北京市延庆区2017-2018年一模考试数学(文)试卷(含答案)
- 格式:doc
- 大小:312.50 KB
- 文档页数:6
延庆区2017—2018学年度高三模拟试卷数学(文科) 2018.3本试卷共6页,满分150分,考试时间120分钟第Ⅰ卷(选择题)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合{|02},{|10}A x x B x x =≤≤=->,则A B = (A ){|02}x x ≤≤ (B ){|12}x x <≤(C ){|0}x x ≥(D ){|1}x x >2. 在复平面内,复数21i +的对应点位于的象限是(A ) 第一象限 (B ) 第二象限 (C ) 第三象限 (D )第四象限3. 下列函数在其定义域内是增函数的是(A )cos y x = (B )lg(1)y x =+ (C )xy e -= (D )1y x =+4. 已知函数()2sin()3f x x πϕ=++,则“23πϕ=”是“()f x 为奇函数”的 (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件5. 若x ,y 满足030x y x y x ≤≥≥-⎧⎪+⎨⎪⎩则22x y +的最小值为(A )0 (B )3 (C )4.5 (D )56. 该程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b 分别为14,4,则输出的a 为(A )0 (B )2 (C )4 (D )147. 某三棱锥的三视图如图所示,则该三棱锥的最长棱的长为 (A(B(C(D )8. 某上市股票在30天内每股的交易价格P (元)与时间t (天)所组成的有序数对(),t P ,点(),t P 落在图中的两条线段上;该股票在30天内的日交易量Q (万股)与时间t (天)的部分数据如下表所示,且Q 与t 满足一次函数关系, 那么在这30天中第几天日交易额最大 (A )10 (B )15 (C )20 (D )25正(主)视图侧(左)视图俯 视 图(7题图) 45tPO 3020106523第Ⅱ卷(非选择题)二、填空题:本大题共6小题,每小题5分,共30分.9. 双曲线2214x y -=的渐近线方程为 . 10. 已知00x ,y >>,且244x y ⋅=,则xy 的最大值为 . 11. 已知(1,2)(3,,==a b )x ,()+⊥a b a 则x = .12. 无偿献血是践行社会主义核心价值观的具体行动,需要在报名的2名男教师和3名女教师中,选取2人参加无偿献血,则恰好选中一名男教师和一名女教师的概率为 .13. 已知()f x ,()g x 在定义域内均为增函数,但()()f x g x ⋅不一定是增函数,例如当()f x = 且()g x = 时,()()f x g x ⋅不是增函数. 14. 有4个不同国籍的人,他们的名字分别是A 、B 、C 、D ,他们分别来自英国、美国、德国、法国(名字顺序与国籍顺序不一定一致). 现已知每人只从事一个职业,且:(1)A 和来自美国的人他们俩是医生; (2)B 和来自德国的人他们俩是教师; (3)C 会游泳而来自德国的人不会游泳; (4)A 和来自法国的人他们俩一起去打球.根据以上条件可推测出A 是来自 国的人,D 是来自 国的人.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知等差数列{}n a 和等比数列{}n b ,其中数列{}n b 的前n 项和为n S ,11a =-,11b =,222a b +=,335a b +=.(Ⅰ)求{}n b 的通项公式和前n 项和n S ;(Ⅱ)设2log n n n c a b =+,求数列{}n c 的前n 项和n T .16.(本小题满分13分)△ABC的内角A,B,C的对边分别为a,b,c,已知sin A A=0,ab=2.(Ⅰ)求角A;(Ⅱ)求边c及△ABC的面积.17.(本小题满分13分)为了鼓励市民节约用电,某市实行“阶梯式”电价,将每户居民的月用电量分为二档,月用电量不超过200度的部分按0.5元/度收费,超过200度的部分按0.8元/度收费.某小区共有居民1000户,为了解居民的用电情况,通过抽样,获得了今年7月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图.(Ⅰ)求a的值;(Ⅱ)试估计该小区今年7月份用电费用不超过260元的户数;(Ⅲ)估计7月份该市居民用户的平均用电费用(同一组中的数据用该组区间的中点值作代表).18.(本小题满分14分)如图,在几何体ABCDE 中,四边形ABCD 是正方形,AB ⊥平面BEC ,BE EC ⊥,2BE EC ==,点,G H 分别是线段,BE EC 的中点,点,F N 分别是线段,CD BC 的中点.(Ⅰ)求证://GH 平面ADE ; (Ⅱ)求证:AC ⊥平面ENF ;(Ⅲ)在线段CD 上是否存在一点P ,使得D AEP V -DP 的长,若不存在,请说明理由.19.(本小题满分13分)已知椭圆E :()222210x y a b a b+=>>过点(0,,且离心率2e =.(Ⅰ)求椭圆E 的方程;(Ⅱ)设直线:1,()l x my m R =-∈交椭圆E 于,A B 两点,判断点G 9,04⎛⎫- ⎪⎝⎭与以线段AB 为直径的圆的位置关系,并说明理由.20.(本小题满分14分)已知函数x e x f x -=)((e 为自然对数的底数). (Ⅰ)求曲线()=y f x 在点(0,(0))f 处的切线方程;(Ⅱ)当[]0,2x ∈时,不等式ax x f >)(恒成立,求实数a 的取值范围;(Ⅲ)设()()g x f x ax =-,当函数()g x 有且只有一个零点时,求a 的取值范围.(考生务必将答案答在答题卡上,在试卷上作答无效)延庆区2017-2018学年度一模考试数学文评分标准一、选择题:C DBA CBDB 二、填空题:9. 12y x =±10. 1211. -4 12. 35 13. 答案不唯一 14.英, 德(第一空3分,第二空2分)13题参考答案:3,;,;,ln ;,lg ;,xx x x x x x x x x e三、解答题:15.(Ⅰ)设{}n a 公差为d ,{}n b 公比为(0)q q ≠, ………1分则1(1)n a n d =-+-,1n n b q-=⎩⎨⎧=++-=++-,5)21(,2)1(2q d q d 解得⎩⎨⎧==21q d 或⎩⎨⎧==03q d (舍去). ………4分 所以12n n b -= ,.122112nn n S -==-- ………7分 (Ⅱ) 1(1)2n a n n =-+-=-, ………8分122log 2log 223n n n n c a b n n -=+=-+=- ………10分显然,数列{}n c 是首项为-1,公差为2的等差数列 ………11分 所以,2(123)22n n T n n n -+-==-. ………13分16.(Ⅰ)由sin 0A A =得π2sin 03A ⎛⎫+= ⎪⎝⎭, ………2分 即()ππ3A k k +=∈Z , ………3分 又()0,πA ∈,∴ππ3A +=,得2π3A =. ………5分 (Ⅱ)由余弦定理2222cos a b c bc A =+-⋅, ………6分(0.0010.0030.004)1001a=0.002a +++⨯=解得又∵12,cos 2a b A ===- ………8分代入并整理得()2125c +=,故4c =; ………11分11sin 2422S bc A ==⨯⨯= ………13分17.(Ⅰ)………3分(Ⅱ)当用电量为400度时,用电费用为2000.5+2000.8100160260⨯⨯=+=元 所以此100户居民中用电费用超过260元的户数为0.0001100100=10⨯⨯户 所以此100户居民中用电费用不超过260元的户数为90户 ………7分 所以该小区1000户居民中用电费用不超过260元的户数为900户………8分 (Ⅲ)该市居民平均用电费用为(1500.32000.7)0.5(500.41500.22500.1)0.8152.5⨯+⨯⨯+⨯+⨯+⨯⨯=元………13分18.(Ⅰ)如图,点,G H 分别是线段,BE EC 的中点所以点GH 是BEC ∆的中位线,所以//GH BC , ………1分 由ABCD 是正方形得,AB CD =, //AD BC ,所以 //GH AD ,……2分 又AD ⊂平面ADE ,GH ⊄平面ADE 所以//GH 平面ADE ………4分 (Ⅱ)如图,点,F N 分别是线段,CD BC 的中点 所以FN 是BCD ∆的中位线,所以//FN BD , 由ABCD 是正方形得,A C B D ⊥,所以AC FN ⊥, ………6分又因为 BE EC =,点N 是BC 的中点 所以EN BC ⊥. ………7分 又因为 AB ⊥平面BEC ,EN ⊂平面BEC .EN AB ⊥ABBC B =,EN ⊥平面ABCD ………8分AC ⊂平面ABCD ,EN AC⊥ ………9分FNEN N =,AC ⊥平面ENF ; ………10分(Ⅲ)假设在线段CD 上存在一点P,使得D AEP V -=设DP a =,D AEP E ADP V V --= ………11分13E ADP ADP V S -=4ADP S ∴= ………12分142,ADP S AD DP =⨯=所以DP的长为 ………14分19.(Ⅰ)由已知 解得所以椭圆E的方程为22142x y += . ………4分(Ⅱ)设点1122(y ),B(,y ),A x x AB 中点为00H(,y )x .由221142得x my x y =-⎧⎪⎨+=⎪⎩()222230m y my +--=, ………6分 所以1212222322m y y ,y y m m -+==++ ………7分方法一:从而022my m =+. ………8分所以222222200000095525GH|()y (my )y (m +1)y +my +44216x =++=++=. …10分222b ca ab c⎧=⎪⎪=⎨⎪=+⎪⎩2a b c =⎧⎪=⎨⎪=⎩22222121212()(y )(m +1)(y )|AB|444x x y y -+--==22221212012(m +1)[(y )4y ](m +1)(y y )4y y y +-==-,故 ………12分222222012222|AB|52553(m +1)25172|GH|my (m +1)y 042162(m 2)m 21616(m 2)m m y +-=++=-+=>+++ 所以|AB||GH|>2,故点G 9(4-,0)在以AB 为直径的圆外. ………13分方法二:1212121299554444GA GB x x y y my my y y ⎛⎫⎛⎫⎛⎫⎛⎫⋅=+⋅++=+⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭…9分()()()22121222525352251141641622=m m m y y m y y m m m -++++=+⋅+⋅+++ ()()22222248484025501720162162=m m m m m m --++++=>++ ………12分说明AGB ∠为锐角,故点G 9(4-,0)在以AB 为直径的圆外. ………13分20.(Ⅰ),1)('-=xe xf 所以切线的斜率()00k f '==又因为()01f =, ………2分所以切线方程为 错误!未找到引用源。
