣13 C.﹣7 D.7【分析】由方程ax﹣5y=3的一个解是,即可得方程:﹣a﹣10=3,解此方程即可求得答案a的值.【解答】解:∵方程ax﹣5y=3的一个解是,∴将代入方程ax﹣5y=3得:﹣a﹣10=3,解得:a=﹣13.故选B.【点评】此题考查了二元一次方程的解的定义.此题比较简单,注意理解定义是解此题的关键.7.为了解我市七年级学生的视力情况,市教育局组织抽查了14个街镇和3处市直初中学校的2000名学生的视力情况进行统计分析,下面四个说法正确的是()A.全市七年级学生是总体B.2000名学生是总体的一个样本C.每名学生的视力情况是总体的一个个体D.样本容量是2000名【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A、我市七年级学生的视力情况是总体,故A错误;B、2000名学生的视力情况是总体的一个样本,故B错误;C、每名学生的视力情况是总体的一个个体,故C正确;D、样本容量是2000,故D错误;故选:C.【点评】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8.如图,五边形ABCDE中,AB∥DE,BC⊥CD,∠1、∠2分别是与∠ABC、∠EDC相邻的外角,则∠1+∠2等于()A.150°B.135°C.120°D.90°【分析】连接BD,根据三角形内角和定理求出∠CBD+∠CDB,根据平行线的性质求出∠ABD+∠EDB,即可求出答案.【解答】解:连接BD,∵BC⊥CD,∴∠C=90°,∴∠CBD+∠CDB=180°﹣90°=90°,∵AB∥DE,∴∠ABD+∠EDB=180°,∴∠1+∠2=180°﹣∠ABC+180°﹣∠EDC=360°﹣(∠ABC+∠EDC)=360°﹣(∠ABD+∠CBD+∠EDB+∠CDB)=360°﹣(90°+180°)=90°,故选D.【点评】本题考查了平行线的性质和三角形内角和定理的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.9.某水资源保护组织对石家庄某小区的居民进行节约水资源的问卷调查.某居民在问卷上的选项代号画“√”,这个过程是收集数据中的()A.确定调查范围B.汇总调查数据C.实施调查D.明确调查问题【分析】根据收集数据的几个阶段可以判断某居民在问卷上的选项代号画“√”,属于哪个阶段,本题得以解决.【解答】解:某居民在问卷上的选项代号画“√”,这是数据中的实施调查阶段,故选C.【点评】本题考查调查收集数据的过程与方法,解题的关键是明确收集数据的几个阶段.10.小亮在“五一”假期间,为宣传“摈弃不良习惯,治理清江污染”的环保意识,对到利川市清江流域游玩人群的垃圾处理习惯(A带回处理、B焚烧掩埋、C就地扔掉,三者任选其一)进行了随机抽样调查.小亮根据调查情况进行统计,绘制的扇形统计图和频数分布直方图尚不完整,如图示.请结合统计图中的信息判断,下列说法错误的是()A.抽样调查的样本数据是240B.“A带回处理”所在扇形的圆心角为18°C.样本中“C就地扔掉”的人数是168D.样本中“B焚烧掩埋”的人数占“五一”假到利川市清江流域游玩人数的25%【分析】根据百分比的意义以及扇形的圆心角的度数等于360°乘以对应的百分比即可作出判断.【解答】解:A、调查的总人数是:60÷25%=240(人),故命题正确;B、“A带回处理”所在扇形的圆心角为:360×=18°,故命题正确;C、样本中“C就地扔掉”的人数是:240﹣12﹣60=168,故命题错误;D、样本中“B焚烧掩埋”的人数占调查的人数的25%,不是“五一”假到利川市清江流域游玩人数的25%.故命题错误.故选D.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.二.填空题(共8小题,满分16分,每小题2分)11.若0.000000168=1.68×10n,则n的值为﹣7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 168=1.68×10﹣7,答:n的值为﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.计算:(﹣6a2b5)÷(﹣2a2b2)=3b3.【分析】原式利用单项式除单项式法则计算即可得到结果.【解答】解:原式=3b3.故答案为:3b3.【点评】此题考查了整式的除法,熟练掌握单项式除单项式法则是解本题的关键.13.分解因式:y3﹣4x2y=y(y+2x)(y﹣2x).【分析】先提公因式,然后利用平方差公式分解因式.【解答】解:原式=y(y2﹣4x2)=y(y+2x)(y﹣2x).故答案为y(y+2x)(y﹣2x).【点评】本题考查了提公因式法与公式法的综合运用:熟练掌握因式分解的方法.14.已知a+b=3,且a﹣b=﹣1,则a2﹣b2=﹣3.【分析】根据a2﹣b2=(a+b)(a﹣b),然后代入求解.【解答】解:a2﹣b2=(a+b)(a﹣b)=3×(﹣1)=﹣3.故答案是:﹣3.【点评】本题重点考查了用平方差公式.平方差公式为(a+b)(a﹣b)=a2﹣b2.本题是一道较简单的题目.15.从一个边长为2a+b的大正方形中剪出一个边长为b的小正方形,剩余的正好能剪拼成四个宽为a的长方形,那么这个长方形的长为a+b.【分析】根据正方形面积公式求出边长为2a+b的大正方形和边长为b的小正方形的面积,相减求出四个宽为a的长方形的面积,再除以4求出这个长方形的面积,再除以宽可求这个长方形的长.【解答】解:[(2a+b)2﹣b2]÷4÷a=(2a+b+b)(2a+b﹣b)÷4÷a=4a(a+b)÷4÷a=a(a+b)÷a=a+b.故这个长方形的长为a+b.故答案为:a+b.【点评】此题考查了平方差公式的几何背景,本题关键是求出这个长方形的面积.16.如图,已知∠1=∠2,∠B=30°,则∠3=30°.【分析】根据平行线的判定推出AB∥CD,根据平行线的性质得出∠3=∠B,即可得出答案.【解答】解:∵∠1=∠2,∴AB∥CE,∴∠3=∠B,∵∠B=30°,∴∠3=30°,故答案为:30°.【点评】本题考查了平行线的性质和判定的应用,能正确运用平行线的性质和判定定理进行推理是解此题的关键,注意:①两直线平行,同位角相等,②内错角相等,两直线平行.17.设甲数为x,乙数为y,列出二元一次方程:(1)甲数的2倍与乙数的相反数的和等于32x+(﹣y)=3;(2)甲数的一半与乙数的差的是7(x﹣y)=7.【分析】(1)甲数的2倍用代数式表示为2x,乙数的相反数是﹣y,则有方程2x+(﹣y)=3;(2)甲数的一半与乙数的差的用代数式表示是(),则有方程()=7.【解答】解:(1)根据题意,得2x +(﹣y )=3;(2)根据题意,得()=7.【点评】用代数式表示各数之间的关系,是此题的关键.注意代数式的正确书写.18.在一张足够大的纸上,第一次画出一个大的正方形,第二次将大的正方形画成四个较小的正方形,第三次将其中一个较小的正方形再次画成四个更小的正方形…(1)第三次后纸上一共 7 个正方形; (2)第n 次后纸上一共 3n +1 个正方形.【分析】由题意可知:第一次画出1个的正方形,第二次画出1+3=4个正方形,第三次画出1+3+3=7个正方形,…由此得出第n 次后纸上一共3n +1个正方形,由此解决问题.【解答】解:每多画一次就会增加3个小正方形, (1)第三次后纸上一共7个正方形; (2)第n 次后纸上一共3n +1个正方形. 故答案为:7,3n +1.【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律解决问题.三.解答题(共10小题,满分54分)19.(4分)(1)计算:﹣4sin30°+(2015﹣π)0﹣(﹣1)2+()﹣1(2)解不等式: x ﹣1≤x ﹣.【分析】(1)原式第一项利用算术平方根定义计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,第四项利用乘方的意义计算,最后一项利用负整数指数幂法则计算即可得到结果;(2)不等式去分母,去括号,移项合并,把x 系数化为1,即可求出解集.【解答】解:(1)原式=3﹣2+1﹣1+2=3;(2)去分母得:3x﹣6≤4x﹣3,解得:x≥﹣3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(5分)先化简,再求值:(x+1)2﹣(x+1)(x﹣1),其中x=1.【分析】先化简题目中的式子,然后将x=1代入化简后的式子即可解答本题.【解答】解:(x+1)2﹣(x+1)(x﹣1)=x2+2x+1﹣x2+1=2x+2,当x=1时,原式=2×1+2=4.【点评】本题考查整式的混合运算﹣化简求值,解题的关键是明确整式的混合运算的计算方法.21.(5分)已知不等式的最小整数的解是关于x的方程x﹣3ax=15的解,求代数式9a2﹣18a﹣160的值.【分析】利用去分母,去括号,移项合并,将x系数化为1求出不等式的解集,找出解集中的最小整数解,代入已知方程中求出a的值,代入所求式子中计算即可求出值.【解答】解:去分母得:2(x+2)﹣5<3(x﹣1)+4,去括号得:2x+4﹣5<3x﹣3+4,移项合并得:﹣x<2,解得:x>﹣2,则不等式的最小整数解为﹣1,将x=﹣1代入方程得:﹣1+3a=15,解得:a=,则9a2﹣18a﹣160=9×﹣18×﹣160=256﹣96﹣160=0.