鸡兔同笼
- 格式:docx
- 大小:13.40 KB
- 文档页数:2
“鸡兔同笼”问题小朋友们听说过吗?这是一类著名的数学问题。
比如:“鸡兔同笼,共有45个头,146只脚。
笼中各有多少只鸡兔?”鸡兔同笼问题的特点是:题目中有两个或两个以上的未知数,要求根据总数量,求出各未知数的单量。
解题时,先假设要求的两个或几个未知量相等,或者先假设要求的两个未知量是同一量,然后按照题中的已知条件来推算,根据数量上出现的矛盾适当置换,求出结果。
为了更好地解答鸡兔同笼问题,我们可以用下面的公式:兔数=(实际脚数-每只鸡脚数×鸡兔的总数)÷(每只兔子脚数-每只鸡脚数)【经典例题】例1:鸡兔同笼,共有45个头,146只脚。
笼中鸡免各有多少只?解:解法一假设全是兔子。
(4×45-146)÷(4-2)=17(只)…鸡45-17=28(只)…兔解法二假设全是鸡。
(146-2×45)÷(4-2)=28(只)…兔45-28=17(只)…鸡答:鸡有17只,兔子有28只。
练习:鸡兔共有35只,关在同一个笼子中,共有100条腿。
试计算,笼中有鸡多少只?兔子多少只?解:4x35-100=40(条)则鸡有:40÷2=20(只),所以兔有:35-20=15(只)。
例2:在一个停车场上,汽车.摩托车共停了60辆,一共有190个轮子。
其中每辆汽车有4个轮子,每辆摩托车有2个轮子,求停车场上汽车和摩托车各有多少辆?解:假设60辆全是汽车,则摩托车:(60×4-190)÷(4-2)=25(辆)汽车:60-25=35(辆)。
答:摩托车有25辆,汽车有35辆。
练习:在一个停车场上,停了小轿车和摩托车一共32辆,这些车一共有108个轮子。
求小轿车和摩托车各有多少辆?解:小轿车22辆,摩托车10辆。
例3:盒子里有大、小两种钢珠共30个,共重266克,已知大钢珠每个11克,小钢珠每个7克。
盒中大钢珠、小钢珠各有多少个?解:假设全部都是大钢珠,则共重:11×30=330(克)与解比原来的克数重:330-266=64(克)小钢珠的个数是:64÷(11-7)=16(个)大钢珠的个数是:30-16=14(个)同样,也可以假设全部都是小钢珠。
鸡兔同笼问题【含义】这是古典的算术问题。
已知笼子里鸡、兔共有多少只头和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。
已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
【数量关系】第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)【解题思路和方法】解此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。
如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。
这类问题也叫置换问题。
通过先假设,再置换,使问题得到解决。
例题1:鸡和兔在一个笼子里,共有35个头,94只脚,那么鸡有多少只,兔有多少只?假设笼子里全部都是鸡,每只鸡有2只脚,那么一共应该有35×2=70(只)脚,而实际有94只脚,这多出来的脚就是把兔子当作鸡多出来的,每只兔子比鸡多2只脚,一共多了94-70=24(只),则兔子有24÷2=12(只),那么鸡有35-12=23(只)。
例题2:动物园里有鸵鸟和长颈鹿共70只,其中鸵鸟的脚比长颈鹿多80只,那么鸵鸟有多少只,长颈鹿有多少只?解:假设全部都是鸵鸟,则一共有70×2=140(只)脚,此时长颈鹿的脚数是0,鸵鸟脚比长颈鹿脚多140只,而实际上鸵鸟的脚比长颈鹿多80只,因此鸵鸟脚与长颈鹿脚的差数多了140-80=60(只),这是因为把其中的长颈鹿换成了鸵鸟。
把每一只长颈鹿换成鸵鸟,鸵鸟的脚数将增加2只,长颈鹿的脚数减少4只,那么鸵鸟脚数与长颈鹿脚数的差就增加了6只,所以换成鸵鸟的长颈鹿有60÷6=10(只),鸵鸟有70-10=60(只)。
鸡兔同笼的三种方法鸡兔同笼问题的原型是已知鸡和兔子这两类动物的头、脚的总数量,求鸡和兔子分别多少只。
在考试中,题干内容往往会有所变化。
鸡兔同笼解法方法一:普通方程法设邮递员派送平邮X件,则派送的EMS有(14-X)件,根据补助构建等量关系,可得:7X+10(14-X)=119,解得X=7,选择A选项。