2017-2018延庆区一模考试数学(理)评分标准一、选择题 DCDB DBDB二、填空题 9. 7 10. 1±,2或3- 11. 50 12. 213. 答案不唯一 14.英, 德(第一空3分第二空2分)13题参考答案:3,;,;,ln ;,lg ;,x x x x xx x x x x e L L三、解答题 15. (Ⅰ)由sin 0得A A +=………2分即()ππ3A k k +=∈Z , ………3分 又()0,πA ∈,∴ππ3A +=,得2π3A =. ………5分 (Ⅱ)由余弦定理2222cos a b c bc A =+-⋅, ………6分又∵12,cos 2a b A ===-………8分 代入并整理得()2125c +=,故4c =; ………11分11sin 2422S bc A ==⨯⨯= ………13分 16.(Ⅰ)事件A 的人数为:400+270=670,该险种有1000人续保,所以P (A )的估计值为:6700.671000= ………3分 (Ⅱ)X 的可能取值为0,1,2,3, ………4分由出险情况的统计表可知:一辆车一年内不出险的概率为400210005=, 出险的概率为23155-=,则 ………5分 328(0)()5125P x ===,1233236(1)()()55125P x C === 2233254(2)()()55125P x C ===,3327(3)()5125P x === ………9分 π2sin 03A ⎛⎫+= ⎪⎝⎭所以的X 分布列为: X0 1 2 3 P 8125 36125 54125 27125 ………10分(Ⅲ)续保人本年度的平均保费估值为:0.85400270 1.25200 1.580 1.7540210 1.071000a a a a a a a ⨯+⨯+⨯+⨯+⨯+⨯= ………13分17(Ⅰ)如图,取AE 的中点H ,连接,HG HD ,又G 是BE 的中点,所以 //GH AB ,且12GH AB = ………1分 又F 是CD 中点,所以12DF CD =, 由四边形ABCD 是矩形得,AB CD =, //AB CD , ………2分所以GH DF =, //GH DF ,从而四边形HGFD 是平行四边形,//GF DH , ………3分又DH ⊂平面ADE ,GF ⊄平面ADE 所以//GF 平面ADE ………4分 法一:(Ⅱ)如图,在平面BEC 内,过点B 作//BQ EC ,因为,BE EC BQ BE ⊥∴⊥又因为AB ⊥平面BEC ,所以AB BE ⊥,AB BQ ⊥ 以B 为原点,分别以,,BE BQ BA u u u r u u u r u u u r 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,…5分则(0,0,2)A (0,0,0)B (2,0,0)E (2,2,1).F ………6分因为AB ⊥平面BEC ,所以A=(B u u u r 0,0,2)为平面BEC 的法向量,………7分设(x,y,z)n =r 为平面AEF 的法向量,又AE (2,0,-2)AF=(2,2,-1)=u u u r u u u r ,由2200220,0,得x z n AE x y z n AF ⎧-=⋅=⎧⎨⎨+-=⋅=⎩⎩v u u u v v u u u v 取2z =得=(2,-1,2)n r . ………9分 从而42cos ,323n BA n BA n BA ⋅===⨯⋅v u u u v v u u u v v u u u v………10分 所以平面AEF 与平面BEC 所成锐二面角的余弦值为23. (Ⅲ)假设在线段CD 存在点M ,设点M 的坐标为(2,2,)a . ………11分 因为(0,0,2)A (2,0,0)E (2,2,2).D所以(0,2,2)DE =--u u u r ,(2,2,2)AM a =-u u u u r ………12分因为DE AM ⊥,0DE AM ⋅=u u u r u u u u r 所以0a = .………13分所以2DM = ………14分 法二:(Ⅱ)以E 点为原点,EC 所在直线为x 轴,EB 所在直线为y 轴,过E 做垂直平面BEC 的直线为z 轴,建立空间直角坐标系,则(0,0,0)E ,(0,2,2)A ,(2,0,1)F(2,0,2)D ,1(0,0,1)n v 为平面BEC 的法向量, ………7分设2(,,)n x y z v 为平面AEF 的法向量,又()()0,2,2,2,0,1EA EF u u u v u u u v由2200n EA n EF ⎧⋅=⎪⎨⋅=⎪⎩u u v u u u v u u v u u u v 得22020y z x z +=⎧⎨+=⎩取2z =得2(-1,-2,2)n v ………9分 从而12121222cos ,133n n n n n n ⋅===⨯⋅u u v u u v u u v u u v u u v u u v ………10分 所以平面AEF 与平面BEC 所成锐二面角的余弦值为23. (Ⅲ)假设在线段CD 存在点M ,设点M 的坐标为(2,0,)a . ………11分因为(0,2,2)A (0,0,0)E (2,0,2)D所以(-2,0,2)DE =-u u u r ,(2,-2,2)AM a =-u u u u r ………12分因为DE AM ⊥,0DE AM ⋅=u u u r u u u u r 所以0a = .………13分所以2DM = ………14分18(Ⅰ),1)('-=xe xf 所以切线的斜率()00k f '== 又因为()01f =, ……2分 所以切线方程为 错误!未找到引用源。
2017-2018延庆区一模考试数学(理)评分标准一、选择题 DCDB DBDB二、填空题 9. 7 10. 1±,2或3- 11. 50 12. 213. 答案不唯一 14.英, 德(第一空3分第二空2分)13题参考答案:3,;,;,ln ;,lg ;,x x x x xx x x x x e L L三、解答题 15. (Ⅰ)由sin 0得A A +=………2分即()ππ3A k k +=∈Z , ………3分 又()0,πA ∈,∴ππ3A +=,得2π3A =. ………5分 (Ⅱ)由余弦定理2222cos a b c bc A =+-⋅, ………6分又∵12,cos 2a b A ===-………8分 代入并整理得()2125c +=,故4c =; ………11分11sin 2422S bc A ==⨯⨯= ………13分 16.(Ⅰ)事件A 的人数为:400+270=670,该险种有1000人续保,所以P (A )的估计值为:6700.671000= ………3分 (Ⅱ)X 的可能取值为0,1,2,3, ………4分由出险情况的统计表可知:一辆车一年内不出险的概率为400210005=, 出险的概率为23155-=,则 ………5分 328(0)()5125P x ===,1233236(1)()()55125P x C === 2233254(2)()()55125P x C ===,3327(3)()5125P x === ………9分 π2sin 03A ⎛⎫+= ⎪⎝⎭所以的X 分布列为: X0 1 2 3 P 8125 36125 54125 27125 ………10分(Ⅲ)续保人本年度的平均保费估值为:0.85400270 1.25200 1.580 1.7540210 1.071000a a a a a a a ⨯+⨯+⨯+⨯+⨯+⨯= ………13分17(Ⅰ)如图,取AE 的中点H ,连接,HG HD ,又G 是BE 的中点,所以 //GH AB ,且12GH AB = ………1分 又F 是CD 中点,所以12DF CD =, 由四边形ABCD 是矩形得,AB CD =, //AB CD , ………2分所以GH DF =, //GH DF ,从而四边形HGFD 是平行四边形,//GF DH , ………3分又DH ⊂平面ADE ,GF ⊄平面ADE 所以//GF 平面ADE ………4分 法一:(Ⅱ)如图,在平面BEC 内,过点B 作//BQ EC ,因为,BE EC BQ BE ⊥∴⊥又因为AB ⊥平面BEC ,所以AB BE ⊥,AB BQ ⊥ 以B 为原点,分别以,,BE BQ BA u u u r u u u r u u u r 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,…5分则(0,0,2)A (0,0,0)B (2,0,0)E (2,2,1).F ………6分因为AB ⊥平面BEC ,所以A=(B u u u r 0,0,2)为平面BEC 的法向量,………7分设(x,y,z)n =r 为平面AEF 的法向量,又AE (2,0,-2)AF=(2,2,-1)=u u u r u u u r ,由2200220,0,得x z n AE x y z n AF ⎧-=⋅=⎧⎨⎨+-=⋅=⎩⎩v u u u v v u u u v 取2z =得=(2,-1,2)n r . ………9分 从而42cos ,323n BA n BA n BA ⋅===⨯⋅v u u u v v u u u v v u u u v………10分 所以平面AEF 与平面BEC 所成锐二面角的余弦值为23. (Ⅲ)假设在线段CD 存在点M ,设点M 的坐标为(2,2,)a . ………11分 因为(0,0,2)A (2,0,0)E (2,2,2).D所以(0,2,2)DE =--u u u r ,(2,2,2)AM a =-u u u u r ………12分因为DE AM ⊥,0DE AM ⋅=u u u r u u u u r 所以0a = .………13分所以2DM = ………14分 法二:(Ⅱ)以E 点为原点,EC 所在直线为x 轴,EB 所在直线为y 轴,过E 做垂直平面BEC 的直线为z 轴,建立空间直角坐标系,则(0,0,0)E ,(0,2,2)A ,(2,0,1)F(2,0,2)D ,1(0,0,1)n v 为平面BEC 的法向量, ………7分设2(,,)n x y z v 为平面AEF 的法向量,又()()0,2,2,2,0,1EA EF u u u v u u u v由2200n EA n EF ⎧⋅=⎪⎨⋅=⎪⎩u u v u u u v u u v u u u v 得22020y z x z +=⎧⎨+=⎩取2z =得2(-1,-2,2)n v ………9分 从而12121222cos ,133n n n n n n ⋅===⨯⋅u u v u u v u u v u u v u u v u u v ………10分 所以平面AEF 与平面BEC 所成锐二面角的余弦值为23. (Ⅲ)假设在线段CD 存在点M ,设点M 的坐标为(2,0,)a . ………11分因为(0,2,2)A (0,0,0)E (2,0,2)D所以(-2,0,2)DE =-u u u r ,(2,-2,2)AM a =-u u u u r ………12分因为DE AM ⊥,0DE AM ⋅=u u u r u u u u r 所以0a = .………13分所以2DM = ………14分18(Ⅰ),1)('-=xe xf 所以切线的斜率()00k f '== 又因为()01f =, ……2分 所以切线方程为 错误!未找到引用源。