【点评】此题考查了一元一次不等式的整数解,求出不等式的解集是解本题的关键.22.(5分)解不等式组,并把解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+3>2(x﹣1),得:x<5,解不等式>1,得:x>4,则不等式组的解集为4<x<5,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.(5分)用加减消元法解方程:(1);(2).【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),①﹣②得:12y=﹣36,即y=﹣3,把y=﹣3代入①得:x=,则方程组的解为;(2)方程组整理得:,①﹣②得:4y=28,即y=7,把y=7代入①得:x=5,则方程组的解为.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.24.(5分)如图,AB∥CD,∠1+∠2=180°,试给出∠EFM与∠NMF的大小关系,并证明你的结论.【分析】延长EF交直线CD于G,根据平行线的性质得出∠1=∠EGD,求出∠EGD+∠2=180°,根据平行线的判定得出EF∥MN,根据平行线的性质得出即可.【解答】∠EFM=∠NMF,证明:延长EF交直线CD于G,∵AB∥CD,∴∠1=∠EGD,∵∠1+∠2=180°,∴∠EGD+∠2=180°,∴EF∥MN,∴∠EFM=∠NMF.【点评】本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.25.(5分)列二元一次方程组解应用题:某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间没人每天35元,一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1510元,两种客房各租住了多少间?【分析】设租住三人间x间,租住两人间y间,就可以得出3x+2y=50,3×25x+2×35y=1510,由这两个方程构成方程组求出其解就可以得出结论.【解答】解:设租住三人间x间,租住两人间y间,由题意,得,解得:.答:租住三人间8间,租住两人13间.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时找到反应全题题意的两个等量关系建立方程组是关键.26.(5分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分.依据统计数据绘制了如下尚不完整的统计图表.分数7分8分9分10分人数(人)11018(1)在图①中,“7分”所在扇形的圆心角等于144°;(2)请你将图②中的统计图补充完整;(3)请求出甲、乙两校的平均分、中位数,并从平均分和中位数的角度分析哪个学校成绩较好;(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?【分析】(1)求出“7分”占的百分比,乘以360即可得到结果;(2)根据“7分”的人数除以占的百分比求出总人数,确定出“8分”的人数,补全条形统计图即可;(3)分别求出甲乙两校的平均分、中位数,比较即可得到结果;(4)利用两校满分人数,比较即可得到结果.【解答】解:(1)根据题意得:“7分”所在扇形的圆心角等于360°×(1﹣25%﹣20%﹣15%)=144°;故答案为:144°;(2)根据题意得:8÷40%=20(人),则得“8分”的人数为20×15%=3(人),补全条形统计图,如图所示:(3)甲校:平均分为×(7×11+8×0+9×1+10×8)=8.3(分),中位数为7分;乙校:平均分为:×(7×8+8×3+9×4+10×5)=8.3(分),中位数为8分,平均数相同,乙校中位数较大,故乙校成绩较好;(4)因为甲校有8人满分,而乙校有5人满分,应该选择甲校.【点评】此题考查了条形统计图,扇形统计图,以及中位数,平均数,弄清题意是解本题的关键.27.(7分)当m、n为何值时,方程组的解与方程组的解相同?【分析】根据方程组的解相同,可得两个新方程组,根据解方程组,可得x、y的值,根据方程组的解满足方程,可得关于m、n的方程组,根据解方程组,可得答案.【解答】解:方程组的解与方程组的解相同得①,②,解①得,把代入②得,解得,当m=1,n=2时,方程组的解与方程组的解相同.【点评】本题考查了二元一次方程组的解,利用了方程组的解满足方程组.28.(8分)(2015春•扬州校级期中)已知直线AB∥CD,点E在直线AB上,点EG在直线CD上,∠EFC、∠EGD的平分线FM、GN分别交直线AB于M、N.(1)如果△EFG为等边三角形(如图1),那么∠1+∠2=120°.如果△EFG 为等腰三角形(如图2),且顶角∠FEG=36°,那么∠1+∠2=108°.(2)如果△EFG为任意三角形(如图3),那么∠1+∠2与∠FEG有什么关系?试说明理由;(3)当三角形的一个内角α是另一个内角β的两倍时,我们称此三角形为“倍角三角形”,其中α为“倍角”,如果△EFG是有一个角为30°的“倍角三角形”,且∠FEG为“倍角”,请利用(2)中的结论求∠1+∠2的度数.【分析】(1)①由△EFG为等边三角形,证得∠EFC=∠EGD=120°,由∠EFC、∠EGD的平分线得出∠CFM=∠DGN=60°,再由AB∥CD,内错角相等即可得出结果;②由△EFG为等腰三角形,∠FEG=36°,推出∠EFG=∠EGF=72°,∠EFC=∠EGD=108°,由∠EFC、∠EGD的平分线得出∠CFM=∠DGN=54°,再由AB∥CD,内错角相等即可得出结果;(2)由AB∥CD,∠EFC、∠EGD的平分线FM、GN,得出∠1=∠CFM=∠CFE,∠2=∠DGN=∠EGD,再由三角形的外角性质得出∠CFE=∠EGF+∠FEG,∠EGD=∠EFG+∠FEG,得出∠CFE+∠EGD=180°+∠FEG,即可得出结论;(3)△EFG是有一个角为30°的“倍角三角形”,且∠FEG为“倍角”,有三种情况:①另两个角为60°、90°,60°为倍角时;②另两个角分别为50°、100°,100°为倍角时;③另两个角分别为15°、135°,30°为倍角时,分别代入(2)的结论即可.【解答】解:(1)①∵△EFG为等边三角形,∴∠EFC=∠EGD=120°,∵∠EFC、∠EGD的平分线FM、GN,∴∠CFM=∠DGN=60°,∵AB∥CD,∴∠1=∠CFM,∠2=∠DGN,∴∠1+∠2=∠CFM+∠DGN=60°+60°=120°,故答案为120°;②∵△EFG为等腰三角形,∠FEG=36°∴∠EFG=∠EGF=72°,∴∠EFC=∠EGD=108°,∵∠EFC、∠EGD的平分线FM、GN,∴∠CFM=∠DGN=54°,∵AB∥CD,∴∠1=∠CFM,∠2=∠DGN,∴∠1+∠2=∠CFM+∠DGN=54°+54°=108°,故答案为108°;(2)∠1+∠2=90°+∠FEG;理由如下:∵AB∥CD,∠EFC、∠EGD的平分线FM、GN,∴∠1=∠CFM=∠CFE,∠2=∠DGN=∠EGD,∵∠CFE=∠EGF+∠FEG,∠EGD=∠EFG+∠FEG,∴∠CFE+∠EGD=180°+∠FEG,∴∠1+∠2=90°+∠FEG;(3)∵△EFG是有一个角为30°的“倍角三角形”,且∠FEG为“倍角”,有三种情况:①另两个角为60°、90°,60°为倍角时,∠1+∠2=90°+∠FEG=90°+×60°=120°;②另两个角分别为50°、100°,100°为倍角时,∠1+∠2=90°+∠FEG=90°+×100°=140°;③另两个角分别为15°、135°,30°为倍角时,∠1+∠2=90°+∠FEG=90°+×30°=105°.【点评】本题考查了平行线性质、角平分线性质、等边三角形性质、等腰三角形性质、三角形的外角性质、三角形内角和定理等知识;熟练掌握平行线性质、角平分线性质、三角形的外角性质是解决问题的关键.。
2023-2024学年北京市朝阳区七年级(下)期末数学试卷一、选择题(共24分,每题3分)下面1-8题均有四个选项,其中符合题意的选项只有一个。