普通方程法是最容易想到的方法,对于思维的要求度不高,只需要设出未知数,列好等式求解即可。
方法二:假设法假设邮递员当天派送的全部是EMS,则可得的补助为10×14=140元。
然而实际上邮递员的补助只有119元,差值为140-119=21元。
因此平邮有21÷(10-7)=7件。
假设法是解决鸡兔同笼问题最常用的方法,跳过了普通方程设未知数、列方程等步骤,直接进入计算求解阶段,解题效果最明显。
在假设时,要根据题干的问法选择合适的假设条件来求解。
方法三:不定方程法设平邮X件,EMS 有Y件,则7X+10Y=119,由于7和119都能被7整除,根据整除特性可知Y=7,因此X=7(也可以通过尾数法判断7X的尾数为9,因此X=7)。
不定方程法只用了题干中的部分条件,结合选项就能快速判断求解了。
运用此方法对题目选项以及具体数值的要求较高,特别是对不定方程的解法要非常熟练才能快速判断求解。
数学名题:鸡兔同笼大约在1500年前,《孙子算经》中就记载了这个有趣的问题。
书中是这样叙述的:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。
问笼中各有多少只鸡和兔?这一问题的本质是一种二元方程。
如果教学方法得当,可以让小学生初步地理解未知数和方程等概念,并锻炼从应用问题中抽象出数的能力。
一般在小学四到六年级时,配合一元一次方程等内容教授。
同一本书中还有一道变题:今有兽,六首四足;禽,四首二足,上有七十六首,下有四十六足。
鸡兔同笼(含答案)一、知识点1、由来大约在1500年前,《孙子算经》中就记载了这个有趣的问题。
书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?2、方法回顾画图法列表法砍足法3、假设法鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到。
如果假设全是兔,那么则有:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍二、学习目标1、熟悉鸡兔同笼的“砍足法”和“假设法”。
2、利用鸡兔同笼的方法解决一些实际问题。
三、典型例题例题1鸡兔同笼,头共46只,足共128只,鸡兔各几只?练习1修远家养了一些鸡和兔子,同时养在一个笼子里,修远数了数,它们共有35个头,94只脚。
问:修远家养的鸡和兔各有多少只?例题2动物园里养了一些梅花鹿和鸵鸟,共有脚208只,鸵鸟比梅花鹿多20只,梅花鹿和鸵鸟各有多少只?练习2一个养殖园内,鸡比兔多36只,共有脚792只,鸡兔各几只?例题3在一个停车场上,现有车辆41辆,其中汽车有4个轮子,摩托车有3个轮子,这些车共有127个轮子,那么三轮摩托车有多少辆?练习3体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元、裤子每件19元,问老师买上衣和裤子各多少件?例题4一百个和尚刚好喝一百碗粥,一个大和尚喝三碗粥,三个小和尚喝一碗粥,那么大和尚有多少个,小和尚有多少个?练习4100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。
问:大、小和尚各有多少人?选讲题工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元。
运完这批花瓶后,工人共得4400元,则损坏了多少个?练习乐宝百货商店委托搬运站运送100只花瓶。
总述鸡兔同笼是我国古代著名趣题之一。
大约在1500年前,《孙子算经》中就记载了这个有趣的问题。
书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。
问笼中各有几只鸡和兔?算这个有个最简单的算法。
(总脚数-总头数*2)/2=兔子数解释:让兔子和鸡都抬起两只脚,这样笼子里的脚就减少了头数*2只,由于鸡只有2只脚,所以笼子里只剩下兔子的,再除以2就是兔子数。
别说兔子和鸡不听话,现实中也没人鸡兔同笼。
假设法:假设全是鸡:2×35=70(只)比总脚数少的:94-70=24 (只)兔:24÷(4-2)=12 (只)鸡:35-12=23(只)假设法(通俗)假设鸡和兔子都听指挥那么,让所有动物抬起一只脚,笼中站立的脚:94-35=59(只)然后再抬起一只脚,这时候鸡两只脚都抬起来就摔倒了,只剩下用两只脚站立的兔子,站立脚:59-35=24(只)兔:24÷2=12(只)鸡:35-12=23(只)一元一次方程法解:设兔有x只,则鸡有(35-x)只。