延庆区2018年初三统一练习数学考生须知1•本试卷共8页,共三道大题,28道小题,满分100分,考试时间120分钟. 2•在试卷和答题卡上认真填写学校名称、姓名和学号.3•试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4•在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色签字笔作答.F面各题均有四个选项,其中只有一个是符合题意的.1利用尺规作图,作△ ABC边上的高AD,正确的是2.右图是某几何体的三视图,该几何体是A .三棱柱B .三棱锥C .圆柱D .圆锥3•实数a, b在数轴上的对应点的位置如图所示,则正确的结论是A . a a TB . a b > 0C . —b c 0 £—aD . a>|b9个4 .计算a+a +... +a: —b7个9a9 aA .B .7b7b5.关于x的一兀一次方程2mx _(m +1)x +11a1 b 二-2-10 1 2 3 xC .9a9 ab7 D . b7D. -1II平A.D.A. -1B. 1有两个不等的整数根,那么m的值是6.已知正六边形 ABCDEF ,下列图形中不是.轴对称图形的是7.下面的统计图反映了我国 2013年到2017年国内生产总值情况•(以上数据摘自国家统计局《中华人民共和国2017年国民经济和社会发展统计公报》)根据统计图提供的信息,下列推断不合理• •的是 A .与2016年相比,2017年我国国内生产总值有所增长; B . 2013-2016年,我国国内生产总值的增长率逐年降低; C . 2013-2017年,我国国内生产总值的平均增长率约为6.7% ;D . 2016-2017年比2014-2015年我国国内生产总值增长的多.亿元 1000000800000 600000 400000 200000&某游泳池长25米,小林和小明两个人分别在游泳池的 A , B 两边,同时朝着另一边游泳,他们游泳的时间为 t (秒),其中0乞t 乞180,到A 边距离为y (米),图中的实 线和虚线分别表示小林和小明在游泳过程中y 与t 的对应关系.下面有四个推断:① 小明游泳的平均速度小于小林游泳的平均速度;2013-2017年国内生产总值及其增长速度%20 15 10 5 0BDB .C .D82712220162014201520172013一 国内生产总值比上年增长(%)14.如图,AB 是O O 的弦,OC 丄AB ,Z AOC=42 °那么/ CDB 的度数为 _____________.② 小明游泳的距离大于小林游泳的距离; ③ 小明游75米时小林游了 90米游泳; ④ 小明与小林共相遇 5次;13. 2017年延庆区农业用水和居民家庭用水的总和为 8亿立方米,其中居民家庭用水比农业用水的2倍还多0.5亿立方米.设农业用水为x 亿立方米,居民家庭用水为y 亿 立方米.依题意,可列方程组为_______________ A .①② B .①③二、填空题(共8个小题,每小题2分,共16分)x 十29.若分式 ------ 有意义,则实数 X 的取值范围是.x _310 .右图是一个正五边形,则/1的度数是 ______________2a _1a 211.如果a 2-a -^0,那么代数式(a) 的值是a a —112.如图,在△ ABC 中,D , E 分别是若AD = 1,BD = 3,贝U 匹的值为BC其中正确的是315.如图,在平面直角坐标系 xOy 中,△ DEF 可以看作是△ ABC 经过若干次图形的变化(平移、轴对称、 旋转)得到的,写出一种由△ ABC 得到△ DEF 的过 程: .16.某农科所在相同条件下做玉米种子发芽实验,结果如下:某位顾客购进这种玉米种子 10千克,那么大约有 _____ 千克种子能发芽.三、解答题(本题共 68分,第17题-22题,每小题5分;第23-26题,每小题6分;第27题,第28题每小题各7分)解答应写出文字说明、证明过程或演算步骤 .17•计算:3tan30°+1 — V3 +(2 —兀)° —(丄)‘.玉米种子发芽的频率发芽率%4p5x -2 ::: 3(x 2),18 •解不等式组:x 5并写出它的所有整数解.3x..219.如图,在△ ABC中,AD平分/ BAC交BC于点D ,过点D作DE // AB交AC于点E.求证:AE=DE .20 .已知:/ AOB及边OB上一点C .求作:/ OCD,使得/ OCD= / AOB .要求:1.尺规作图,保留作图痕迹,不写做法;(说明:作出一个即可)2 .请你写出作图的依据.21.如图,Rt △ ABC 中,/ ABC=90°,点 D , F 分别是 AC , AB 的中点,CE // DB , BE //DC .(1) 求证:四边形 DBEC 是菱形;(2) 若AD =3, DF=1,求四边形 DBEC 面积.在平面直角坐标系 xOy 中,直y = kx • b(k = 0) 与x 轴交于点A ,与y 轴交于点B ,与反比例函 数y = m (m = 0)的图象在第一象限交于点xP (1, 3),连接 OP .(1)求反比例函数y = m (m = 0)的表达式;x22. -3 一2 -1(2)若厶AOB 的面积是厶POB 的面积的2倍,-1 求直线y =kx • b 的表达式.-2 23. 如图,AB 是O O 的直径,D 是O O 上一点,点 中点,过点A 作O O 的切线交BD 的延长线于点 并延长交BF 于点C . (1)求证:AB =BC ; E 是AD 的F .连接AE(2)如果 AB=5, tan/FAC1,求FC 的长.2从北京市环保局证实,为满足 周边的环境污染进行综合治理, 程中,环保部门随机选取了永宁镇和千家店镇进行空气质量监测. 过程如下,请补充完整• 收集数据:24. 2022年冬奥会对环境质量的要求, 率先在部分村镇进行“煤改电”改造•在治理的过 北京延庆正在对其C-3从2016年12月初开始,连续一年对两镇的空气质量进行监测(将30天的空气污染指数(简称:API )的平均值作为每个月的空气污染指数,12个月的空气污染指数如下:千家店镇:120 115 100 100 95 85 80 70 50 50 50 45永宁镇:110 90 105 80 90 85 90 60 90 45 70 60整理、描述数据:按如下表整理、描述这两镇空气污染指数的数据:(说明:空气污染指数< 50寸,空气质量为优;50V空气污染指数< 100时,空气质量为良;100V空气污染指数<150时,空气质量为轻微污染.)分析数据:两镇的空气污染指数的平均数、中位数、众数如下表所示;请将以上两个表格补充完整;得出结论:可以推断岀镇这一年中环境状况比较好,理由为(至少从两个不同的角度说明推断的合理性)25. 如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=6cm,设弦AP的长为x cm,△ APO的面积为y cm2,(当点P与点A或点B重合时,y的值为0).小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整;(1)通过取点、画图、测量、计算,得到了x与y的几组值,如下表: x/cm0.5123 3.545 5.5 5.8 y/cm20.8 1.5 2.8 3.9 4.2m 4.2 3.3 2.3那么m=8292 (2)建立平面直角坐标系,描出以表中各组对应值为坐标的点, 画出该函数图象.226. 在平面直角坐标系 xOy 中,抛物线 y=ax-4ax+3a(a >0)与x 轴交于 A , B 两点(A 在 B 的左侧).(1) 求抛物线的对称轴及点 A , B 的坐标;(2) 点C (t , 3)是抛物线y =ax 2-4ax ■ 3a(a 0)上一点,(点C 在对称轴的右侧),过点C 作x 轴的垂线,垂足为点 D .① 当CD = AD 时,求此时抛物线的表达式; ② 当CD ■ AD 时,求t 的取值范围.L y6 5 4 3(3)结合函数图象说明,当△(保留一位小数)APO 的面积是4时,贝U AP 的值约为27. 如图1正方形ABCD中,点E是BC延长线上一点,连接DE ,过点B作BF丄DE 于点F,连接FC.(1 )求证:/ FBC = Z CDF .(2)作点C关于直线DE的对称点G,连接CG, FG .①依据题意补全图形;②用等式表示线段DF , BF , CG之间的数量关系并加以证明.图1 备用图28.平面直角坐标系xOy 中,点A(X i , yj 与B(% , y 2),如果满足X i= 0 , % - y ? = 0 ,其中X i =X 2,则称点A 与点B 互为反等点. 已知:点C(3, 4)D(-3, - 4), E (3, 4), F ( -3, 4)已知点G ( -5, 4),连接线段CG ,若在线段CG 上存在两点P , Q 互为反等点,求点P 的横坐标X p 的取值范围;1 2 3 4 5 6 X-1 -2 -3 -4(1) F 列各点中,与点C 互为反等点;(2) (3) 已知O O 的半径为r ,若O O 与(2)中线段CG 的两个交点互为反等点,求r的取值范围.i.y6-6 -5 -4 -3 -2 -1 O延庆区2018年初三统一练习评分标准数学一、选择题:(共8个小题,每小题2分,共16分)BACC ADCD二、填空题(共8个小题,每空2分,共16分)x y =89. X M 3 10. 72 °11. 1 12. 1: 4 13.y = 2x + 0.5 14. 21 °15.A ABC沿y轴翻折后,再向上平移4个单位得到△ DEF16. 8.8三、解答题彳3 ―17. 原式=3 +i3-1+1-3 ……4分3=2、3-3 ……汾18 .解:由①得,x<4 . ....... 1分由②得,x> 1 . ••…3分原不等式组的解集为 1 ^x<4. (4)•••原不等式组的所有整数解为 1 , 2, 3. ••…5分19 .证明:T AD平分/ BAC•••/ BAD = Z DAE,•/ DE// AB•••/ BAD = Z ADE••…3 分•••/ DAE=Z ADE …分• - AE=DE …• 5 分20. (1)作图(略) ••…2分(2)到线段两端点距离相等的点在线段的垂直平分线上;垂直平分线上的点到线段两端点距离相等;等边对等角 • ••…5分 21 . ( 1)在Rt A ABC 中,T CE//DC , BE// DC•••四边形DBEC 是平行四边形 •/ D 是 AC 的中点,/ ABC=90° • BD=DC•四边形DBEC 是菱形(2)T F 是AB 的中点• BC=2DF=2,Z AFD=Z ABC=90 °在Rt A AFD 中,错误!未找到引用源。
