第九章 物理思想方法回放(九)
- 格式:ppt
- 大小:890.00 KB
- 文档页数:12
高中物理必修三第九章静电场及其应用必考知识点归纳单选题1、小明同学用自制的验电器进行了一些探究实验。
如图所示,小明使验电器带了负电荷,经过一段时间后,他发现该验电器的金属箔片(用包装巧克力的锡箔纸制作)几乎闭合了。
关于此问题,他跟学习小组讨论后形成了下列观点,你认为正确的是()A.小球上原有的负电荷逐渐消失了B.在此现象中,正电荷从金属球转移到金属箔中,中和了负电荷C.小球上负电荷减少的主要原因是潮湿的空气将电子导走了D.该现象是由于电子的转移引起的,不再遵循电荷守恒定律答案:C带负电的验电器在潮湿的空气中,经过一段时间后,小球上的负电荷(电子)被潮湿的空气导走了,但电荷在转移的过程中仍然守恒,故C正确,ABD错误。
故选C。
2、电场中有一点P,下列说法正确的是()A.若放在P点的电荷的电荷量变为原来的2倍,则P点电场强度变为原来的2倍B.若P点没有试探电荷,则P点的场强为零C.P点的场强方向为试探电荷在该点的受力方向D.P点的场强越小,则同一电荷在P点所受的静电力越小答案:DAB.电场强度是电场本身决定的,与放不放试探电荷,所放试探电荷的电性、电量无关,故AB错误;C.正电荷所受电场力的方向与场强方向相同,负电荷所受电场力的方向与场强方向相反,故C错误;D.由公式F=qE可知P点的场强越小,则同一电荷在P点受到的静电力越小,故D正确。
故选D。
3、一带负电的粒子只在电场力作用下沿x轴正向运动,其电势能Ep随位移x变化的关系如图所示,其中0~x2段是关于直线x=x1对称的曲线,x2~x3段是直线,则下列说法正确的是()A.x1处电场强度最小,但不为零B.粒子在0~x2段做匀变速运动,在x2~x3段做匀速运动C.在0、x1、x2、x3处的电势φ0、φ1、φ2、φ3的关系为φ3>φ2=φ0>φ1D.x2~x3段的电场强度大小、方向均不变答案:DA.根据ΔEp=qΔφE=ΔφΔx可得ΔEp=qEΔx由数学知识可知Ep -x图像切线的斜率表示qE,x1处切线斜率为零,则x1处电场强度为零,故A错误;BD.由图像可看出,0~x1段图像切线的斜率绝对值不断减小,则电场强度减小,粒子所受的电场力减小,加速度减小,做非匀变速运动,x1~x2段图像切线的斜率不断增大,则电场强度增大,粒子所受的电场力增大,做非匀变速运动,x2~x3段图像切线的斜率不变,则电场强度不变,即电场强度大小和方向均不变,粒子所受的电场力不变,做匀变速运动,故B错误,D正确;C.根据Ep=qφ,粒子带负电,q<0,电势能越大,则粒子所在处的电势越低,所以φ1>φ2=φ0>φ3故C错误。
物理中的思想方法物理是自然科学的一门基础学科,研究能量、物质和它们之间相互作用的规律。
在物理学的学习和研究中,科学家们形成了一种特定的思想方法,以解决问题和探索未知领域。
下面将详细介绍物理中的思想方法。
物理中的思想方法主要包括实验观察、理论模型和数学描述三个方面。
这三个方面相互依存,构成了物理学研究的基础。
实验观察是物理学研究中最直接的方法之一。
物理学家通过设计和进行实验,观察和测量物理现象来获取数据。
实验的目的是观察和记录自然界现象的特点和规律。
通过实验观察,科学家可以发现新的现象、验证理论和模型的准确性,以及推翻错误的理论。
实验观察提供了直接的经验证据,使得科学家能够建立理论模型和数学描述。
理论模型是对物理现象进行抽象和简化的描述。
科学家通过观察和实验的结果,总结出一些常见的规律,并建立起相应的理论模型。
理论模型通过假设和推论来解释各种物理现象,并能够预测未知情况下的结果。
在物理学中,理论模型是进行预测和解释的重要工具。
科学家通过不断完善和修改理论模型,以适应新的观测结果和实验数据。
数学描述是物理学研究中必不可少的一部分。
物理学家使用数学工具来表达和分析物理现象的规律。
数学描述能够精确地刻画物理量之间的关系,提供了具有普遍性的表达方式。
在物理中,方程和函数是最常用的数学工具。
物理学中的方程和函数能够通过数学运算和解析,预测和解释各种物理现象。