1.(3分)9的算术平方根为()A.3B.±3C.﹣3D.812.(3分)在平面直角坐标系中,点(﹣,3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)如图,以单位长度为边长画一个正方形,以原点为圆心,正方形的对角线长为半径画弧,与数轴交于点A,则点A表示的数是()A.﹣1.5B.C.D.π4.(3分)如图,三角形ABC中,∠ACB=90°,CD⊥AB于点D.在线段AC,AB,BC,CD中,长度最短的是()A.线段AB B.线段AC C.线段BC D.线段CD5.(3分)若m>n,则下列结论正确的是()A.m+4>n+4B.m﹣5<n﹣5C.﹣m>﹣n D.6.(3分)一个等腰直角三角尺和一把直尺按如图所示的位置摆放(厚度忽略不计),若∠α=20°,则∠β的度数为()A.45°B.40°C.25°D.20°7.(3分)经调查,七年级某班学生上学所用的交通工具中,自行车占30%,公交车占25%,私家车占35%,其他占10%.如果用扇形图描述以上数据,下列说法正确的是()A.“自行车”对应扇形的圆心角为30°B.“公交车”对应扇形的圆心角为90°C.“私家车”对应扇形的圆心角为35°D.“其他”对应扇形的圆心角为18°8.(3分)已知2x+y=12,x≥y≥0,M=3x+2y,给出下面3个结论:①当x=y时,M=20;②M的最小值是18;③M的最大值是24.上述结论中,所有正确结论的序号为()A.①②B.①③C.②③D.①②③二、填空题(共24分,每题3分)9.(3分)的相反数是.10.(3分)比较大小:4(填“>”或“<”).11.(3分)“a与2的差大于﹣1“用不等式表示为.12.(3分)不等式5x﹣3≤3x+1的正整数解是.13.(3分)有如下调查:①调查某批次汽车的抗撞击能力;②了解某班学生的视力情况;③选出某班长跑最快的学生参加全校比赛以上调查,适宜抽样调查的是(填写序号).14.(3分)图中显示了15名七年级学生国家安全知识竞赛成绩和航天知识竞赛成绩(单位:分).例如:甲同学的国家安全知识竞赛成绩为40分,航天知识竞赛成绩为70分这15名学生中,国家安全知识竞赛成绩与航天知识竞赛成绩相等的有人.15.(3分)如图,第一象限内有两个点A(x﹣3,y),B(x,y﹣2),将线段AB平移,使点A,B平移后的对应点分别同时落在两条坐标轴上,则点A平移后的对应点的坐标为.(写出一个即可)16.(3分)某校为提高校园足球质量和水平,让学生在参与校园足球运动中享受乐趣、增强体质、健全人格、锤炼意志,实现德智体美劳全面发展,举办了校园足球联赛.根据赛事安排,每队均需参赛19场,记分办法如下:胜1场得3分,平1场得1分,负1场得0分.(1)在这次足球联赛中,若某队得13分,则该队可能负场;(写出一种情况即可)(2)在这次足球联赛中,若甲、乙两队都得33分,甲队所有比赛都没有踢平,甲、乙两队负场数不同,则乙队最多胜场.三、解答题(共52分,第17-24题,每题5分,第25-26题,每题6分)17.(5分)计算:.18.(5分)解方程组:.19.(5分)解不等式组:.20.(5分)完成下面的证明.已知:如图,AD∥BC,∠D+∠F=180°.求证:DC∥EF.证明:∵AD∥BC(已知),∴∠D+=().∵∠D+∠F=180°(已知),∴∠C=(同角的补角相等).∴DC∥EF().21.(5分)如图,在三角形ABO中,点A,B的坐标分别为(2,4),(4,1),将三角形ABO向左平移4个单位长度,再向上平移1个单位长度得到三角形A1B1O1,点A,B,O的对应点分别为A1,B1,O1.(1)画出三角形A1B1O1,并写出点A1,B1,O1的坐标;(2)直接写出三角形A1B1O1的面积.22.(5分)某电商销售长征系列画册和红色经典故事两种图书,它们的进价和售价如表:种类长征系列画册红色经典故事进价(元/套)300a售价(元/套)b100该电商销售6套长征系列画册和5套红色经典故事,盈利800元;销售10套长征系列画册和15套红色经典故事,盈利1600元.(利润=售价﹣进价)(1)求表中a,b的值;(2)该电商计划购进长征系列画册和红色经典故事两种图书共300套,据市场销售分析,购进红色经典故事的套数不低于长征系列画册套数的2倍.若电商把300套图书全部售出,则购进长征系列画册多少套能使利润最大?(直接写出即可)23.(5分)为了解某校七年级学生的气象知识竞赛成绩(百分制,单位:分),从中随机抽取了60名学生的成绩,该校甲、乙两个数学课外活动小组对数据进行了整理、描述,部分信息如下:a.甲小组将数据分为4组,频数分布表与频数分布直方图如下:表1分组频数60≤x<70970≤x<801080≤x<90m90≤x≤10015b.乙小组将数据分为5组,频数分布表与频数分布直方图如下:表2分组频数60≤x<68868≤x<76676≤x<841084≤x<922492≤x≤100n(1)写出表1中m的值,表2中n的值;(2)补全图1;(3)如果学校准备根据样本的数据分布情况,对七年级竞赛成绩前20%的学生进行表彰,那么哪个数学课外活动小组对数据的整理、描述更合理,为什么?24.(5分)对于正实数x四舍五入到个位后得到的整数记为[x],即当n为非负整数时,若,则[x]=n,如:[1.414]=1,[2.6]=3.(1)[π]=;(2)若[x+3]=2,求x的取值范围;(3)若,求[x]的值.25.(6分)直线AB∥CD,∠ABC与∠DCB的角平分线交于点E,BE的延长线交CD于点F,FG⊥BF,交直线BC于点G.(1)如图1,求证:EC∥FG;(2)如图2,点M在线段BC上,点N在线段FG上,且∠BEM=∠MEN,连接EG.写出一个∠MEG 的度数,使得∠NEG=∠NGE成立,并证明.26.(6分)在平面直角坐标系xOy中,已知点P(x,y),若点Q的坐标为(x+2y,y+2x),则称Q是点P 的非常变换点.例如:点(2,1)的非常变换点为(4,5).(1)已知点P(x,x﹣1)的非常变换点为Q,当x=0时,点Q的坐标为,当x=1时,点Q的坐标为;(2)在正方形ABCD中,点A(2,4),B(﹣4,4),C(﹣4,﹣2),D(2,﹣2),已知点M(x,x+a),N(x+1,x+a+1).①若点M的非常变换点为C,求a的值;②若线段MN上的所有点(含端点)和它们的非常变换点都在正方形ABCD的边上或内部,直接写出a的最小值及此时x的值.2023-2024学年北京市朝阳区七年级(下)期末数学试卷参考答案与试题解析一、选择题(共24分,每题3分)下面1-8题均有四个选项,其中符合题意的选项只有一个。
京改版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列计算正确的是()A.(﹣a 3)2=﹣a 6B.a 6+a 2=a 3C.(a+1)2=a 2+1D.a 3×a 2=a 52、已知x﹣y=﹣3,xy=2,则(x+3)(y﹣3)的值是()A.-6B.6C.2D.-23、在方程组、、、、中,是二元一次方程组的有()A.2个B.3个C.4个D.5个4、化简:(m+1) -(1-m)(1+m)正确的结果是( )A.2 mB.2 m+2C.2 m +2 mD.05、甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表第一次第二次第三次第四次第五次第六次甲9 8 6 7 8 10乙8 7 9 7 8 8对他们的训练成绩作如下分析,其中说法正确是()A.他们训练成绩的平均数相同B.他们训练成绩的中位数不同C.他们训练成绩的众数不同D.他们训练成绩的方差不同6、在一次数学测试中,某学习小组6名同学的成绩(单位:分)分别为65,82,86,82,76,95.关于这组数据,下列说法错误的是()A.众数是82B.中位数是82C.极差是30D.平均数是827、下列各式中,不能用平方差公式计算的是()A.(﹣4x+3y)(4x+3y)B.(4x﹣3y)(3y﹣4x)C.(﹣4x+3y)(﹣4x﹣3y) D.(4x+3y)(4x﹣3y)8、使不等式≤立的最小整数是( )A.1B.-1C.0D.29、关于x的方程的解是非负数,那么a满足的条件是()A. B. C. D.10、下列各式中,能用平方差公式因式分解的是()A.x 2+xB.x 2+8x+16C.x 2+4D.x 2﹣111、下列各式中,计算正确的是()A.2x+3y=5xyB.x 6÷x 2=x 3C.x 2•x 3=x 5D.(﹣x 3)3=x 612、计算的结果为()A. B. C. D.13、下列调查中,最适合采用普查方式的是()A.调查某批次烟花爆竹的燃放效果B.调查某班级的每一个同学所穿鞋子的尺码情况C.调查市场上奶茶的质量情况D.调查重庆中学生心里健康现状14、如果a>b,那么下列各式中正确的是()A.a﹣3<b﹣3B.C.﹣a>﹣bD.﹣2a<﹣2b15、下列计算正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、计算:|﹣2|+ +(π﹣3.14)0=________.17、计算________.18、已知x、y满足方程组,则代数式x﹣y=________.19、分解因式:m2﹣1=________.20、将一箱苹果分给若干位小朋友,若每位小朋友分5个苹果,则还剩12个苹果,若每位小朋友分8个苹果,则有一位小朋友分到了苹果但不足8个,则有小朋友________个,苹果________个.21、计算:×=________.22、把多项式a2-3a因式分解,正确的结果是________。