延庆区2018年初三统一练习数 学一、选择题:(共8个小题,每小题2分,共16分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1.利用尺规作图,作△ABC 边上的高AD ,正确的是2.右图是某几何体的三视图,该几何体是 A .三棱柱B .三棱锥C .圆柱D .圆锥 3.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是A .1a >-B .0a b ⋅>C .0b a -<<-D .a b >4.计算:97...a a ab b b b+++=⋅⋅⋅⋅⋅个个A .97a bB .97a bC .79abD .97a b5.关于x 的一元二次方程2(1)10mx m x -++=有两个不等的整数根,那么m 的值是A .1-B .1C .0D .1± 6.已知正六边形ABCDEF ,下列图形中不是..轴对称图形的是7.下面的统计图反映了我国2013年到2017年国内生产总值情况.(以上数据摘自国家统计局《中华人民共和国2017年国民经济和社会发展统计公报》) 根据统计图提供的信息,下列推断不合理...的是 A .与2016年相比,2017年我国国内生产总值有所增长; B .2013-2016年,我国国内生产总值的增长率逐年降低; C .2013-2017年,我国国内生产总值的平均增长率约为6.7% ;F A B C E F E D C A F A C D E F AB CDE AB C D AB C DABC DABCDA B . C . D . A . B . C . D .D .2016-2017年比2014-2015年我国国内生产总值增长的多.8.某游泳池长25米,小林和小明两个人分别在游泳池的A ,B 两边,同时朝着另一边游泳,他们游泳的时间为t (秒),其中0180t ≤≤,到A 边距离为y (米),图中的实 线和虚线分别表示小林和小明在游泳过程中y 与t 的对应关系.下面有四个推断: ①小明游泳的平均速度小于小林游泳的平均速度; ②小明游泳的距离大于小林游泳的距离; ③小明游75米时小林游了90米游泳; ④小明与小林共相遇5次; 其中正确的是A .①②B .①③二、填空题(共8个小题,每小题29.若分式23x x +-有意义,则实数x 10.右图是一个正五边形,则∠111.如果210a a --=,那么代数式()1a a a -⋅-的值是 . 12.如图,在△ABC 中,D ,E 分别是AB ,AC 上的点,DE ∥BC ,若AD =1,BD =3,则DEBC的值为 . 13.2017年延庆区农业用水和居民家庭用水的总和为8亿立方米,其中居民家庭用水比农业用水的2倍还多0.5亿立方米.设农业用水为x 亿立方米,居民家庭用水为y 亿 立方米.依题意,可列方程组为____________. 14.如图,AB 是⊙O 的弦,OC ⊥AB ,∠AOC =42°,那么∠CDB 的度数为____________.15.如图,在平面直角坐标系xOy 中,△DEF 可以看作是△ABC 经过若干次图形的变化(平移、轴对称、 旋转)得到的,写出一种由△ABC 得到△DEF 的过 程: . 16.某农科所在相同条件下做玉米种子发芽实验,结果如下:某位顾客购进这种玉米种子10千克,那么大约有____千克种子能发芽.三、解答题(本题共68分,第17题-22题,每小题5分;第23-26题,每小题6分;第27题,第28题每小题各7分)解答应写出文字说明、证明过程或演算步骤.17.计算:0113tan 301(2)()3π-︒++--.BCDE18.解不等式组:523(2)53.2x x x x -<+⎧⎪⎨+≤⎪⎩, 并写出它的所有整数解.19.如图,在△ABC 中,AD 平分∠BAC 交BC 于点D ,过点D 作DE ∥AB 交AC 于点E . 求证:AE=DE .20.已知:∠AOB 及边OB 上一点C .求作:∠OCD ,使得∠OCD=∠AOB .要求:1.尺规作图,保留作图痕迹,不写做法;(说明:作出一个..即可) 2.请你写出作图的依据.21.如图,Rt △ABC 中,∠ABC =90°,点D ,F分别是AC ,AB 的中点,CE ∥DB ,BE ∥DC . (1)求证:四边形DBEC 是菱形;(2)若AD =3, DF =1,求四边形DBEC 面积. 22.在平面直角坐标系xOy 中,直(0)y kx b k =+≠与x 轴交于点A ,与y 轴交于点B ,与反比例函 数(0)my m x=≠的图象在第一象限交于点 P (1,3),连接OP . (1)求反比例函数(0)my m x=≠的表达式; (2)若△AOB 的面积是△POB 的面积的2倍,求直线y kx b =+的表达式.23.如图,AB 是⊙O 的直径,D 是⊙O 上一点,点E 是AD 的中点,过点A 作⊙O 的切线交BD 的延长线于点F .连接AE 并延长交BF 于点C . (1)求证:AB BC =;(2)如果AB =5,1tan 2FAC ∠=,求FC 的长. 24.从北京市环保局证实,为满足2022年冬奥会对环境质量的要求,北京延庆正在对其周边的环境污染进行综合治理,率先在部分村镇进行“煤改电”改造.在治理的过 程中,环保部门随机选取了永宁镇和千家店镇进行空气质量监测.过程如下,请补充完整. 收集数据:从2016年12月初开始,连续一年对两镇的空气质量进行监测(将30天的空气污染 指数(简称:API )的平均值作为每个月的空气污染指数,12个月的空气污染指数FED CB A如下:千家店镇:120 115 100 100 95 85 80 70 50 50 50 45 永宁 镇:110 90 105 80 90 85 90 60 90 45 70 60 整理、描述数据:按如下表整理、描述这两镇空气污染指数的数据:质量为良;100<空气污染指数≤150时,空气质量为轻微污染.) 分析数据:两镇的空气污染指数的平均数、中位数、众数如下表所示; 请将以上两个表格补充完整;得出结论:可以推断出______镇这一年中环境状况比较好,理由为_____________.(至少从两个不同的角度说明推断的合理性)25.如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB =6cm ,设弦AP 的长为x cm , △APO 的面积为y cm 2,(当点P 与点A 或 点B 重合时,y 的值为0).小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整;(1)通过取点、画图、测量、计算,得到了x 与y 的几组值,如下表:那么m = ;(保留一位小数) (2)建立平面直角坐标系,描出以表中各组对应值为坐标的点, 画出该函数图象.(3)结合函数图象说明,当△APO(保留一位小数)26.在平面直角坐标系xOy 中,抛物线y 与x 轴交于A ,B 两点(A 在B (1)求抛物线的对称轴及点A ,B (2)点C (t ,3)是抛物线243(0)y ax ax a a =-+>上一点,(点C 在对称轴的右侧),过点C作x轴的垂线,垂足为点D.①当CD AD=时,求此时抛物线的表达式;②当CD AD>时,求t的取值范围.27.如图1,正方形ABCD 中,点E 是BC 延长线上一点,连接DE ,过点B 作BF ⊥DE于点F ,连接FC .(1)求证:∠FBC =∠CDF .(2)作点C 关于直线DE 的对称点G ,连接CG ,FG .①依据题意补全图形;②用等式表示线段DF ,BF ,CG 之间的数量关系并加以证明.图1备用图FDEC BAFDEC BA28.平面直角坐标系xOy 中,点1(A x ,1)y 与2(B x ,2)y ,如果满足120x x +=,120y y -=,其中12x x ≠,则称点A 与点B 互为反等点. 已知:点C (3,4)(1)下列各点中, 与点C 互为反等点;D (-3,-4),E (3,4),F (-3,4)(2)已知点G (-5,4),连接线段CG ,若在线段CG 上存在两点P ,Q 互为反等点,求点P 的横坐标p x 的取值范围;(3)已知⊙O 的半径为r ,若⊙O 与(2)中线段CG 的两个交点互为反等点, 求r 的取值范围.延庆区2018年初三统一练习评分标准数 学一、选择题:(共8个小题,每小题2分,共16分)BACC ADCD二、填空题 (共8个小题,每空2分,共16分)9.x ≠3 10.72° 11.1 12.1:4 13.820.5x y y x +=⎧⎨=+⎩14.21° 15.△ABC 沿y 轴翻折后,再向上平移4个单位得到△DEF 16.8.8三、解答题 17.原式=3⨯33+3-1+1-3 ……4分 =23-3 ……5分18.解:由①得,x <4. ……1分由②得,x ≥1 . ……3分∴ 原不等式组的解集为1≤x <4. ……4分 ∴ 原不等式组的所有整数解为1,2,3. ……5分19.证明:∵AD 平分∠BAC∴∠BAD =∠DAE , ∵DE ∥AB∴∠BAD =∠ADE ……3分 ∴∠DAE =∠ADE ……4分 ∴AE =DE ……5分20. (1)作图(略) ……2分(2)到线段两端点距离相等的点在线段的垂直平分线上;垂直平分线上的点到线段两端点距离相等;等边对等角. ……5分 21.(1)在Rt △ABC 中,∵CE //DC ,BE //DC∴四边形DBEC 是平行四边形∵D 是AC 的中点,∠ABC =90°∴BD =DC ……1分 ∴四边形DBEC 是菱形 ……2分 (2)∵F 是AB 的中点∴BC =2DF =2,∠AFD =∠ABC =90°在Rt △AFD中,……3分∴……4分……5分22.(1)3yx=……1分(2)如图22(1):∵∴OA=2PE=2∴A(2,0)……2分将A(2,0),P(1,3)代入y=kx+b可得∴……3分图22(1)∴直线AB的表达式为:y=-3x+6同理:如图22(2)直线AB的表达式为:y=x+2 ……4分综上:直线AB的表达式为y=-3x+6或y=x+2 ……5分图22(2)23.证明:(1)连接BE.∵AB是直径,∴∠AEB=90°.∴∠CBE+∠ECB=90°∠EBA+∠EAB=90°.∵点E是AD的中点,∴∠CBE =∠EBA.∴∠ECB =∠EAB.……1分∴AB=BC.……2分(2)∵FA作⊙O的切线,∴FA⊥AB.∴∠FAC+∠EAB=90°.∵∠EBA+∠EAB=90°,∴∠FAC=∠EBA.∵1tan2FAC∠=AB=5,∴AEBE=.……4分过C点作CH⊥AF于点H,∵AB=BC∠AEB=90°,∴AC=2AE=25.∵1 tan2FAC∠=,∴CH=2.