数学描述提供了物理学研究的基础框架,使得科学家能够推导出新的结论和发现新的现象。
除了上述三个方面,物理学还具有一些特定的思想方法,如抽象思维、模型化和推理。
抽象思维是物理学研究中需要经常运用的思维方式。
物理学家通过对物理现象的一般性分析,抓住问题的本质,并将其抽象为一般性的规律和模型。
模型化是物理学中的重要方法之一。
科学家通过建立模型来描述实际现象,使得问题能够变得简化并可以进行分析和解决。
推理是物理学中的基本逻辑思维方式。
物理学家通过逻辑演绎和归纳推理,从已知条件得出新结论,推动物理学的前进。
思想方法1 极限思维法1.极限思维法:如果把一个复杂的物理全过程分解成几个小过程,且这些小过程的变化是单一的,那么,选取全过程的两个端点及中间的极限来进行分析,其结果必然包含了所要讨论的物理过程,从而能使求解过程简单、直观,这就是极限思维方法.极限思维法只能用于在选定区间内所研究的物理量连续、单调变化(单调增大或单调减小)的情况.2.用极限法求瞬时速度和瞬时加速度(1)公式v =Δx Δt 中,当Δt →0时,v 是瞬时速度.(2)公式a =Δv Δt 中,当Δt →0时,a 是瞬时加速度.思想方法2 巧解匀变速直线运动问题的六种方法运动学问题的求解一般有多种方法,除直接应用公式外,还有如下方法:1.平均速度法定义式v -=x t 对任何性质的运动都适用,而v -=12(v 0+v )适用于匀变速直线运动.2.中间时刻速度法利用“任一时间t ,中间时刻的瞬时速度等于这段时间t 内的平均速度”,即v t2=v-,适用于任何一个匀变速直线运动,有些题目应用它可以避免常规解法中用位移公式列出的含有t2的复杂式子,从而简化解题过程,提高解题速度.3.比例法对于初速度为零的匀加速直线运动与末速度为零的匀减速直线运动,可利用初速度为零的匀加速直线运动的重要特征的比例关系,用比例法求解.4.逆向思维法把运动过程的“末态”作为“初态”的反向研究问题的方法,一般用于末态已知的情况.5.图象法应用v-t图象,可以使比较复杂的问题变得形象、直观和简单,尤其是用图象定性分析,可避开繁杂的计算,快速得出答案.6.推论法在匀变速直线运动中,两个连续相等的时间T内的位移之差为一恒量,即Δx=x n+1-x n=aT2,若出现相等的时间间隔问题,应优先考虑用Δx=aT2求解.数学技巧1物理中的函数图象1.问题概述物理图象是借助数形结合,将物体运动的函数关系与几何图线相结合,来描述两个物理量之间的依存关系,是近几年高考物理试卷中考查的热点问题之一.2.表现形式根据物理情景从同一角度或从不同角度设计物理图象,让学生判断哪些图象能正确描述物理情景.3.处理方法分析物理情景及所给图象,根据相应的物理原理写出数学表达式,最后根据数学表达式选出正确答案,或根据所给选项图象确定其运动性质是否符合题意.思想方法3临界条件在摩擦力突变问题中的应用1.问题特征当物体受力或运动发生变化时,摩擦力常发生突变,摩擦力的突变,又会导致物体的受力情况和运动性质的突变,其突变点(时刻或位置)往往具有很深的隐蔽性,对其突变点的分析与判断是物理问题的切入点.2.常见类型(1)静摩擦力突变为滑动摩擦力.(2)滑动摩擦力突变为静摩擦力.思想方法4动态平衡问题的分析方法1.动态平衡:是指平衡问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,所以叫动态平衡,这是力平衡问题中的一类难题.2.基本思路:化“动”为“静”,“静”中求“动”.3.分析方法(1)解析法①列平衡方程求出未知量与已知量的关系表达式.②根据已知量的变化情况来确定未知量的变化情况.(2)图解法①根据已知量的变化情况,画出平行四边形边、角的变化.②确定未知量大小、方向的变化.。