(新课标)京改版七年级数学下册期末数学试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.(﹣2)0的值为()A.﹣2 B.0 C.1 D.22.下列各式从左边到右边的变形是因式分解的为()A.(a+1)(a﹣1)=a2﹣1 B.﹣18x4y3=﹣6x2y2•3x2yC.x2+2x+1=x(x+2x)+1 D.a2﹣6a+9=(a﹣3)23.下列运算正确的是()A.a+a3=a4B.(a+b)2=a2+b2C.a10÷a2=a5 D.(a2)3=a64.计算的结果是()A.﹣1 B.1 C.D.25.如图,直线a∥b,三角板的直角顶点放在直线b上,两直角边与直线a相交,如果∠1=55°,那么∠2的度数为()A.35°B.45°C.55°D.65°6.化简分式的结果为()A.B.C.D.7.已知:如图,AB⊥CD于O,EF为经过点O的一条直线,那么∠1与∠2的关系是()A.互余B.互补C.互为对顶角 D.相等8.已知代数式x a﹣1y3与﹣5x﹣b y2a+b是同类项,则a与b的值分别是()A.B.C.D.9.已知2a﹣b=2,那么代数式4a2﹣b2﹣4b的值是()A.6 B.4 C.2 D.010.如图是用4个相同的小矩形与1个小正方形密铺而成的正方形图案,已知大正方形的面积为49,小正方形的面积为4,若用x,y(其中x>y)表示小矩形的长与宽,请观察图案,指出以下关系式中不正确的是()A.x+y=7 B.x﹣y=2 C.x2﹣y2=4 D.4xy+4=49二、填空题(本题共18分,每小题3分)11.如果分式有意义,那么的取值范围是.12.分解因式:12m2﹣3= .13.PM2.5是指大气中直径小于或等于2.5μm的颗粒物,含有大量有毒、有害物质,也可称可入肺颗粒物,将0.0000025用科学记数法表示为.14.若4x=2,4y=3,则4x+y= .15.已知三项式4x2++1是一个完全平方式,但是其中一项看不清了,你认为这一项应该是(写出所有你认为正确的答案).16.若:A32=3×2=6,A53=5×4×3=60,A54=5×4×3×2=120,A64=6×5×4×3=360,…,观察前面计算过程,寻找计算规律计算A73= (直接写出计算结果),并比较A103A104(填“>”或“<”或“=”)三、解答题(本题共30分,每小题5分)17.计算:.18.解方程:.19.化简:2(a4)3+(﹣2a3)2•(﹣a2)3+a2•a10.20.先化简,再选一个你喜爱的数代入求值:.21.已知n2+n=1,求(n+2)(n﹣2)+(n+3)(2n﹣3)的值.22.分解因式:(x2+1)2﹣4x(x2+1)+4x2.四、解答题(本题共22分)23.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.如图1,一束光线m射到平面镜a上,被a反射后的光线为n,则入射光线m、反射光线n与平面镜a所夹的锐角∠1=∠2.(1)利用这个规律人们制作了潜望镜,图2是潜望镜工作原理示意图,AB、CD是平行放置的两面平面镜.已知光线经过平面镜反射时,有∠1=∠2,∠3=∠4,请解释进入潜望镜的光线m为什么和离开潜望镜的光线n是平行的?(请把证明过程补充完整)理由:∵AB∥CD(已知),∴∠2=∠3 ()∵∠1=∠2,∠3=∠4(已知),∴∠1=∠2=∠3=∠4(等量代换),∴180°﹣∠1﹣∠2=180°﹣∠3﹣∠4(等量减等量,差相等),即:(等量代换),∴.()(2)显然,改变两面平面镜AB、CD之间的位置关系,经过两次反射后,入射光线m与反射光线n之间的位置关系会随之改变,请你猜想:图3中,当两平面镜AB、CD的夹角∠ABC= °时,仍可以使入射光线m与反射光线n平行但方向相反.(直接写出结果)24.列方程或方程组解应用题:为打造刺猬河沿岸的风光带,有一段长为360米的河道整治任务由A、B两个工程队先后接力完成.A工程队每天整治24米,B工程队每天整治16米,共用时20天.(1)根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:甲:乙:根据甲、乙两名同学所列的方程组,请你分别指出未知数x,y表示的意义,并且在方框中补全甲、乙两名同学所列的方程组:甲:x表示,y表示;乙:x表示,y表示.(2)求出其中一个方程组的解,并回答A、B两工程队分别整治河道多少米?25.如图,已知:∠A=∠C,∠B=∠D.你能确定图中∠1与∠2的数量关系吗?请写出你的结论并进行证明.26.如图,有三种卡片①②③若干张,①是边长为a的小正方形,②是长为b宽为a的长方形,③是边长为b的大正方形.(1)小明用1张卡片①,6张卡片②,9张卡片③拼出了一个新的正方形,那么这个正方形的边长是;(2)如果要拼成一个长为(3a+b),宽为(a+2b)的大长方形,需要卡片①张,卡片②张,卡片③张.五.选做题:(本题10分)27.阅读下面的学习材料:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”,例如:这样的分式就是假分式;当分子的次数小于分母的次数时,我们称之为“真分式”例如:这样的分式就是真分式.我们知道,假分数可以化为带分数,例如:,类似的,假分式也可以化为“带分式”(即:整式与真分式的和的形式),例如:,.参考上面的方法解决下列问题:(1)将分式化为带分式;(2)当x取什么整数值时,分式的值也为整数?参考答案与试题解析一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.(﹣2)0的值为()A.﹣2 B.0 C.1 D.2【考点】零指数幂.【分析】根据零指数幂的运算法则求出(﹣2)0的值【解答】解:(﹣2)0=1.故选C.【点评】考查了零指数幂:a0=1(a≠0),由a m÷a m=1,a m÷a m=a m﹣m=a0可推出a0=1(a≠0),注意:00≠1.2.下列各式从左边到右边的变形是因式分解的为()A.(a+1)(a﹣1)=a2﹣1 B.﹣18x4y3=﹣6x2y2•3x2yC.x2+2x+1=x(x+2x)+1 D.a2﹣6a+9=(a﹣3)2【考点】因式分解的意义.【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【解答】解:A、是多项式乘法,不是因式分解,错误;B、左边是单项式,不是因式分解,错误;C、右边不是积的形式,错误;D、是因式分解,正确.故选D.【点评】本题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.3.下列运算正确的是()A.a+a3=a4B.(a+b)2=a2+b2C.a10÷a2=a5 D.(a2)3=a6【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】根据同底数幂的乘法,可判断A,根据完全平方公式,可判断B,根据同底数幂的除法,可判断C,根据幂的乘方,可判断D.【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、和的平方等于平方和加积的二倍,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、幂的乘方底数不变指数相乘,故D正确;故选:D.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.计算的结果是()A.﹣1 B.1 C.D.2【考点】分式的加减法.【专题】计算题.【分析】原式利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式==﹣=﹣1,故选A【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.5.如图,直线a∥b,三角板的直角顶点放在直线b上,两直角边与直线a相交,如果∠1=55°,那么∠2的度数为()A.35°B.45°C.55°D.65°【考点】平行线的性质.【分析】先由直线a∥b,根据平行线的性质,得出∠2=∠1=55°.【解答】解:∵a∥b,∴∠2=∠1=55°.故选C.【点评】此题考查了学生对平行线性质的应用,关键是由平行线性质得出同位角相等.6.化简分式的结果为()A.B.C.D.【考点】约分.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:原式=.故选:A.【点评】分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.7.已知:如图,AB⊥CD于O,EF为经过点O的一条直线,那么∠1与∠2的关系是()A.互余B.互补C.互为对顶角 D.相等【考点】垂线;对顶角、邻补角.【分析】根据垂直得直角:∠BOD=90°;然后由平角的定义来求∠1与∠2的关系.【解答】解:∵AB⊥CD,∴∠BOD=90°.又∵EF为过点O的一条直线,∴∠1+∠2=180°﹣∠BOD=90°,即∠1与∠2互余.故选:A.【点评】本题考查了垂直的定义.注意已知条件“EF为过点O的一条直线”告诉我们∠FOE为平角.8.已知代数式x a﹣1y3与﹣5x﹣b y2a+b是同类项,则a与b的值分别是()A.B.C.D.【考点】同类项;解二元一次方程组.【专题】计算题.【分析】根据同类项的定义得到,然后解方程组即可.【解答】解:∵x a﹣1y3与﹣5x﹣b y2a+b是同类项,∴,∴.故选A.【点评】本题考查了同类项:所含字母相同,并且相同字母的指数相同的项叫同类项.9.已知2a﹣b=2,那么代数式4a2﹣b2﹣4b的值是()A.6 B.4 C.2 D.0【考点】完全平方公式.【分析】根据完全平方公式,可得平方差公式,根据平方差公式,可得答案.【解答】解:4a2﹣b2﹣4b=4a2﹣(b2+4b+4)+4=(2a)2﹣(b+2)2+4 =[2a+(b+2)][2a﹣(b+2)]+4=(2a+b+2)(2a﹣b﹣2)+4当2a﹣b=2时,原式=0+4=4,故选:B.【点评】本题考查了完全平方公式,利用完全平方公式得出平方差公式是解题关键.10.