……5分AH-16123454321O∵CH ∥AB AB =BC=5, ∴255FCFC =+. ∴FC=310.…6分 24.(1)1,9,2. ……1分 (2) 82.5,90. ……3分 (3)千家店镇 ……4分理由:千家店镇污染指数平均数为80,永宁镇污染指数平均数为81.3,所以千家店镇污染指数平均数较低,空气质量较好;千家店镇空气质量为优的天数是4天,永宁镇空气质量为优的天数是1天,所以千家店镇空气质量为优的天数多,空气质量较好.…6分 25.(1)m = 约4.3 ; ……1分 (2)4.5) (3) 3.15.1 ……6分 26.(1)对称轴:x =2 ……1分 A )或B (3,0) ……1分(2),∵AD =CD∴AD =3……3分将C (4,3)代入243y ax ax a =-+∴316163a a a =-+∴a =1∴抛物线的表达式为:243y x x =-+ ……4分②34t << ……6分 过程略27.(1)证明:∵四边形ABCD 是正方形,∴∠DCB =90°. ∴∠CDF +∠E =90°. ∵BF ⊥DE , ∴∠FBC +∠E =90°. ∴∠FBC =∠CDF .……2分(2)①……3分②猜想:数量关系为:BF =DF +CG . 证明:在BF 上取点M 使得BM =DF 连接CM . ∵四边形ABCD 是正方形, ∴BC =DC .∵∠FBC =∠CDF ,BM =DF ,图1FDEC BA GF DEC BA∴△BMC ≌△DFC .∴CM =CF ,∠1=∠2.∴△MCF 是等腰直角三角形.∴∠MCF =90°,∠4=45°. ……5分 ∵点C 与点G 关于直线DE 对称,∴CF =GF ,∠5=∠6.∵BF ⊥DE ,∠4=45°,∴∠5=45°,∴∠CFG =90°,∴∠CFG =∠MCF ,∴CM ∥GF .∵CM =CF ,CF =GF ,∴CM =GF ,∴四边形CGFM 是平行四边形,∴CG =MF .∴BF =DF +CG .……7分 28.(1)F……1分 (2) -3≤p x ≤3 且p x ≠0……4分 (3)4 < r≤5 ……7分。
2018年北京市延庆区初三数学一模试卷(含答案)延庆区2018年初三统一练习数学考生须知 1.本试卷共8页,共三道大题,28道小题,满分100分,考试时间120分钟. 2.在试卷和答题卡上认真填写学校名称、姓名和学号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效. 4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色签字笔作答.一、选择题:(共8个小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个是符合题意的. 1.利用尺规作图,作△ABC边上的高AD,正确的是2.右图是某几何体的三视图,该几何体是 A.三棱柱 B.三棱锥 C.圆柱 D.圆锥3.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是A. B. C. D. 4.计算: A. B. C. D.5.关于的一元二次方程有两个不等的整数根,那么的值是 A. B.1 C.0 D. 6.已知正六边形ABCDEF,下列图形中不是轴对称图形的是7.下面的统计图反映了我国2013年到2017年国内生产总值情况.(以上数据摘自国家统计局《中华人民共和国2017年国民经济和社会发展统计公报》)根据统计图提供的信息,下列推断不合理的是A.与2016年相比,2017年我国国内生产总值有所增长; B.2013-2016年,我国国内生产总值的增长率逐年降低; C.2013-2017年,我国国内生产总值的平均增长率约为6.7% ; D.2016-2017年比2014-2015年我国国内生产总值增长的多.8.某游泳池长25米,小林和小明两个人分别在游泳池的A,B两边,同时朝着另一边游泳,他们游泳的时间为(秒),其中,到A边距离为y(米),图中的实线和虚线分别表示小林和小明在游泳过程中y与t的对应关系.下面有四个推断:①小明游泳的平均速度小于小林游泳的平均速度;②小明游泳的距离大于小林游泳的距离;③小明游75米时小林游了90米游泳;④小明与小林共相遇5次;其中正确的是 A.①② B.①③ C.③④ D.②④二、填空题(共8个小题,每小题2分,共16分) 9.若分式有意义,则实数的取值范围是. 10.右图是一个正五边形,则∠1的度数是. 11.如果,那么代数式的值是. 12.如图,在△ABC 中,D,E分别是AB,AC上的点,DE∥BC,若AD=1,BD=3,则的值为.13.2017年延庆区农业用水和居民家庭用水的总和为8亿立方米,其中居民家庭用水比农业用水的2倍还多0.5亿立方米.设农业用水为x亿立方米,居民家庭用水为y亿立方米.依题意,可列方程组为____________. 14.如图,AB是⊙O的弦,OC⊥AB,∠AOC=42°,那么∠CDB的度数为____________.15.如图,在平面直角坐标系中,△DEF可以看作是△ABC经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABC 得到△DEF的过程:.16.某农科所在相同条件下做玉米种子发芽实验,结果如下:某位顾客购进这种玉米种子10千克,那么大约有____千克种子能发芽.三、解答题(本题共68分,第17题-22题,每小题5分;第23-26题,每小题6分;第27题,第28题每小题各7分)解答应写出文字说明、证明过程或演算步骤. 17.计算:. 18.解不等式组:并写出它的所有整数解.19.如图,在△ABC中,AD平分∠BAC交BC于点D,过点D 作DE∥AB 交AC于点E.求证:AE=DE.20.已知:∠AOB及边OB上一点C.求作:∠OCD,使得∠OCD=∠AOB.要求:1.尺规作图,保留作图痕迹,不写做法;(说明:作出一个即可) 2.请你写出作图的依据.21.如图,Rt△ABC中,∠ABC=90°,点D,F 分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.22.在平面直角坐标系xOy中,直与x轴交于点A,与y轴交于点B,与反比例函数的图象在第一象限交于点 P(1,3),连接OP.(1)求反比例函数的表达式;(2)若△AOB的面积是△POB的面积的2倍,求直线的表达式. 23.如图,是⊙O的直径,D是⊙O上一点,点是的中点,过点作⊙O的切线交的延长线于点F.连接并延长交于点.(1)求证:;(2)如果AB=5,,求的长.24.从北京市环保局证实,为满足2022年冬奥会对环境质量的要求,北京延庆正在对其周边的环境污染进行综合治理,率先在部分村镇进行“煤改电”改造.在治理的过程中,环保部门随机选取了永宁镇和千家店镇进行空气质量监测.过程如下,请补充完整. 收集数据: 从2016年12月初开始,连续一年对两镇的空气质量进行监测(将30天的空气污染指数(简称:API)的平均值作为每个月的空气污染指数,12个月的空气污染指数如下:千家店镇:120 115 100 100 95 85 80 70 50 50 50 45 永宁镇:110 90 105 80 90 85 90 60 90 45 70 60 整理、描述数据:按如下表整理、描述这两镇空气污染指数的数据:空气质量为优空气质量为良空气质量为轻微污染千家店镇 4 6 2 永宁镇(说明:空气污染指数≤50时,空气质量为优;50<空气污染指数≤100时,空气质量为良;100<空气污染指数≤150时,空气质量为轻微污染.)分析数据:两镇的空气污染指数的平均数、中位数、众数如下表所示;城镇平均数中位数众数千家店 80 50 永宁 81.3 87.5请将以上两个表格补充完整;得出结论:可以推断出______镇这一年中环境状况比较好,理由为_____________. (至少从两个不同的角度说明推断的合理性) 25.如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=6cm,设弦AP的长为 cm,△APO的面积为 cm2,(当点P与点A或点B重合时,y的值为0).小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整;(1)通过取点、画图、测量、计算,得到了x与y的几组值,如下表: x/cm 0.5 1 2 3 3.5 4 5 5.5 5.8 y/cm2 0.8 1.5 2.8 3.9 4.2 m 4.2 3.3 2.3 那么m= ;(保留一位小数)(2)建立平面直角坐标系,描出以表中各组对应值为坐标的点,画出该函数图象.(3)结合函数图象说明,当△APO的面积是4时,则AP的值约为.(保留一位小数)26.在平面直角坐标系xOy中,抛物线y=ax2-4ax+3a(a>0) 与x轴交于A,B两点(A在B的左侧).(1)求抛物线的对称轴及点A,B 的坐标;(2)点C(t,3)是抛物线上一点,(点C在对称轴的右侧),过点C 作x轴的垂线,垂足为点D.①当时,求此时抛物线的表达式;②当时,求t的取值范围.27.如图1,正方形ABCD中,点E是BC延长线上一点,连接DE,过点B作BF⊥DE 于点F,连接FC.(1)求证:∠FBC=∠CDF.(2)作点C关于直线DE的对称点G,连接CG,FG.①依据题意补全图形;②用等式表示线段DF,BF,CG之间的数量关系并加以证明.28.平面直角坐标系xOy中,点,与,,如果满足,,其中,则称点A与点B互为反等点.已知:点C(3,4) (1)下列各点中,与点C互为反等点; D( 3, 4),E(3,4),F( 3,4)(2)已知点G( 5,4),连接线段CG,若在线段CG上存在两点P,Q互为反等点,求点P的横坐标的取值范围;(3)已知⊙O的半径为r,若⊙O与(2)中线段CG的两个交点互为反等点,求r的取值范围.延庆区2018年初三统一练习评分标准数学一、选择题:(共8个小题,每小题2分,共16分) BACC ADCD 二、填空题(共8个小题,每空2分,共16分) 9.x≠3 10.72° 11.1 12.1:4 13. 14.21° 15.△ABC沿y轴翻折后,再向上平移4个单位得到△DEF 16.8.8 三、解答题 17.原式=3 + -1+1-3 ……4分 =2 -3 ……5分18.解:由①得,x<4.……1分由②得,x≥1 .……3分∴ 原不等式组的解集为1≤x<4.……4分∴ 原不等式组的所有整数解为1,2,3.……5分19.证明:∵AD平分∠BAC ∴∠BAD =∠DAE,∵DE∥AB ∴∠BAD=∠ADE ……3分∴∠DAE =∠ADE ……4分∴AE=DE ……5分 20.(1)作图(略)……2分(2)到线段两端点距离相等的点在线段的垂直平分线上;垂直平分线上的点到线段两端点距离相等;等边对等角. ......5分 21.(1)在Rt△ABC中,∵CE//DC,BE//DC ∴四边形DBEC是平行四边形∵D是AC的中点,∠ABC=90° ∴BD=DC (1)分∴四边形DBEC是菱形……2分(2)∵F是AB的中点∴BC=2DF=2,∠AFD=∠ABC=90° 在Rt△AFD中, ......3分∴ (4)分......5分 22.