高中物理复习:解答物理问题的10种思想方法专题概述现如今,高考物理愈来愈注重考查考生的能力和科学素养,其命题愈加明显地渗透着对物理思想、物理方法的考查.在平时的复习备考过程中,物理习题浩如烟海,千变万化,我们若能掌握一些基本的解题思想,就如同在开启各式各样的“锁”时,找到了一把“多功能的钥匙”.思想方法1:整体法、隔离法1.整体法和隔离法的选用原则(1)如果动力学系统各部分运动状态相同,求解整体的物理量优先考虑整体法;如果要求解系统各部分的相互作用力,再用隔离法.(2)如果系统内部各部分运动状态不同,一般选用隔离法.2.在比较综合的问题中往往两种方法交叉运用,相辅相成,两种方法的取舍,并无绝对的界限,必须具体问题具体分析,灵活运用.如图所示,质量均为m 的斜面体A 、B 叠放在水平地面上,A 、B 间接触面光滑,用一与斜面平行的推力F 作用在B 上,B 沿斜面匀速上升,A 始终静止.若A 的斜面倾角为θ,下列说法正确的是( )A .F =mg tan θB .A 、B 间的作用力为mg cos θC .地面对A 的支持力大小为2mgD .地面对A 的摩擦力大小为F解析:B 以B 为研究对象,在沿斜面方向、垂直于斜面方向根据平衡条件求得F =mg sin θ,支持力N =mg cos θ,故A 错误,B 正确;以整体为研究对象,根据平衡条件可得地面对A 的支持力大小为F N =2mg -F sin θ,地面对A 的摩擦力大小为f =F cos θ,故C 、D 错误.思想方法2:估算与近似计算1.物理估算题,一般是指依据一定的物理概念和规律,运用物理方法和近似计算方法,对所求物理量的数量级或物理量的取值范围,进行大致的、合理的推算.物理估算是一种重要的方法,有的物理问题,在符合精确度的前提下可以用近似的方法便捷处理;有的物理问题,由于本身条件的特殊性,不需要也不可能进行精确计算.在这些情况下,估算就很实用.2.估算时经常用到的近似数学关系(1)角度θ很小时,弦长近似等于弧长.(2)θ很小时,sin θ≈θ,tan θ≈θ,cos θ≈1.(3)a ≫b 时,a +b ≈a ,1a +1b ≈1b. 3.估算时经常用到的一些物理常识数据解题所需数据,通常可从日常生活、生产实际、熟知的基本常数、常用关系等方面获取,如成人体重约600 N ,汽车速度约10~20 m/s ,重力加速度约为10 m/s 2……引体向上是中学生体育测试的项目之一,引体向上运动的吉尼斯世界纪录是53次/分钟.若一个普通中学生在30秒内完成12次引体向上,该学生此过程中克服重力做功的平均功率最接近于( )A .5 WB .20 WC .100 WD .400 W解析:C 学生体重约为50 kg ,每次引体向上上升的高度约为0.5 m ,引体向上一次克服重力做功为W =mgh =50×10×0.5 J =250 J ,全过程克服重力做功的平均功率为P =nW t=12×250 J 30 s=100 W ,故C 正确,A 、B 、D 错误. 思想方法3:控制变量法在比较复杂的物理问题中,某一物理量的变化可能与多个变量均有关,定性分析或定量确定因变量与自变量的关系时,常常需要用到控制变量法,即先保持其中一个量不变,研究因变量与另外一个变量的关系,如研究加速度与质量和合外力的关系时,先保持物体的质量不变,研究加速度与合外力的关系,再保持合外力不变,研究加速度与物体质量的关系,最终通过数学分析,得到加速度与质量和合外力的关系.如果有三个或三个以上的自变量,需要控制不变的量,做到变量每次只能有一个.在研究球形固体颗粒在水中竖直匀速下沉的速度与哪些因素有关的实验中,得到的实验数据记录在下面的表格中(水的密度为ρ0=1.0×103 kg/m 3). 次序固体颗粒的半径 r /(×10-3 m) 固体颗粒的密度 ρ/(×103 kg ·m -3) 匀速下沉的速度 v /(m ·s -1) 10.50 2.0 0.55 21.002.0 2.20 31.502.0 4.95 40.50 3.0 1.10 51.00 3.0 4.40 60.50 4.0 1.65 7 1.00 4.0 6.60 颗粒的半径r 的关系:v 与________(填“r ”或“r 2”)成正比.(2)根据以上1、4、6组实验数据,可知球形固体颗粒在水中匀速下沉的速度v 与水的密度ρ0、固体的密度ρ的关系:v 与________(填“ρ”或“ρ-ρ0”)成正比.