如图是用4个相同的小矩形与1个小正方形密铺而成的正方形图案,已知大正方形的面积为49,小正方形的面积为4,若用x,y(其中x>y)表示小矩形的长与宽,请观察图案,指出以下关系式中不正确的是()A.x+y=7 B.x﹣y=2 C.x2﹣y2=4 D.4xy+4=49【考点】二元一次方程组的应用.【分析】分别根据大正方形边长、小正方形边长的不同表示可判断A、B,由A、B结论利用平方差公式可判断C,根据大正方形面积的整体与组合的不同表示可判断D.【解答】解:A、因为正方形图案的边长7,同时还可用(x+y)来表示,故此选项正确;B、中间小正方形的边长为2,同时根据长方形长宽也可表示为x﹣y,故此选项正确;C、根据A、B可知x+y=7,x﹣y=2,则x2﹣y2=(x+y)(x﹣y)=14,故此选项错误;D、因为正方形图案面积从整体看是49,从组合来看,可以是(x+y)2,还可以是(4xy+4),即4xy+4=49,故此选项正确;故选:C.【点评】本题主要考查根据数形结合列二元一次方程的能力,解答需结合图形,利用等式的变形来解决问题.二、填空题(本题共18分,每小题3分)11.如果分式有意义,那么的取值范围是x≠5 .【考点】分式有意义的条件.【分析】根据分母为零,分式无意义;分母不为零,分式有意义.【解答】解:分式有意义,得x﹣5≠0.解得x≠5,故答案为:x≠5.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.12.分解因式:12m2﹣3= 3(2m+1)(2m﹣1).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式3,进而利用平方差公式分解因式得出即可.【解答】解:12m2﹣3=3(4m2﹣1)=3(2m+1)(2m﹣1).故答案为:3(2m+1)(2m﹣1).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用平方差公式是解题关键.13.PM2.5是指大气中直径小于或等于2.5μm的颗粒物,含有大量有毒、有害物质,也可称可入肺颗粒物,将0.0000025用科学记数法表示为 2.5×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6,故答案为:2.5×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.若4x=2,4y=3,则4x+y= 6 .【考点】同底数幂的乘法.【分析】根据同底数幂的乘法的逆运算,可得4x+y=4x•4y,代入求解即可.【解答】解:∵4x=2,4y=3,∴4x+y=4x•4y=2×3=6.【点评】此题主要考查同底数幂的乘法的逆运算:a m+n=a m•a n.15.已知三项式4x2++1是一个完全平方式,但是其中一项看不清了,你认为这一项应该是4x,﹣4x,4x4(写出所有你认为正确的答案).【考点】完全平方式.【专题】开放型.【分析】利用完全平方公式的结构特征判断即可得到结果.【解答】解:根据题意得:4x2+4x+1=(2x+1)2;4x2﹣4x+1=(2x﹣1)2;4x2+4x4+1=(2x2+1)2,故答案为:4x,﹣4x,4x4【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.16.若:A32=3×2=6,A53=5×4×3=60,A54=5×4×3×2=120,A64=6×5×4×3=360,…,观察前面计算过程,寻找计算规律计算A73= 210 (直接写出计算结果),并比较A103<A104(填“>”或“<”或“=”)【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】对于A a b(b<a)来讲,等于一个乘法算式,其中最大因数是a,依次少1,最小因数是a﹣b.依此计算即可.【解答】解:A73=7×6×5=210;∵A103=10×9×8=720,A104=10×9×8×7=5040.∴A103<A104.故答案为:210;<.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.注意找到A a b(b<a)中的最大因数,最小因数.三、解答题(本题共30分,每小题5分)17.计算:.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,第三项利用积的乘方运算法则变形,计算即可得到结果.【解答】解:原式=1﹣2+(×)3×=﹣1+=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解方程:.【考点】解分式方程.【专题】计算题.【分析】本题的最简公分母是(2x﹣3).方程两边都乘最简公分母,可把分式方程转换为整式方程求解.【解答】解:方程两边都乘(2x﹣3),得x﹣5=4(2x﹣3),解得x=1.检验:当x=1时,2x﹣3≠0.∴原方程的根是x=1.【点评】(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.19.化简:2(a4)3+(﹣2a3)2•(﹣a2)3+a2•a10.【考点】整式的混合运算.【分析】先算乘方,再算乘法,最后合并同类项即可.【解答】解:原式=2a12+4a6•(﹣a6)+a12=3a12﹣4a12=﹣a12.【点评】本题考查了整式的混合运算的应用,能正确运用整式的运算法则进行计算是解此题的关键,注意运算顺序.20.先化简,再选一个你喜爱的数代入求值:.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再选出合适的x的值代入进行计算即可.【解答】解:原式=•=•=x+1,当x=2时,原式=3(此处答案不唯一,但x≠±1,且x≠0).【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.已知n2+n=1,求(n+2)(n﹣2)+(n+3)(2n﹣3)的值.【考点】整式的混合运算—化简求值.【专题】计算题.【分析】原式利用平方差公式,以及多项式乘以多项式法则计算,去括号合并得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=n2﹣4+2n2﹣3n+6n﹣9=3n2+3n﹣13=3(n2+n)﹣13,∵n2+n=1,∴原式=3×1﹣13=﹣10.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.22.分解因式:(x2+1)2﹣4x(x2+1)+4x2.【考点】因式分解-运用公式法.【分析】直接利用完全平方公式分解因式得出即可.【解答】解:(x2+1)2﹣4x(x2+1)+4x2=[(x2+1)﹣2x]2=(x﹣1)4.【点评】此题主要考查了公式法分解因式,熟练应用乘法公式是解题关键.四、解答题(本题共22分)23.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.如图1,一束光线m射到平面镜a上,被a反射后的光线为n,则入射光线m、反射光线n与平面镜a所夹的锐角∠1=∠2.(1)利用这个规律人们制作了潜望镜,图2是潜望镜工作原理示意图,AB、CD是平行放置的两面平面镜.已知光线经过平面镜反射时,有∠1=∠2,∠3=∠4,请解释进入潜望镜的光线m为什么和离开潜望镜的光线n是平行的?(请把证明过程补充完整)理由:∵AB∥CD(已知),∴∠2=∠3 (两直线平行,内错角相等)∵∠1=∠2,∠3=∠4(已知),∴∠1=∠2=∠3=∠4(等量代换),∴180°﹣∠1﹣∠2=180°﹣∠3﹣∠4(等量减等量,差相等),即:∠5=∠6 (等量代换),∴m∥n .(内错角相等,两直线平行)(2)显然,改变两面平面镜AB、CD之间的位置关系,经过两次反射后,入射光线m与反射光线n之间的位置关系会随之改变,请你猜想:图3中,当两平面镜AB、CD的夹角∠ABC= 90 °时,仍可以使入射光线m与反射光线n平行但方向相反.(直接写出结果)【考点】平行线的判定与性质.【专题】应用题;跨学科.【分析】(1)求出∠5=∠6,根据平行线的判定得出即可;(2)根据三角形内角和定理求出∠2+∠3=90°,求出∠EAC+∠FCA=180°,根据平行线的判定得出即可.【解答】(1)证明:如图2,∵AB∥CD(已知),∴∠2=∠3 (两直线平行,内错角相等),∵∠1=∠2,∠3=∠4(已知),∴∠1=∠2=∠3=∠4(等量代换),∴180°﹣∠1﹣∠2=180°﹣∠3﹣∠4(等量减等量,差相等),即:∠5=∠6(等量代换),∴m∥n (内错角相等,两直线平行).故答案为:两直线平行,内错角相等,∠5=∠6,m∥n,内错角相等,两直线平行;(2)∠ABC=90°,理由是:如图3,∵∠ABC=90°,∴∠2+∠3=180°﹣90°=90°,∵∠1=∠2,∠3=∠4(已知),∴∠1+∠2+∠3+∠4=80°,∴∠EAC+∠FCA=180°+180°﹣180°=180°,∴AE∥CF.故答案为:90.【点评】本题考查了平行线的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.列方程或方程组解应用题:为打造刺猬河沿岸的风光带,有一段长为360米的河道整治任务由A、B两个工程队先后接力完成.A工程队每天整治24米,B工程队每天整治16米,共用时20天.