(1)......1分(2)如图22(1):∵ ∴OA=2PE=2 ∴A(2,0)......2分将A(2,0),P(1,3)代入y=kx+b 可得∴ (3)分图22(1)∴直线AB的表达式为:y=-3x+6 同理:如图22(2)直线AB的表达式为:y=x+2 ……4分综上:直线AB的表达式为y=-3x+6或y=x+2 ……5分 23.证明:(1)连接BE.∵AB是直径,∴∠AEB=90°.∴∠CBE+∠ECB=90°∠EBA+∠EAB=90°.∵点是的中点,∴∠CBE =∠EBA.∴∠ECB =∠EAB.……1分∴AB=BC.……2分(2)∵FA作⊙O的切线,∴FA⊥AB.∴∠FAC+∠EAB=90°.∵∠EBA+∠EAB=90°,∴∠FAC=∠EBA.∵ AB=5,∴ .......4分过C点作CH⊥AF于点H,∵AB=BC ∠AEB=90°,∴AC=2AE=2 .∵ ,∴CH=2. (5)分∵CH∥AB AB=BC=5,∴ .∴FC= .…6分24.(1)1,9,2.……1分(2) 82.5,90.……3分(3)千家店镇……4分理由:千家店镇污染指数平均数为80,永宁镇污染指数平均数为81.3,所以千家店镇污染指数平均数较低,空气质量较好;千家店镇空气质量为优的天数是4天,永宁镇空气质量为优的天数是1天,所以千家店镇空气质量为优的天数多,空气质量较好.…6分 25.(1)m= 约4.3 ;……1分(画此函数图象时要体现出x约为4.2时,y有最大值,为4.5) (4)分 (3) 3.1或是5.1 ……6分26.(1)对称轴:x=2 ……1分 A(1,0)或B(3,0)……1分(2)①如图1,∵AD=CD ∴AD=3 ∴C点坐标为(4,3)……3分将C(4,3)代入∴ ∴a=1 ∴抛物线的表达式为:……4分② ……6分过程略27.(1)证明:∵四边形ABCD是正方形,∴∠DCB =90°.∴∠CDF+∠E =90°.∵BF⊥DE,∴∠FBC+∠E =90°.∴∠FBC =∠CDF . (2)分……3分②猜想:数量关系为:BF=DF+CG.证明:在BF上取点M使得BM=DF连接CM.∵四边形ABCD是正方形,∴BC=DC.∵∠FBC =∠CDF,BM=DF,∴△BMC≌△DFC.∴CM=CF,∠1=∠2.∴△MCF 是等腰直角三角形.∴∠MCF =90°,∠4=45°.……5分∵点C 与点G关于直线DE对称,∴CF=GF,∠5=∠6.∵BF⊥DE,∠4=45°,∴∠5=45°,∴∠CFG =90°,∴∠CFG=∠MCF,∴CM∥GF.∵CM=CF,CF=GF,∴CM=GF,∴四边形CGFM是平行四边形,∴CG=MF.∴BF=DF+CG.……7分 28.(1)F ……1分 (2) -3≤ ≤3 且≠0 ……4分(3)4 < r≤5 ……7分。
2018北京中考数学——延庆一模一、选择题:(共8个小题,每小题2分,共16分)BACC ADCD二、填空题 (共8个小题,每空2分,共16分)9.x ≠3 10.72° 11.1 12.1:4 13.820.5x y y x +=⎧⎨=+⎩14.21° 15.△ABC 沿y 轴翻折后,再向上平移4个单位得到△DEF 16.8.8 三、解答题17.原式=3⨯33+3-1+1-3 ……4分 =23-3 ……5分18.解:由①得,x <4. ……1分 由②得,x ≥1 . ……3分∴ 原不等式组的解集为1≤x <4. ……4分 ∴ 原不等式组的所有整数解为1,2,3. ……5分19.证明:∵AD 平分∠BAC∴∠BAD =∠DAE , ∵DE ∥AB∴∠BAD =∠ADE ……3分 ∴∠DAE =∠ADE ……4分 ∴AE =DE ……5分20. (1)作图(略) ……2分(2)到线段两端点距离相等的点在线段的垂直平分线上;垂直平分线上的点到线段两端点距离相等;等边对等角. ……5分21.(1)在Rt△ABC 中,∵CE //DC ,BE //DC∴四边形DBEC 是平行四边形∵D 是AC 的中点,∠ABC =90°∴BD =DC ……1分 ∴四边形DBEC 是菱形 ……2分 (2)∵F 是AB 的中点∴BC =2DF =2,∠AFD =∠ABC =90° 在Rt△AFD 中,……3分 ∴……4分……5分22.(1)3yx=……1分(2)如图22(1):∵∴OA=2PE=2∴A(2,0)……2分将A(2,0),P(1,3)代入y=kx+b可得∴……3分图22(1)∴直线AB的表达式为:y=-3x+6同理:如图22(2)直线AB的表达式为:y=x+2 ……4分综上:直线AB的表达式为y=-3x+6或y=x+2 ……5分图22(2 23.证明:(1)连接BE.∵AB是直径,∴∠AEB=90°.∴∠CBE+∠ECB=90°∠EBA+∠EAB=90°.∵点E是AD的中点,∴∠CBE=∠EBA.∴∠ECB=∠EAB.……1分∴AB=BC.……2分(2)∵FA作⊙O的切线,∴FA⊥AB.∴∠FAC+∠EAB=90°.∵∠EBA+∠EAB=90°,∴∠FAC=∠EBA.∵1tan2FAC∠=AB=5,∴AE=BE=.……4分过C点作CH⊥AF于点H,∵AB=BC∠AEB=90°,∴AC=2AE=25.∵1 tan2FAC∠=,∴CH=2.……5分∵CH∥AB AB=BC=5,∴255FCFC=+.∴FC=310.…6分AH2018北京中考数学——延庆一模-16123454321O 24.(1)1,9,2. ……1分 (2) 82.5,90. ……3分 (3)千家店镇 ……4分理由:千家店镇污染指数平均数为80,永宁镇污染指数平均数为81.3,所以千家店镇污染指数平均数较低,空气质量较好;千家店镇空气质量为优的天数是4天,永宁镇空气质量为优的天数是1天,所以千家店镇空气质量为优的天数多,空气质量较好.…6分25.(1)m = 约4.3 ; ……1分 (2)(画此函数图象时要体现出x 约为4.2时,有最大值,为4.5) (3) 3.1或是5.1 ……6分 26.(1)对称轴:x =2 ……1分 A (1,0)或B (3,0) ……1分 (2)①如图1,∵AD =CD ∴AD =3∴C 点坐标为(4,3) ……3分 将C (4,3)代入243y ax ax a =-+ ∴316163a a a =-+∴a =1∴抛物线的表达式为:243y x x =-+ ……4分 ②34t << ……6分 过程略27.(1)证明:∵四边形ABCD 是正方形,∴∠DCB=90°. ∴∠CDF +∠E =90°. ∵BF ⊥DE ,∴∠FBC +∠E =90°.∴∠FBC =∠CDF .……2分图1 FDEBA(2)①……3分②猜想:数量关系为:BF =DF +CG . 证明:在BF 上取点M 使得BM =DF 连接CM .∵四边形ABCD 是正方形, ∴BC =DC .∵∠FBC =∠CDF ,BM =DF , ∴△BMC ≌△DFC . ∴CM =CF ,∠1=∠2.∴△MCF 是等腰直角三角形.∴∠MCF =90°,∠4=45°. ……5分 ∵点C 与点G 关于直线DE 对称, ∴CF =GF ,∠5=∠6.∵BF ⊥DE ,∠4=45°, ∴∠5=45°, ∴∠CFG =90°, ∴∠CFG =∠MCF , ∴CM ∥GF .∵CM =CF ,CF =GF , ∴CM =GF ,∴四边形CGFM 是平行四边形, ∴CG =MF .∴BF =DF +CG . ……7分 28.(1)F ……1分(2) -3≤p x ≤3 且p x ≠0 ……4分(3)4 < r≤5 ……7分GF DE C BA。
2018北京市延庆区初三(一模)数学考生须知1.本试卷共8页,共三道大题,28道小题,满分100分,考试时间120分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和学号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、做图题用2B铅笔作答,其他试题用黑色签字笔作答。
一、选择题(共8个小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个是符合题意的.1.利用尺规做图,作△ABC边上的高AD,正确的是2.右图是某几何体的三视图,该几何体是A.三棱柱B.三棱锥C.圆柱D.圆锥3.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是A.a>-1B.a.b>0C.-b<0<-aD.∣a∣>∣b∣4.计算:5.关于x的一元二次方程mx2-(m+1)x+1=0有两个不等的整数根,那么m的值是A.-1B.1C.0D.±16.已知正六边形ABCDEF,下列图形中不是轴对称图形的是7.下面的统计图反应了我国2013年到2017年国内生产总值情况(以上数据摘自国家统计局《中华人民共和国2017年国民经济和社会发展统计公报》)根据统计图提供的信息,下列推断不合理的是A.与2016年相比,2017你那我国国内生产总值有所增长;B.2013-2016年,我国国内生产总值的增长率逐年降低;C.2013-2017年,我国国内生产总值的平均增长率约为6.7%;D.2016-2017年比2014-2015年我国国内生产总值增长的多。
8.某游泳池长25米,小林和小明两个人分别在游泳池的A,B两边,同时朝着另一边游泳,他们游泳的时间为t(秒),其中0≤t≤180,到A边距离为y(米),图中的实线和虚线分别表示小林和小明在游泳过程中y与t的对应关系,下面有四个推断;①小明游泳的平均速度小于小林游泳的平均速度②小明游泳的距离大于小林游泳的距离③小明游75米时小林游了90米④小明与小林共相遇5次其中正确的是A. ①②B. ①③C. ③④D. ②④二、填空题(共8个小题,每小题2分,共16分)9.若分式有意义,则实数x的取值范围是 .10.右图是一个正五边形,则∠1的度数是 .11.如果a2-a-1=0,那么代数式(a-)·的值是 .12.如图,在△ABC中,D,E分别是AB,AC上的点,DE∥BC,若AD=1,BD=3,则的值为 .13.2017年延庆区农业用水和居民家庭用水的总和为8亿立方米,期中居民家庭用水比农业用水的2倍还多0.5亿立方米。
延庆区XXXX一模考试答案(数学文)?2q?0(?1?2d)?问?5???那么bn?2n?11岁?2n?2n?1.................7分。
sn?1?2(ⅱ)an??1?(n?1)?n?2,......8分cn?安?log2bn?n?2?log22n?1?2n?3.................10分明显,顺序?cn?第一项是-1,2算术级数的容差.................11分怎么样,Tn?16。
(一)由司南?3科萨?0的2英寸?a。
(?1?2n?3)n?n2?2n。
… … 13点2??π???0,......2分3秒。
a。