(3)综合以上实验数据,推导球形固体颗粒在水中匀速下沉的速度与水的密度、固体的密度、固体颗粒的半径的关系表达式v =________,比例系数可用k 表示.解析:(1)由控制变量法容易得出,当ρ一定时,从表格中1、2、3组数据可以得出结论:v ∝r 2.(2)观察表格中的1、4、6组数据,当r 一定时,v 和ρ的关系难以立即判断,因此需要换个角度考虑.当r 一定时,在每个ρ值后都减去1.0×103 kg/m 3(即水的密度),得到的数值与v 成正比,即v ∝(ρ-ρ0).(3)综合以上实验数据,可推导出球形固体颗粒在水中匀速下沉的速度与水的密度、固体的密度、固体颗粒的半径的关系表达式:v =kr 2(ρ-ρ0),k 为比例系数.答案:(1)r 2 (2)ρ-ρ0 (3)k (ρ-ρ0)r 2思想方法4:对称思想对称是一种美,只要对称,必有相等的某些量存在.对称法是从对称的角度研究、处理物理问题的一种思维方法,时间和空间上的对称,表明物理规律在某种变换下具有不变的性质.用这种思维方法来处理问题可以开拓思路,使复杂问题的求解变得简捷.高中物理中的对称主要有受力对称和运动对称.电场中等量电荷产生的电场具有对称性,带电粒子在匀强有界磁场中的运动轨迹具有对称性,简谐运动和波在时间和空间上具有对称性,光路具有对称性……解题时,要充分利用这些特点.如图所示,挂钩连接三根长度均为L 的轻绳,三根轻绳的另一端与一质量为m 、直径为1.2L 的水平圆环相连,连接点将圆环三等分,在轻绳拉力作用下圆环以加速度a =12g 匀加速上升,已知重力加速度为g ,则每根轻绳上的拉力大小为( )A.512mg B .59mg C.58mg D .56mg 解析:C 设每根轻绳与竖直方向的夹角为θ,由几何关系可知sin θ=0.6,则cos θ=0.8;对圆环进行受力分析,由牛顿第二定律有3T cos θ-mg =ma ,解得T =58mg ,故选C. 思想方法5:分解思想有些物理问题的运动过程、情景较为复杂,在运用一些物理规律或公式不奏效的情况下,将物理过程按照事物发展的顺序分成几段熟悉的子过程来分析,或者将复杂的运动分解成几个简单或特殊的分运动(如匀速直线运动、匀变速直线运动、圆周运动等)来考虑,往往能事半功倍.某弹射管每次弹出的小球速度相等.在沿光滑竖直轨道自由下落过程中,该弹射管保持水平,先后弹出两只小球.忽略空气阻力,两只小球落到水平地面的( )A .时刻相同,地点相同B .时刻相同,地点不同C .时刻不同,地点相同D .时刻不同,地点不同解析:B 弹射管沿光滑竖直轨道自由下落,向下的加速度大小为g ,且下落时保持水平,故先后弹出的两只小球在竖直方向的分速度与弹射管的分速度相同,即两只小球同时落地;又两只小球先后弹出且水平分速度相等,故两只小球在空中运动的时间不同,则运动的水平位移不同,落地点不同,选项B 正确.思想方法6:数形结合的思想数形结合的思想,就是把物体的空间形式和数量关系结合起来进行考查,通过“数”与“形”之间的对应和转化来解决问题的思想,其实质是把抽象的数学语言、数量关系与直观的图形结合起来,把抽象思维和形象思维结合起来.数形结合的思想,一方面可以以“形”助“数”,实现抽象概念与具体形象的联系与转化,化抽象为直观,化难为易;另一方面可以以“数”解“形”,可以由数入手,将有些涉及图形的问题转化为数量关系来研究,对图形做精细的分析,从而使人们对直观图形有更精确、理性的理解.一弹簧秤的秤盘质量为m 1,盘内放一质量为m 2的物体,弹簧质量不计,其劲度系数为k ,系统处于静止状态,如图所示.t 0时刻给物体施加一个竖直向上的力F ,使物体从静止开始向上做加速度为a 的匀加速直线运动,经2 s 物体与秤盘脱离,用F N 表示物体与秤盘间的相互作用力的大小,已知重力加速度大小为g ,则下列F 和F N 随时间变化的关系图像正确的是( )解析:C 对秤盘和物体整体分析,系统处于静止状态时,弹簧形变量为x 0,利用牛顿第二定律得,kx 0=(m 1+m 2)g ,F +kx -(m 1+m 2)g =(m 1+m 2)a ,又x =x 0-12a (t -t 0)2,解上述两式得F =(m 1+m 2)a +12ka (t -t 0)2,所以选项A 、B 错误;以物体为研究对象,物体静止时,F N =m 2g ,运动后对秤盘受力分析,利用牛顿第二定律得kx -m 1g -F N =m 1a ,F N =m 2g -m 1a -12ka (t -t 0)2,所以选项C 正确,D 错误. 