4x+2(35-x)=944x+70-2x=942x=24x=24÷2x=1235-12=23答:兔子有12只,小鸡有23只。
二元一次方程法解:设鸡有x只,兔有y只。
x+y=352x+4y=94(x+y=35)×2=2x+2y=70(2x+2y=70)-(2x+4y=94)=(2y=24)y=12把y=12代入(x+y=35)x+12=35x=35-12x=23。
答:兔子有12只,小鸡有23只。
我国古代《孙子算经》共三卷,成书大约在公元5世纪。
这本书浅显易懂,有许多有趣的算术题,比如“鸡兔同笼”问题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?题目中给出了鸡兔共有35只,如果把兔子的两只前脚用绳子捆起来,看作是一只脚,两只后脚也用绳子捆起来,看作是一只脚,那么,兔子就成了2只脚,即把兔子都先当作两只脚的鸡。
鸡兔同笼典型例题10道一、基础型例题1. 鸡和兔在一个笼子里,从上面数,有8个头,从下面数,有26只脚。
问鸡和兔各有几只?- 逻辑:我们先假设笼子里全是鸡,那么8个头就应该有8×2 = 16只脚。
但实际有26只脚,多出来的脚就是兔子比鸡多的脚。
每只兔子比鸡多2只脚,多出来的26 - 16 = 10只脚,10÷2 = 5只就是兔子的数量,鸡就是8 - 5 = 3只。
2. 一个笼子里有鸡和兔共12只,它们一共有34只脚。
求鸡和兔各多少只?- 逻辑:假设全是鸡,12只鸡就有12×2 = 24只脚。
实际34只脚,多了34 - 24 = 10只脚。
因为每只兔比鸡多2只脚,所以兔有10÷2 = 5只,鸡就是12 - 5 = 7只。
3. 鸡兔同笼,头共10个,脚共30只。
鸡兔各几只?- 逻辑:要是全是鸡,10只鸡就有20只脚。
30 - 20 = 10只脚是多出来的,这是兔子的脚多出来的部分。
每只兔比鸡多2只脚,所以兔有10÷2 = 5只,鸡就是10 - 5 = 5只。
二、数字变化型例题4. 鸡兔同笼,共有15个头,46只脚。
问鸡和兔各有多少只?- 逻辑:先当全是鸡,15只鸡有15×2 = 30只脚。
46 - 30 = 16只脚是多的,每只兔比鸡多2只脚,兔就有16÷2 = 8只,鸡就是15 - 8 = 7只。
5. 笼子里有鸡和兔,一共20个头,56只脚。
鸡和兔分别有多少?- 逻辑:假设都是鸡,20只鸡有20×2 = 40只脚。
56 - 40 = 16只脚多出来了,这是兔子的。
每只兔比鸡多2只脚,兔有16÷2 = 8只,鸡有20 - 8 = 12只。
三、特殊条件型例题6. 鸡兔同笼,鸡比兔多2只,共有脚28只。
鸡兔各多少只?- 逻辑:设兔有x只,那鸡就有x + 2只。
兔脚有4x只,鸡脚有2(x + 2)只。
可列方程4x+2(x + 2)=28,4x+2x + 4 = 28,6x = 24,x = 4。
小学六年级鸡兔同笼问题解法鸡兔同笼是中国古代的数学名题之一。
书中曾这样叙述:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。
问笼中各有几只鸡和兔?鸡兔同笼这道题,有这样几种解法:1、假设法假设全是鸡:2×35=70(只)鸡脚比总脚数少:94-70=24 (只)兔:24÷(4-2)=12 (只)鸡:35-12=23(只)2、方程法一元一次方程解:设兔有x只,则鸡有(35-x)只。
4x+2(35-x)=944x+70-2x=942x=94-702x=24x=1235-12=23(只)或解:设鸡有x只,则兔有(35-x)只。
2x+4(35-x)=942x+140-4x=942x=46x=2335-23=12(只)答:兔子有12只,鸡有23只。
注:通常设方程时,选择腿的只数多的动物,会在套用到其他类似鸡兔同笼的问题上,好算一些。
二元一次方程解:设鸡有x只,兔有y只。
x+y=352x+4y=94(x+y=35)×2=2x+2y=70(2x+2y=70)-(2x+4y=94)=(2y=24)y=12把y=12代入(x+y=35) x+12=35x=35-12(只)x=23(只)答:兔子有12只,鸡有23只3、抬腿法法一假如让鸡抬起一只脚,兔子抬起2只脚,还有94除以2=47只脚。