(1)根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:甲:乙:根据甲、乙两名同学所列的方程组,请你分别指出未知数x,y表示的意义,并且在方框中补全甲、乙两名同学所列的方程组:甲:x表示A队的工作时间,y表示B队的工作时间;乙:x表示A队的工作量,y表示B队的工作量.(2)求出其中一个方程组的解,并回答A、B两工程队分别整治河道多少米?【考点】二元一次方程组的应用.【分析】(1)根据甲、乙两名同学所列的方程组可得,甲:x表示A 队的工作时间,y表示B队的工作时间;乙:x表示A队的工作量,y 表示B队的工作量,补全方程组即可;(2)根据二元一次方程组的解法求解方程组甲.【解答】解:(1)甲:;乙:;甲:x表示A队的工作时间,y表示B队的工作时间;乙:x表示A队的工作量,y表示B队的工作量;(2)由方程组甲得:,则24x=120,16y=240,答:A队整治河道120米,B队整治河道240米.故答案为:A队的工作时间,B队的工作时间;A队的工作量,B队的工作量.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,正确找出题目中的相等关系,列方程组求解.25.如图,已知:∠A=∠C,∠B=∠D.你能确定图中∠1与∠2的数量关系吗?请写出你的结论并进行证明.【考点】平行线的判定与性质.【分析】由平行线的判定定理得到AB∥CD,然后由该平行线的关系、已知条件结合等量代换得到∠3=∠D,易得BH∥ED,故由“两直线平行,同旁内角互补”得到∠1+∠2=180°.【解答】解:∠1与∠2的数量关系是∠1+∠2=180°.理由如下:∵∠A=∠C(已知),∴AB∥CD(内错角相等,两直线平行),∴∠B=∠3(两直线平行,内错角相等).∵∠B=∠D (已知),∴∠3=∠D,∴BH∥ED(同位角相等,两直线平行),∴∠1+∠2=180°(两直线平行,同旁内角互补).【点评】本题考查了平行线的判定与性质.解答此题的关键是注意平行线的性质和判定定理的综合运用.26.如图,有三种卡片①②③若干张,①是边长为a的小正方形,②是长为b宽为a的长方形,③是边长为b的大正方形.(1)小明用1张卡片①,6张卡片②,9张卡片③拼出了一个新的正方形,那么这个正方形的边长是a+3b ;(2)如果要拼成一个长为(3a+b),宽为(a+2b)的大长方形,需要卡片① 3 张,卡片②7 张,卡片③ 2 张.【考点】多项式乘多项式.【专题】计算题.【分析】(1)根据图形列出关系式,利用完全平方公式化简,即可确定出正方形的边长;(2)利用多项式乘以多项式法则计算得到结果,即可做出判断.【解答】解:(1)根据题意得:a2+6ab+9b2=(a+3b)2,则拼出的新正方形的边长是a+3b;(2)根据题意得:(3a+b)(a+2b)=3a2+7ab+2b2,需要卡片①3 张,卡片②7 张,卡片③2 张.故答案为:(1)a+3b;(2)3,7,2.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.五.选做题:(本题10分)27.阅读下面的学习材料:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”,例如:这样的分式就是假分式;当分子的次数小于分母的次数时,我们称之为“真分式”例如:这样的分式就是真分式.我们知道,假分数可以化为带分数,例如:,类似的,假分式也可以化为“带分式”(即:整式与真分式的和的形式),例如:,.参考上面的方法解决下列问题:(1)将分式化为带分式;(2)当x取什么整数值时,分式的值也为整数?【考点】分式的混合运算.【专题】阅读型.【分析】(1)两式根据材料中的方法变形即可得到结果;(2)原式利用材料中的方法变形,即可确定出分式的值为整数时整数x的值.【解答】解:(1)==1+,==x2+2﹣;(2)==2﹣,当x+2=1,5,﹣1,﹣5,即x=﹣1,3,﹣3,﹣7时,分式的值也为整数.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.。
(新课标)京改版七年级数学下册期末数学试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.(﹣2)0的值为()A.﹣2 B.0 C.1 D.22.下列各式从左边到右边的变形是因式分解的为()A.(a+1)(a﹣1)=a2﹣1 B.﹣18x4y3=﹣6x2y2•3x2yC.x2+2x+1=x(x+2x)+1 D.a2﹣6a+9=(a﹣3)23.下列运算正确的是()A.a+a3=a4B.(a+b)2=a2+b2C.a10÷a2=a5 D.(a2)3=a64.计算的结果是()A.﹣1 B.1 C.D.25.如图,直线a∥b,三角板的直角顶点放在直线b上,两直角边与直线a相交,如果∠1=55°,那么∠2的度数为()A.35°B.45°C.55°D.65°6.化简分式的结果为()A.B.C.D.7.已知:如图,AB⊥CD于O,EF为经过点O的一条直线,那么∠1与∠2的关系是()A.互余B.互补C.互为对顶角 D.相等8.已知代数式x a﹣1y3与﹣5x﹣b y2a+b是同类项,则a与b的值分别是()A.B.C.D.9.已知2a﹣b=2,那么代数式4a2﹣b2﹣4b的值是()A.6 B.4 C.2 D.010.如图是用4个相同的小矩形与1个小正方形密铺而成的正方形图案,已知大正方形的面积为49,小正方形的面积为4,若用x,y(其中x>y)表示小矩形的长与宽,请观察图案,指出以下关系式中不正确的是()A.x+y=7 B.x﹣y=2 C.x2﹣y2=4 D.4xy+4=49二、填空题(本题共18分,每小题3分)11.如果分式有意义,那么的取值范围是.12.分解因式:12m2﹣3= .13.PM2.5是指大气中直径小于或等于2.5μm的颗粒物,含有大量有毒、有害物质,也可称可入肺颗粒物,将0.0000025用科学记数法表示为.14.若4x=2,4y=3,则4x+y= .15.已知三项式4x2++1是一个完全平方式,但是其中一项看不清了,你认为这一项应该是(写出所有你认为正确的答案).16.若:A32=3×2=6,A53=5×4×3=60,A54=5×4×3×2=120,A64=6×5×4×3=360,…,观察前面计算过程,寻找计算规律计算A73= (直接写出计算结果),并比较A103A104(填“>”或“<”或“=”)三、解答题(本题共30分,每小题5分)17.计算:.18.解方程:.19.化简:2(a4)3+(﹣2a3)2•(﹣a2)3+a2•a10.20.先化简,再选一个你喜爱的数代入求值:.21.已知n2+n=1,求(n+2)(n﹣2)+(n+3)(2n﹣3)的值.22.分解因式:(x2+1)2﹣4x(x2+1)+4x2.四、解答题(本题共22分)23.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.如图1,一束光线m射到平面镜a上,被a反射后的光线为n,则入射光线m、反射光线n与平面镜a所夹的锐角∠1=∠2.(1)利用这个规律人们制作了潜望镜,图2是潜望镜工作原理示意图,AB、CD是平行放置的两面平面镜.已知光线经过平面镜反射时,有∠1=∠2,∠3=∠4,请解释进入潜望镜的光线m为什么和离开潜望镜的光线n是平行的?(请把证明过程补充完整)理由:∵AB∥CD(已知),∴∠2=∠3 ()∵∠1=∠2,∠3=∠4(已知),∴∠1=∠2=∠3=∠4(等量代换),∴180°﹣∠1﹣∠2=180°﹣∠3﹣∠4(等量减等量,差相等),即:(等量代换),∴.()(2)显然,改变两面平面镜AB、CD之间的位置关系,经过两次反射后,入射光线m与反射光线n之间的位置关系会随之改变,请你猜想:图3中,当两平面镜AB、CD的夹角∠ABC= °时,仍可以使入射光线m与反射光线n平行但方向相反.(直接写出结果)24.列方程或方程组解应用题:为打造刺猬河沿岸的风光带,有一段长为360米的河道整治任务由A、B两个工程队先后接力完成.A工程队每天整治24米,B工程队每天整治16米,共用时20天.(1)根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:甲:乙:根据甲、乙两名同学所列的方程组,请你分别指出未知数x,y表示的意义,并且在方框中补全甲、乙两名同学所列的方程组:甲:x表示,y表示;乙:x表示,y表示.(2)求出其中一个方程组的解,并回答A、B两工程队分别整治河道多少米?25.如图,已知:∠A=∠C,∠B=∠D.你能确定图中∠1与∠2的数量关系吗?请写出你的结论并进行证明.26.如图,有三种卡片①②③若干张,①是边长为a的小正方形,②是长为b宽为a的长方形,③是边长为b的大正方形.(1)小明用1张卡片①,6张卡片②,9张卡片③拼出了一个新的正方形,那么这个正方形的边长是;(2)如果要拼成一个长为(3a+b),宽为(a+2b)的大长方形,需要卡片①张,卡片②张,卡片③张.五.选做题:(本题10分)27.阅读下面的学习材料:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”,例如:这样的分式就是假分式;当分子的次数小于分母的次数时,我们称之为“真分式”例如:这样的分式就是真分式.