思想方法7:特殊值法与极限法在中学物理问题中,有一类问题具有这样的特点,如果从题中给出的条件出发,需经过较复杂的计算才能得到结果的一般形式,并且条件似乎不足,使得结果难以确定,这时我们可以尝试采用极限思维的方法,将其变化过程引向极端的情况,就能把比较隐蔽的条件或临界现象暴露出来,从而有助于结论的迅速取得.对于某些具有复杂运算的题目,还可以通过特殊值验证的方法排除错误选项,提高效率.图示为一个内、外半径分别为R 1和R 2的圆环状均匀带电平面,其单位面积带电量为σ.取环面中心O 为原点,以垂直于环面的轴线为x 轴.设轴上任意点P 到O 点的距离为x ,P 点电场强度的大小为E .下面给出E 的四个表达式(式中k 为静电力常量),其中只有一个是合理的.你可能不会求解此处的场强E ,但是你可以通过一定的物理分析,对下列表达式的合理性做出判断.根据你的判断,E 的合理表达式应为( )A .E =2πk σ⎝ ⎛⎭⎪⎫R 1x 2+R 21-R 2x 2+R 22x B .E =2πk σ⎝ ⎛⎭⎪⎫1x 2+R 21-1x 2+R 22x C .E =2πk σ⎝ ⎛⎭⎪⎫R 1x 2+R 21+R 2x 2+R 22x D .E =2πk σ⎝ ⎛⎭⎪⎫1x 2+R 21+1x 2+R 22x 解析:B 当R 1=0时,带电圆环演变为带电圆面,则中心轴线上任意一点的电场强度的大小E 不可能小于0,而A 项中,E <0,故A 错误;当x →∞时E →0,而C 项中E =2πk σ·⎝ ⎛⎭⎪⎫ R 21x 2x 2+R 21+ R 22x 2x 2+R 22=2πk σ·⎝ ⎛⎭⎪⎪⎫ 11x 2+1R 21+ 11x 2+1R 22,x →∞时,E →2πk σ(R 1+R 2),同理可知D 项中x →∞时,E →4πk σ,故C 、D 错误;所以正确选项只能为B.思想方法8:等效思想1.等效法是科学研究中重要的思维方法之一,所谓等效法就是在保证某方面效果相同的前提下,用熟悉和简单的物理对象、过程、现象替代实际上陌生和复杂的物理对象、过程、现象的方法.例如:合力与分力、合运动与分运动、总电阻与分电阻等.利用等效法不但能将问题、过程由繁变简、由难变易,由具体到抽象,而且能启迪思维,增长智慧,从而提高能力.2.运用等效法解决实际问题时,常见的有:过程等效、概念等效、条件等效、电器元件等效、电路等效、长度等效、场等效等.在运用等效法时,一定要注意必须是在效果相同的前提下,讨论两个不同的物理过程或物理现象的等效及物理意义.若在运用等效法解决问题时,不抓住效果相同这个条件,就会得出错误的结论.近年来,含有等效法思维方式的试题在高考中频频出现,主要考查物理模型等效、过程等效、条件等效、电路等效等.如图所示,在方向水平向左、范围足够大的匀强电场中,固定一由内表面绝缘光滑且内径很小的圆管弯制而成的圆弧BD ,圆弧的圆心为O ,竖直半径OD =R ,B 点和地面上A 点的连线与地面成θ=37°角,AB =R .一质量为m 、电荷量为q 的小球(可视为质点)从地面上A 点以某一初速度沿AB 方向做直线运动,恰好无碰撞地从管口B 进入管道BD 中,到达管中某处C (图中未标出)时恰好与管道间无作用力.已知sin 37°=0.6,cos 37°=0.8,重力加速度大小为g .求:(1)匀强电场的场强大小E 和小球到达C 处时的速度大小v ;(2)小球的初速度大小v 0以及到达D 处时的速度大小v D .