笼子里的兔就比鸡的头数多1,这时,脚与头的总数之差47-35=12,就是兔子的只数。
法二假如鸡与兔子都抬起两只脚,还剩下94-35×2=24只脚,这时鸡是屁股坐在地上,地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有24÷2=12只兔子,就有35-12=23只鸡。
鸡兔同笼总结顺口溜
鸡兔同笼问题是一个经典的数学问题,下面是一个顺口溜来总结解决这个问题的方法:
鸡兔同笼不知数,
三十六头笼中露。
数清头共二十六,
鸡七兔一抬头补。
这个顺口溜的意思是:假设全部都是鸡,一共有36个头,也就是36只鸡,但实际上一共有26只动物(鸡和兔),所以剩下的10只动物就是兔子。
因为每只兔子有1个头和4只脚,所以10只兔子就有40只脚,而实际上
只有26只脚,所以少掉了14只脚。
每只鸡有2只脚,所以少掉的14只脚就是7只鸡的脚。
因此,笼子里有7只鸡和3只兔子。
鸡兔同笼问题五种基本公式(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。
它的解法显然可套用上述公式。
)(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
鸡兔同笼
教学目标:
1、通过对日常生活中现象的观察和思考,发现一些特殊的规律。
2、从不同角度分析,掌握列表解题的策略与方法。
3、培养学生分析的能力,初步渗透假设的数学思想。
教学重难点:
从不同角度分析,掌握列表解题的策略与方法。
教学过程:
一、激趣导入
1、引导学生发现鸡和兔的异同点,学生得出鸡和兔都有一个头,鸡有两条腿,兔有四条腿。
2、通过练习发现问题。
出示多媒体课件:
一只公鸡()条腿,两只公鸡()条腿,五只公鸡()条腿。
一只兔子()条腿,两只兔子()条腿,五只兔子()条腿。
鸡兔共五只,腿有()条。
3、得出关系式:鸡的数量×2+兔的数量×4=腿的数量。
质疑:如果知道了腿的总数能知道鸡兔各几只吗?
4、引出课题:早在1500多年前,我国古代的数学家就在《孙子算经》中提出了这样有意思的题目,今天我们就一起来研究。
(板书:鸡兔同笼)
二、开展活动,探究规律。
1、课件出示题目:笼中鸡兔共8只,腿有22条,鸡兔各几只?
学生猜测鸡兔各几只,按顺序整理所有可能性。
学生根据总结出的关系式,计算找出正确答案。
学生汇报正确答案是鸡5只,兔3只。
小结:像这样把所有情况一一列举出来的方法叫逐一列表法。
(板书)
2、质疑:这个方法好不好?
学生感受这个方法要一一列举,比较麻烦。
下面就利用简单的数据总结规律,运用到复杂的情况中。
3、请同学们观察:你发现了什么规律?
同桌互相讨论。
生得出结论:鸡增加1只,同时兔减少1只,腿减少2条。
鸡减少1只,同时兔增加1只,腿增加2条。
腿增加和减少于兔保持一致。
4、游戏练习:
鸡增加2只,同时兔减少2只,腿()。
鸡减少5只,同时兔增加5只,腿()。
生得出:鸡兔每对换一次,腿数增加/减少两条。
三、利用规律,实题操作。
利用总结的规律,做一道数目稍大的题,不用逐一列表,试试看。
课件出示:鸡兔同笼,有10个头,28条腿,鸡、兔各有多少只?
生利用规律进行练习。
生汇报,根据汇报总结出取中列表法和跳跃列表法。
四、练习
练习熟练运用取中列表法和跳跃列表法。
1、鸡兔同笼,有20个头,56条腿,鸡、兔各有多少只?
从鸡兔同笼问题中取得数学学习的方法,这里的鸡兔不仅仅代表鸡和兔,运用所学的方法可以解决生活中类似的问题。
2、停车场里停了三轮车和小汽车共11辆,总共有40个轮子,问三轮车和小汽车各有几辆?这道题与鸡兔同笼问题有什么联系?
生找出两者的异同点,进行练习。
五、课外延伸
与大家分享小知识。
“鸡兔同笼”是一类中国有名的算术题,最早出现在《孙子算经》中。
此书约成书于四、五世纪,作者生平和编写年代都不清楚。
先传版本的《孙子算经》共三卷。
卷下31题,可谓是后世“鸡兔同笼”的始祖,后来传到日本,变成“龟鹤算”。
书中是这样叙述的:“今有鸡兔同笼,上有35头,下有九十四足,问鸡兔各几何?”
许许多多数学应用题都可以转化成这类问题来解决,或者用解决“鸡兔同笼”问题的解法来解决。