我们知道,假分数可以化为带分数,例如:,类似的,假分式也可以化为“带分式”(即:整式与真分式的和的形式),例如:,.参考上面的方法解决下列问题:(1)将分式化为带分式;(2)当x取什么整数值时,分式的值也为整数?参考答案与试题解析一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.(﹣2)0的值为()A.﹣2 B.0 C.1 D.2【考点】零指数幂.【分析】根据零指数幂的运算法则求出(﹣2)0的值【解答】解:(﹣2)0=1.故选C.【点评】考查了零指数幂:a0=1(a≠0),由a m÷a m=1,a m÷a m=a m﹣m=a0可推出a0=1(a≠0),注意:00≠1.2.下列各式从左边到右边的变形是因式分解的为()A.(a+1)(a﹣1)=a2﹣1 B.﹣18x4y3=﹣6x2y2•3x2yC.x2+2x+1=x(x+2x)+1 D.a2﹣6a+9=(a﹣3)2【考点】因式分解的意义.【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【解答】解:A、是多项式乘法,不是因式分解,错误;B、左边是单项式,不是因式分解,错误;C、右边不是积的形式,错误;D、是因式分解,正确.故选D.【点评】本题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.3.下列运算正确的是()A.a+a3=a4B.(a+b)2=a2+b2C.a10÷a2=a5 D.(a2)3=a6【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】根据同底数幂的乘法,可判断A,根据完全平方公式,可判断B,根据同底数幂的除法,可判断C,根据幂的乘方,可判断D.【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、和的平方等于平方和加积的二倍,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、幂的乘方底数不变指数相乘,故D正确;故选:D.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.计算的结果是()A.﹣1 B.1 C.D.2【考点】分式的加减法.【专题】计算题.【分析】原式利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式==﹣=﹣1,故选A【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.5.如图,直线a∥b,三角板的直角顶点放在直线b上,两直角边与直线a相交,如果∠1=55°,那么∠2的度数为()A.35°B.45°C.55°D.65°【考点】平行线的性质.【分析】先由直线a∥b,根据平行线的性质,得出∠2=∠1=55°.【解答】解:∵a∥b,∴∠2=∠1=55°.故选C.【点评】此题考查了学生对平行线性质的应用,关键是由平行线性质得出同位角相等.6.化简分式的结果为()A.B.C.D.【考点】约分.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:原式=.故选:A.【点评】分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.7.已知:如图,AB⊥CD于O,EF为经过点O的一条直线,那么∠1与∠2的关系是()A.互余B.互补C.互为对顶角 D.相等【考点】垂线;对顶角、邻补角.【分析】根据垂直得直角:∠BOD=90°;然后由平角的定义来求∠1与∠2的关系.【解答】解:∵AB⊥CD,∴∠BOD=90°.又∵EF为过点O的一条直线,∴∠1+∠2=180°﹣∠BOD=90°,即∠1与∠2互余.故选:A.【点评】本题考查了垂直的定义.注意已知条件“EF为过点O的一条直线”告诉我们∠FOE为平角.8.已知代数式x a﹣1y3与﹣5x﹣b y2a+b是同类项,则a与b的值分别是()A.B.C.D.【考点】同类项;解二元一次方程组.【专题】计算题.【分析】根据同类项的定义得到,然后解方程组即可.【解答】解:∵x a﹣1y3与﹣5x﹣b y2a+b是同类项,∴,∴.故选A.【点评】本题考查了同类项:所含字母相同,并且相同字母的指数相同的项叫同类项.9.已知2a﹣b=2,那么代数式4a2﹣b2﹣4b的值是()A.6 B.4 C.2 D.0【考点】完全平方公式.【分析】根据完全平方公式,可得平方差公式,根据平方差公式,可得答案.【解答】解:4a2﹣b2﹣4b=4a2﹣(b2+4b+4)+4=(2a)2﹣(b+2)2+4 =[2a+(b+2)][2a﹣(b+2)]+4=(2a+b+2)(2a﹣b﹣2)+4当2a﹣b=2时,原式=0+4=4,故选:B.【点评】本题考查了完全平方公式,利用完全平方公式得出平方差公式是解题关键.10.如图是用4个相同的小矩形与1个小正方形密铺而成的正方形图案,已知大正方形的面积为49,小正方形的面积为4,若用x,y(其中x>y)表示小矩形的长与宽,请观察图案,指出以下关系式中不正确的是()A.x+y=7 B.x﹣y=2 C.x2﹣y2=4 D.4xy+4=49【考点】二元一次方程组的应用.【分析】分别根据大正方形边长、小正方形边长的不同表示可判断A、B,由A、B结论利用平方差公式可判断C,根据大正方形面积的整体与组合的不同表示可判断D.【解答】解:A、因为正方形图案的边长7,同时还可用(x+y)来表示,故此选项正确;B、中间小正方形的边长为2,同时根据长方形长宽也可表示为x﹣y,故此选项正确;C、根据A、B可知x+y=7,x﹣y=2,则x2﹣y2=(x+y)(x﹣y)=14,故此选项错误;D、因为正方形图案面积从整体看是49,从组合来看,可以是(x+y)2,还可以是(4xy+4),即4xy+4=49,故此选项正确;故选:C.【点评】本题主要考查根据数形结合列二元一次方程的能力,解答需结合图形,利用等式的变形来解决问题.二、填空题(本题共18分,每小题3分)11.如果分式有意义,那么的取值范围是x≠5 .【考点】分式有意义的条件.【分析】根据分母为零,分式无意义;分母不为零,分式有意义.【解答】解:分式有意义,得x﹣5≠0.解得x≠5,故答案为:x≠5.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.12.分解因式:12m2﹣3= 3(2m+1)(2m﹣1).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式3,进而利用平方差公式分解因式得出即可.【解答】解:12m2﹣3=3(4m2﹣1)=3(2m+1)(2m﹣1).故答案为:3(2m+1)(2m﹣1).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用平方差公式是解题关键.13.PM2.5是指大气中直径小于或等于2.5μm的颗粒物,含有大量有毒、有害物质,也可称可入肺颗粒物,将0.0000025用科学记数法表示为 2.5×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6,故答案为:2.5×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.若4x=2,4y=3,则4x+y= 6 .【考点】同底数幂的乘法.【分析】根据同底数幂的乘法的逆运算,可得4x+y=4x•4y,代入求解即可.【解答】解:∵4x=2,4y=3,∴4x+y=4x•4y=2×3=6.【点评】此题主要考查同底数幂的乘法的逆运算:a m+n=a m•a n.15.已知三项式4x2++1是一个完全平方式,但是其中一项看不清了,你认为这一项应该是4x,﹣4x,4x4(写出所有你认为正确的答案).【考点】完全平方式.【专题】开放型.【分析】利用完全平方公式的结构特征判断即可得到结果.【解答】解:根据题意得:4x2+4x+1=(2x+1)2;4x2﹣4x+1=(2x﹣1)2;4x2+4x4+1=(2x2+1)2,故答案为:4x,﹣4x,4x4【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.16.若:A32=3×2=6,A53=5×4×3=60,A54=5×4×3×2=120,A64=6×5×4×3=360,…,观察前面计算过程,寻找计算规律计算A73= 210 (直接写出计算结果),并比较A103<A104(填“>”或“<”或“=”)【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】对于A a b(b<a)来讲,等于一个乘法算式,其中最大因数是a,依次少1,最小因数是a﹣b.依此计算即可.【解答】解:A73=7×6×5=210;∵A103=10×9×8=720,A104=10×9×8×7=5040.∴A103<A104.故答案为:210;<.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.注意找到A a b(b<a)中的最大因数,最小因数.