π?kπ?k?z?三点,32π?π,得到一个?5分33和a??0,π?,∴A?(二)通过余弦定理a2?b2?c2?公元前2bc?CosA,......6分高三数学(文科)第1页(共6页)1和÷a?27,b?2、cosA??… 8分2被替换并整理出来?c?1??25,那么c?4;… 11分2113秒?新浪??2?4??23 .................13分22217。
(一)(0.001?a。
0.003?0.004)?100?A = 0.002 .................3分(ii)当用电量为400度时,用电成本为200?0.5+200?0.8?100?160?那么用电成本超过260元的260元家庭的数量是0.0001?100?100=10户,用电成本不超过260元的户数为90户.......7分,因此用电成本不超过260元的户数为900户.......8分(三)本市居民平均用电成本为(150?0.3?200?0.7)?0.5?(50?0.4?150?0.2?250?0.1)?0.8?152.5元.................13分18。
如图所示,点g和h分别是线段be和EC的中点,那么点GH是什么?BEC的中线,所以GH//公元前,......1点是通过ABCD是正方形得到的。
延庆区2017—2018学年度高三模拟试卷数学(理科) 2018.3本试卷共6页,满分150分,考试时间120分钟第Ⅰ卷(选择题)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合2{|02},{|1}A x x B x x =≤≤=>,则AB =(A ){|01}x x ≤≤ (B ){|0x x >或1}x <- (C ){|12}x x <≤ (D ){|0x x ≥或1}x <-2. 在复平面内,复数-2i1i +的对应点位于的象限是(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3. 已知函数()f x 是定义域为R 的奇函数,且(1)2f =-,那么(1)(0)f f -+= (A )-2 (B )0 (C )1 (D )24. 已知非零向量c b a,,则“()0a b c ⋅=-”是“c b =”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件5. 若x ,y 满足2030x y x y x ≤≥≥-⎧⎪+⎨⎪⎩则22x y +的最小值为(A )0 (B )3 (C )4.5 (D )56. 该程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b 分别为14,4,则输出的a 为(A )0 (B )2 (C )4 (D )147. 某三棱锥的三视图如图所示,则该三棱锥的最长棱的长为(A(B(C ) 2 (D8. 若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数适当排序后可成等差数列,且适当排序后也可成等比数列,则a b +的值等于 (A )4 (B )5 (C )6 (D )7正(主)视图侧(左)视图俯 视 图(7题图)第Ⅱ卷(非选择题)二、填空题:本大题共6小题,每小题5分,共30分.9. 设双曲线2214x y -=的焦点为12,,F F P 为该双曲线上的一点,若13PF =,则2PF = .10. 已知()2sin 2f x x =ω,其周期为π,则ω= ,当,63x ππ⎡⎤∈⎢⎥⎣⎦时,函数()f x 的最大值为 .11. 无偿献血是践行社会主义核心价值观的具体行动,需要在报名的2名男教师和6名女教师中,选取5人参加无偿献血,要求男、女教师都有,则不同的选取方法的种数为 .(结果用数值表示)12. 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设():cos sin 2l +=ρθθ,M 为l 与224x y +=的交点,则M 的极径为 .13. 已知()()和f x g x 在定义域内均为增函数,但()()f x g x ⋅不一定是增函数,例如当()f x = 且()g x = 时,()()f x g x ⋅不是增函数.14. 有4个不同国籍的人,他们的名字分别是A 、B 、C 、D ,他们分别来自英国、美国、德国、法国(名字顺序与国籍顺序不一定一致). 现已知每人只从事一个职业,且:(1)A 和来自美国的人他们俩是医生; (2)B 和来自德国的人他们俩是教师; (3)C 会游泳而来自德国的人不会游泳; (4)A 和来自法国的人他们俩一起去打球.根据以上条件可推测出A 是来自 国的人,D 是来自 国的人.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)△ABC的内角A,B,C的对边分别为a,b,c,已知sin AA=0,a,b=2.(Ⅰ)求角A;(Ⅱ)求边c及△ABC的面积.16.(本小题满分13分)某车险的基本保费为a(单位:元),继续购买车险的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的1000名续保人在一年内的出险情况,得到如下统计表:(Ⅰ)记A为事件:“一续保人本年度的保费不高于基本保费”,求()P A的估计值;(Ⅱ)某公司有三辆汽车,基本保费均为a,根据随机调查表的出险情况,记X为三辆车中一年内出险的车辆个数,写出X的分布列;(Ⅲ)求续保人本年度的平均保费估计值.如图,在几何体ABCDE 中,四边形ABCD 是矩形,AB ⊥平面BEC ,BE EC ⊥,2AB BE EC ===,点,G F 分别是线段,BE DC 的中点.(Ⅰ)求证://GF 平面ADE ;(Ⅱ)求平面AEF 与平面BEC 所成锐二面角的余弦值;(Ⅲ)在线段CD 上是否存在一点M ,使得DE AM ⊥,若存在,求DM 的长,若不存在,请说明理由.18.(本小题满分13分)已知函数x e x f x-=)((e 为自然对数的底数).(Ⅰ)求曲线()=y f x 在点(0,(0))f 处的切线方程;(Ⅱ)设不等式ax x f >)(的解集为P ,且P x x ⊆≤≤}20|{,求实数a 的取值范围; (Ⅲ)设()()g x f x ax =-,写出函数()g x 的零点的个数.(只需写出结论)已知椭圆E :()222210x y a b a b+=>>过点01(),且离心率e =.(Ⅰ)求椭圆E 的方程; (Ⅱ)设动直线l 与两定直线1:0l x y -=和2:0l x y +=分别交于,P Q 两点.若直线l 总与椭圆E 有且只有一个公共点,试探究:OPQ ∆的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.20.(本小题满分13分)设满足以下两个条件的有穷数列12,,,n a a a 为(2,3,4,)n n = 阶“Q 数列”:①120n a a a +++=; ②121n a a a +++=.(Ⅰ)分别写出一个单调递增的3阶和4阶“Q 数列”;(Ⅱ)若2018阶“Q 数列”是递增的等差数列,求该数列的通项公式; (Ⅲ)记n 阶“Q 数列”的前k 项和为(1,2,3,,)k S k n =,试证12k S ≤.(考生务必将答案答在答题卡上,在试卷上作答无效)2017-2018延庆区一模考试数学(理)评分标准一、选择题 DCDB DBDB二、填空题 9. 7 10. 1±,2或3- 11. 50 12. 2 13. 答案不唯一 14.英, 德(第一空3分第二空2分) 13题参考答案:3,;,;,ln ;,lg ;,xx x x x x x x x xe三、解答题15. (Ⅰ)由sin 0得A A +=………2分即()ππ3A k k +=∈Z , ………3分 又()0,πA ∈,∴ππ3A +=,得2π3A =. ………5分 (Ⅱ)由余弦定理2222cos a b c bc A =+-⋅, ………6分又∵12,cos 2a b A ===-………8分 代入并整理得()2125c +=,故4c =; ………11分11sin 24222S bc A ==⨯⨯⨯= ………13分16.(Ⅰ)事件A 的人数为:400+270=670,该险种有1000人续保,所以P (A )的估计值为:6700.671000= ………3分 (Ⅱ)X 的可能取值为0,1,2,3, ………4分 由出险情况的统计表可知:一辆车一年内不出险的概率为400210005=, 出险的概率为23155-=,则 ………5分 328(0)()5125P x ===,1233236(1)()()55125P x C ===2233254(2)()()55125P x C ===,3327(3)()5125P x === ………9分 π2sin 03A ⎛⎫+=⎪⎝⎭所以的X 分布列为:………10分 (Ⅲ)续保人本年度的平均保费估值为:0.85400270 1.25200 1.580 1.75402101.071000a a a a a a a ⨯+⨯+⨯+⨯+⨯+⨯=………13分17(Ⅰ)如图,取AE 的中点H ,连接,HG HD ,又G 是BE 的中点, 所以 //GH AB ,且12GH AB =………1分 又F 是CD 中点,所以12DF CD =, 由四边形ABCD 是矩形得,AB CD =, //AB CD , ………2分 所以GH DF =, //GH DF ,从而四边形HGFD 是平行四边形,//GF DH , ………3分 又DH ⊂平面ADE ,GF ⊄平面ADE 所以//GF 平面ADE ………4分 法一:(Ⅱ)如图,在平面BEC 内,过点B 作//BQ EC ,因为,B E E C B Q B E ⊥∴⊥又因为AB ⊥平面BEC ,所以AB BE ⊥,AB BQ ⊥ 以B 为原点,分别以,,BE BQ BA 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,…5分则(0,0,2)A (0,0,0)B (2,0,0)E (2,2,1).F ………6分 因为AB ⊥平面BEC ,所以A=(B 0,0,2)为平面BEC 的法向量,………7分设(x,y,z)n =为平面AEF 的法向量,又AE (2,0,-2)AF=(2,2,-1)=,由220220,0,得x z n AE x y z n AF ⎧-=⋅=⎧⎨⎨+-=⋅=⎩⎩取2z =得=(2,-1,2)n . ………9分从而42cos ,323n BA n BA n BA⋅===⨯⋅………10分 所以平面AEF 与平面BEC 所成锐二面角的余弦值为23. (Ⅲ)假设在线段CD 存在点M ,设点M 的坐标为(2,2,)a . ………11分 因为(0,0,2)A (2,0,0)E (2,2,2).D所以(0,2,2)DE =--,(2,2,2)AM a =- ………12分 因为DE AM ⊥,0DE AM ⋅=所以0a = .