三、解答题(本题共30分,每小题5分)17.计算:.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,第三项利用积的乘方运算法则变形,计算即可得到结果.【解答】解:原式=1﹣2+(×)3×=﹣1+=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解方程:.【考点】解分式方程.【专题】计算题.【分析】本题的最简公分母是(2x﹣3).方程两边都乘最简公分母,可把分式方程转换为整式方程求解.【解答】解:方程两边都乘(2x﹣3),得x﹣5=4(2x﹣3),解得x=1.检验:当x=1时,2x﹣3≠0.∴原方程的根是x=1.【点评】(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.19.化简:2(a4)3+(﹣2a3)2•(﹣a2)3+a2•a10.【考点】整式的混合运算.【分析】先算乘方,再算乘法,最后合并同类项即可.【解答】解:原式=2a12+4a6•(﹣a6)+a12=3a12﹣4a12=﹣a12.【点评】本题考查了整式的混合运算的应用,能正确运用整式的运算法则进行计算是解此题的关键,注意运算顺序.20.先化简,再选一个你喜爱的数代入求值:.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再选出合适的x的值代入进行计算即可.【解答】解:原式=•=•=x+1,当x=2时,原式=3(此处答案不唯一,但x≠±1,且x≠0).【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.已知n2+n=1,求(n+2)(n﹣2)+(n+3)(2n﹣3)的值.【考点】整式的混合运算—化简求值.【专题】计算题.【分析】原式利用平方差公式,以及多项式乘以多项式法则计算,去括号合并得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=n2﹣4+2n2﹣3n+6n﹣9=3n2+3n﹣13=3(n2+n)﹣13,∵n2+n=1,∴原式=3×1﹣13=﹣10.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.22.分解因式:(x2+1)2﹣4x(x2+1)+4x2.【考点】因式分解-运用公式法.【分析】直接利用完全平方公式分解因式得出即可.【解答】解:(x2+1)2﹣4x(x2+1)+4x2=[(x2+1)﹣2x]2=(x﹣1)4.【点评】此题主要考查了公式法分解因式,熟练应用乘法公式是解题关键.四、解答题(本题共22分)23.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.如图1,一束光线m射到平面镜a上,被a反射后的光线为n,则入射光线m、反射光线n与平面镜a所夹的锐角∠1=∠2.(1)利用这个规律人们制作了潜望镜,图2是潜望镜工作原理示意图,AB、CD是平行放置的两面平面镜.已知光线经过平面镜反射时,有∠1=∠2,∠3=∠4,请解释进入潜望镜的光线m为什么和离开潜望镜的光线n是平行的?(请把证明过程补充完整)理由:∵AB∥CD(已知),∴∠2=∠3 (两直线平行,内错角相等)∵∠1=∠2,∠3=∠4(已知),∴∠1=∠2=∠3=∠4(等量代换),∴180°﹣∠1﹣∠2=180°﹣∠3﹣∠4(等量减等量,差相等),即:∠5=∠6 (等量代换),∴m∥n .(内错角相等,两直线平行)(2)显然,改变两面平面镜AB、CD之间的位置关系,经过两次反射后,入射光线m与反射光线n之间的位置关系会随之改变,请你猜想:图3中,当两平面镜AB、CD的夹角∠ABC= 90 °时,仍可以使入射光线m与反射光线n平行但方向相反.(直接写出结果)【考点】平行线的判定与性质.【专题】应用题;跨学科.【分析】(1)求出∠5=∠6,根据平行线的判定得出即可;(2)根据三角形内角和定理求出∠2+∠3=90°,求出∠EAC+∠FCA=180°,根据平行线的判定得出即可.【解答】(1)证明:如图2,∵AB∥CD(已知),∴∠2=∠3 (两直线平行,内错角相等),∵∠1=∠2,∠3=∠4(已知),∴∠1=∠2=∠3=∠4(等量代换),∴180°﹣∠1﹣∠2=180°﹣∠3﹣∠4(等量减等量,差相等),即:∠5=∠6(等量代换),∴m∥n (内错角相等,两直线平行).故答案为:两直线平行,内错角相等,∠5=∠6,m∥n,内错角相等,两直线平行;(2)∠ABC=90°,理由是:如图3,∵∠ABC=90°,∴∠2+∠3=180°﹣90°=90°,∵∠1=∠2,∠3=∠4(已知),∴∠1+∠2+∠3+∠4=80°,∴∠EAC+∠FCA=180°+180°﹣180°=180°,∴AE∥CF.故答案为:90.【点评】本题考查了平行线的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.列方程或方程组解应用题:为打造刺猬河沿岸的风光带,有一段长为360米的河道整治任务由A、B两个工程队先后接力完成.A工程队每天整治24米,B工程队每天整治16米,共用时20天.(1)根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:甲:乙:根据甲、乙两名同学所列的方程组,请你分别指出未知数x,y表示的意义,并且在方框中补全甲、乙两名同学所列的方程组:甲:x表示A队的工作时间,y表示B队的工作时间;乙:x表示A队的工作量,y表示B队的工作量.(2)求出其中一个方程组的解,并回答A、B两工程队分别整治河道多少米?【考点】二元一次方程组的应用.【分析】(1)根据甲、乙两名同学所列的方程组可得,甲:x表示A 队的工作时间,y表示B队的工作时间;乙:x表示A队的工作量,y 表示B队的工作量,补全方程组即可;(2)根据二元一次方程组的解法求解方程组甲.【解答】解:(1)甲:;乙:;甲:x表示A队的工作时间,y表示B队的工作时间;乙:x表示A队的工作量,y表示B队的工作量;(2)由方程组甲得:,则24x=120,16y=240,答:A队整治河道120米,B队整治河道240米.故答案为:A队的工作时间,B队的工作时间;A队的工作量,B队的工作量.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,正确找出题目中的相等关系,列方程组求解.25.如图,已知:∠A=∠C,∠B=∠D.你能确定图中∠1与∠2的数量关系吗?请写出你的结论并进行证明.【考点】平行线的判定与性质.【分析】由平行线的判定定理得到AB∥CD,然后由该平行线的关系、已知条件结合等量代换得到∠3=∠D,易得BH∥ED,故由“两直线平行,同旁内角互补”得到∠1+∠2=180°.【解答】解:∠1与∠2的数量关系是∠1+∠2=180°.理由如下:∵∠A=∠C(已知),∴AB∥CD(内错角相等,两直线平行),∴∠B=∠3(两直线平行,内错角相等).∵∠B=∠D (已知),∴∠3=∠D,∴BH∥ED(同位角相等,两直线平行),∴∠1+∠2=180°(两直线平行,同旁内角互补).【点评】本题考查了平行线的判定与性质.解答此题的关键是注意平行线的性质和判定定理的综合运用.26.如图,有三种卡片①②③若干张,①是边长为a的小正方形,②是长为b宽为a的长方形,③是边长为b的大正方形.(1)小明用1张卡片①,6张卡片②,9张卡片③拼出了一个新的正方形,那么这个正方形的边长是a+3b ;(2)如果要拼成一个长为(3a+b),宽为(a+2b)的大长方形,需要卡片① 3 张,卡片②7 张,卡片③ 2 张.【考点】多项式乘多项式.【专题】计算题.【分析】(1)根据图形列出关系式,利用完全平方公式化简,即可确定出正方形的边长;(2)利用多项式乘以多项式法则计算得到结果,即可做出判断.【解答】解:(1)根据题意得:a2+6ab+9b2=(a+3b)2,则拼出的新正方形的边长是a+3b;(2)根据题意得:(3a+b)(a+2b)=3a2+7ab+2b2,需要卡片①3 张,卡片②7 张,卡片③2 张.故答案为:(1)a+3b;(2)3,7,2.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.五.选做题:(本题10分)27.阅读下面的学习材料:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”,例如:这样的分式就是假分式;当分子的次数小于分母的次数时,我们称之为“真分式”例如:这样的分式就是真分式.我们知道,假分数可以化为带分数,例如:,类似的,假分式也可以化为“带分式”(即:整式与真分式的和的形式),例如:,.参考上面的方法解决下列问题:(1)将分式化为带分式;(2)当x取什么整数值时,分式的值也为整数?【考点】分式的混合运算.【专题】阅读型.【分析】(1)两式根据材料中的方法变形即可得到结果;(2)原式利用材料中的方法变形,即可确定出分式的值为整数时整数x的值.【解答】解:(1)==1+,==x2+2﹣;(2)==2﹣,当x+2=1,5,﹣1,﹣5,即x=﹣1,3,﹣3,﹣7时,分式的值也为整数.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.。