………13分 所以2DM = ………14分 法二:(Ⅱ)以E 点为原点,EC 所在直线为x 轴,EB 所在直线为y 轴,过E 做垂直平面BEC 的直线为z 轴,建立空间直角坐标系,则(0,0,0)E ,(0,2,2)A ,(2,0,1)F (2,0,2)D ,1(0,0,1)n 为平面BEC 的法向量, ………7分设2(,,)n x y z 为平面AEF 的法向量,又()()0,2,2,2,0,1EA EF由2200n EA n EF ⎧⋅=⎪⎨⋅=⎪⎩得22020y z x z +=⎧⎨+=⎩取2z =得2(-1,-2,2)n ………9分从而12121222cos ,133n n n n n n ⋅===⨯⋅ ………10分 所以平面AEF 与平面BEC 所成锐二面角的余弦值为23. (Ⅲ)假设在线段CD 存在点M ,设点M 的坐标为(2,0,)a . ………11分因为(0,2,2)A (0,0,0)E (2,0,2)D所以(-2,0,2)DE =-,(2,-2,2)AM a =- ………12分 因为DE AM ⊥,0DE AM ⋅=所以0a = .………13分 所以2DM = ………14分 18(Ⅰ),1)('-=xe xf 所以切线的斜率()00k f '==又因为()01f =, ……2分 所以切线方程为 1y =. ……3分 (Ⅱ)因为不等式ax x f >)(的解集为P ,且P x x ⊆≤≤}20|{,所以,对任意的]2,0[∈x ,不等式ax x f >)(恒成立, ………4分由ax x f >)(得xe x a <+)1(.当0=x 时, 上述不等式显然成立,故只需考虑]2,0(∈x 的情况. ………5分将xe x a <+)1(变形得1-<xe a x………6分 令1)(-=x e x g x ,2)1()('x e x x g x-= ………7分 令0)('>x g ,解得1>x ;令0)('<x g ,解得.1<x从而()g x 在(0,1)内单调递减,在(1,2)内单调递增. ………8分 当1=x 时,)(x g 取得最小值1-e ,所以实数的取值范围是)1,(--∞e .……9分 (Ⅲ)当1a <-时有一个零点;当 -11a e ≤<- 无零点当1a e =-时有一个零点;当 1a e >- 时有两个零点. ………13分19 (Ⅰ)由已知得解得222b1acb1ac1a b c=⎧⎧=⎪⎪⎪==⎨⎨⎪⎪=⎩=+⎪⎩所以椭圆的E方程为2212xy+=…………4分(Ⅱ)当直线l的斜率不存在时,直线l为x=或x=都有122OPQS∆=⨯=.………6分当直线l的斜率存在时,设直线:(1)l y kx m k=+≠±,由2212y kx mxy=+⎧⎪⎨+=⎪⎩消去y,可得222(12)4220k x kmx m+++-=228816m k∆=-++,由题可知,0∆=,有2221m k=+………8分又y kx mx y=+⎧⎨-=⎩可得(,)11m mPk k--;同理可得(,)11m mQk k-++.由原点O到直线PQ的距离为d=和2PQ m=可得22121OPQmS d PQk∆==-………10分∵2221m k=+,∴22222111OPQm kSk k∆+==--………11分当210k-<,即11k k><-或时,2222132211OPQkSk k∆+==+>--………12分当210k->,即11k-<<时,222213211OPQkSk k∆+==-+--因为2011k<-≤,所以2331k≥-,所以23211OPQSk∆=-+≥-,当且仅当0k=时等号成立. 综上,当0k =时,OPQ ∆的面积存在最小值为1 ………14分20.解:(Ⅰ)数列11,0,22-为单调递增的3阶“Q 数列”; 数列3113,,,8888--为单调递增的4阶“Q 数列”. (答案不唯一) ┄4分 (Ⅱ)设等差数列122018,,,a a a 的公差为d ,0d > 因为1220180a a a +++=,所以12018()201802a a +=.即120180a a +=. 所以10091010+0a a =. 于是100910100,0a a <>. ┄5分 由于0d >,根据“Q 数列”的条件①②得1210091-2a a a +++=,10101011201812a a a +++= ┄6分 两式相减得210091d =.即211009d = . ┄8分 由1201820172018+02a d ⋅=得12017=-2a d ,即12201721009a =-⋅. ┄10分 所以222201712-2019(1)21009100921009n n a n =-+-=⨯⨯(,2018)n n *∈≤N . ┄11分 (Ⅲ)当k n =时,显然102n S =≤成立;当k n <时,根据条件①得 1212()k k k k n S a a a a a a ++=+++=-+++,所以1212k k k k n S a a a a a a ++=+++=+++ . 所以12122k k k k n S a a a a a a ++=+++++++12121k k k n a a a a a a ++≤+++++++=. 所以12k S ≤(1,2,3,,)k n =. ┄13分。
延庆区2017—2018学年度高三模拟试卷
数学(文科) 2018.3
本试卷共6页,满分150分,考试时间120分钟
第Ⅰ卷(选择题)
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 若集合{|02},{|10}A x x B x x =≤≤=->,则A B =U (A ){|02}x x ≤≤ (B ){|12}x x <≤
(C ){|
0}x x ≥ (D ){|1}x x >
2. 在复平面内,复数
2
1i +的对应点位于的象限是
(A ) 第一象限 (B ) 第二象限 (C ) 第三象限 (D )第四象限
3. 下列函数在其定义域内是增函数的是
(A )cos y x = (B )lg(1)y x =+ (C )x
y e -= (D )1y x =+
4. 已知函数()2sin()3
f x x π
ϕ=+
+,则“23
π
ϕ=
”是“()f x 为奇函数”的 (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件
5. 若x ,y 满足030x y x y x ≤≥≥-⎧⎪+⎨⎪⎩
则22
x y +的最小值为
(A )0 (B )3 (C )4.5 (D )5
6.该程序框图的算法思路来源于我
国古代数学名著《九章算术》中的“更
相减损术”,执行该程序框图,若输
入的,a b分别为14,4,则输出的a
为
(A)0 (B)2
(C)4 (D)14
7. 某三棱锥的三视图如图所示,则该三棱锥的最长棱的长为
(A32
(B34
(C41
(D)52
8. 某上市股票在30天内每股的交易价格P(元)与时间t(天)所组成的有序数对()
,t P,点()
,t P落在图中的两条线段上;该股票在30天
内的日交易量Q(万股)与时间t(天)的部分数据如
下表所示,且Q与t满足一次函数关系,
那么在这30天中第几天日交易额最大
(A)10 (B)15 (C)20 (D)25
第t天 4 10 16 22
Q(万股)36 30 24 18 正(主)视图侧(左)视图
俯视图
(7题图)
4
5
t
P
O30
20
10
6
5
2
3
第Ⅱ卷(非选择题)
二、填空题:本大题共6小题,每小题5分,共30分.
9. 双曲线2
214
x y -=的渐近线方程为 . 10. 已知00x ,y >>,且244x y ⋅=,则xy 的最大值为 . 11. 已知(1,2)(3,,==a b )x ,()+⊥a b a 则x = .
12. 无偿献血是践行社会主义核心价值观的具体行动,需要在报名的2名男教师和3名女教师中,选取2人参加无偿献血,则恰好选中一名男教师和一名女教师的概率为 .
13. 已知()f x ,()g x 在定义域内均为增函数,但()()f x g x ⋅不一定是增函数,例如当()f x = 且()g x = 时,()()f x g x ⋅不是增函数. 14. 有4个不同国籍的人,他们的名字分别是A 、B 、C 、D ,他们分别来自英国、美国、德国、法国(名字顺序与国籍顺序不一定一致). 现已知每人只从事一个职业,且:
(1)A 和来自美国的人他们俩是医生; (2)B 和来自德国的人他们俩是教师; (3)C 会游泳而来自德国的人不会游泳; (4)A 和来自法国的人他们俩一起去打球.
根据以上条件可推测出A 是来自 国的人,D 是来自 国的人.
三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)
已知等差数列{}n a 和等比数列{}n b ,其中数列{}n b 的前n 项和为n S ,11a =-,
11b =,222a b +=,335a b +=.
(Ⅰ)求{}n b 的通项公式和前n 项和n S ;
(Ⅱ)设2log n n n c a b =+,求数列{}n c 的前n 项和n T . 16.(本小题满分13分)
△ABC的内角A,B,C的对边分别为a,b,c,已知sin A+3cos A=0,a=27,b=2.
(Ⅰ)求角A;
(Ⅱ)求边c及△ABC的面积.
17.(本小题满分13分)
为了鼓励市民节约用电,某市实行“阶梯式”电价,将每户居民的月用电量分为二档,月用电量不超过200度的部分按0.5元/度收费,超过200度的部分按0.8元/度收费.某小区共有居民1000户,为了解居民的用电情况,通过抽样,获得了今年7月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图.
(Ⅰ)求a的值;
(Ⅱ)试估计该小区今年7月份用电费用不超过260元的户数;
(Ⅲ)估计7月份该市居民用户的平均用电费用(同一组中的数据用该组区间的中点值作代表).
18.(本小题满分14分)
如图,在几何体ABCDE中,四边形ABCD是正方形,AB 平面BEC,
BE EC ⊥,2BE EC ==,点,G H 分别是线段,BE EC 的中点,点,F N 分别
是线段,CD BC 的中点.
(Ⅰ)求证://GH 平面ADE ; (Ⅱ)求证:
AC ⊥平面ENF ;
(Ⅲ)在线段CD 上是否存在一点P ,使得4
23
D AEP V -=DP 的长,若不存在,请说明理由.
19.(本小题满分13分)
已知椭圆E :()22
2210x y a b a b
+=>>过点(0,2,且离心率22e =.
(Ⅰ)求椭圆E 的方程;
(Ⅱ)设直线:1,()l x my m R =-∈交椭圆E 于
,A B 两点,判断点G 9,04⎛⎫
- ⎪⎝⎭
与以线段AB 为直
径的圆的位置关系,并说明理由.
20.(本小题满分14分)
已知函数x e x f x
-=)((e 为自然对数的底数). (Ⅰ)求曲线()=y f x 在点(0,(0))f 处的切线方程;
(Ⅱ)当[]0,2x ∈时,不等式ax x f >)(恒成立,求实数a 的取值范围;
(Ⅲ)设()()g x f x ax =-,当函数()g x 有且只有一个零点时,求a 的取值范围.
(考生务必将答案答在答题卡上,在试卷上作答无效)。