解析:(1)小球做直线运动时的受力情况如图甲所示,小球带正电,则qE =mg tan θ,得E =4mg 3q, 小球到达C 处时电场力与重力的合力恰好提供小球做圆周运动的向心力,如图乙所示,OC ∥AB ,则mg sin θ=m v 2R得v = 53gR . (2)小球“恰好无碰撞地从管口B 进入管道BD ”,说明AB ⊥OB小球从A 点运动到C 点的过程,根据动能定理有-mg sin θ·2R =12m v 2-12m v 20得v 0=253gR , 小球从C 处运动到D 处的过程,根据动能定理有mg sin θ(R -R sin θ)=12m v 2D -12m v 2, 得v D =3gR .答案:(1)4mg 3q 53gR (2) 253gR 3gR思想方法9:微元累积法高中物理中有很多复杂模型不能直接用已有知识和方法解决,可以在对问题做整体的考察后,选取该问题过程中的某一微小单元进行分析,通过对微元的物理分析和描述,找出该微元所具有的物理性质和运动变化规律,从而获得解决该物理问题整体的方法.比如,物体做变加速运动时,若从整体着手研究,则难以在高中物理层面展开,不过当我们用过程微元法,把物体的运动过程按其经历的位移或时间等分为多个小量,将每个微元过程近似为高中物理知识所能处理的过程,在得出每个微元过程的相关结果后,再进行数学求和,这样就能得到物体复杂运动过程的规律.再比如研究对象难以选择的情形,可以把实体模型等分为很多很多的等份,变成一个理想化模型,如刚体可以等分成无数个质点、带电体可以等分成很多点电荷来研究,先研究其中一份,再研究个体与整体的关系,运用物理规律,辅以数学方法求解,由此求出整体受力或运动情况,在中学阶段比较常见的有流体或类似流体问题、链条类的连续体模型等.如图所示,空间存在竖直向下的匀强磁场,磁感应强度B =0.5 T .在匀强磁场区域内,同一水平面内有一对足够长的光滑平行金属导轨,导轨间距L =1 m ,电阻可忽略不计.质量均为m =1 kg 、电阻均为R =2.5 Ω的金属导体棒MN 和PQ 垂直放置于导轨上,且与导轨接触良好.先将PQ 暂时锁定,金属棒MN 在垂直于棒的拉力F 作用下,由静止开始以加速度a =0.4 m/s 2向右做匀加速直线运动,5 s 后保持拉力F 的功率不变,直到棒以最大速度v m 做匀速直线运动.(1)求棒MN 的最大速度v m ;(2)当棒MN 达到最大速度v m 时,解除PQ 锁定,同时撤去拉力F ,两棒最终均匀速运动.求解除棒PQ 锁定后,到两棒最终匀速运动的过程中,电路中产生的总焦耳热;(3)若PQ 始终不解除锁定,当棒MN 达到最大速度v m 时,撤去拉力F ,棒MN 继续运动多远后停下来?(运算结果可用根式表示)解析:(1)棒MN 做匀加速直线运动,5 s 时的速度为:v =at 1=2 m/s此时对棒MN 由牛顿第二定律得:F -BIL =ma棒MN 做切割磁感线运动,产生的感应电动势为:E =BL v在两棒组成的回路中,由闭合电路欧姆定律得:I =E 2R联立并代入数据解得:F =0.5 N5 s 时拉力F 的功率为:P =F v联立并代入数据解得:P =1 W棒MN 最终做匀速直线运动,则有:P v m-BI m L =0, 其中I m =BL v m 2R联立并代入数据解得:v m =2 5 m/s.(2)解除棒PQ 锁定后,两棒运动过程中动量守恒,最终两棒以相同的速度做匀速运动,设速度大小为v ′,以水平向右为正方向,则有:m v m =2m v ′设从解除棒PQ 锁定到两棒达到相同速度的过程中,两棒共产生的焦耳热为Q ,由能量守恒定律可得:Q =12m v 2m -12×2m v ′2 联立并代入数据解得:Q =5 J.(3)以棒MN 为研究对象,设某时刻棒中电流为i ,在极短时间Δt 内,由动量定理得:-BiL Δt =m Δv对式子两边求和有:∑(-BiL Δt )=∑(m Δv )而Δq =i Δt联立解得:BLq =m v m又对于电路有:q =It =E 2Rt 设棒MN 继续运动距离为x 后停下来,由法拉第电磁感应定律得:E =BLx t联立得q =BLx 2R代入数据解得:x =2Rq BL =2Rm v m B 2L 2=40 5 m. 答案:(1)2 5 m/s (2)5 J (3)40 5 m思想方法10:守恒思想物理学中最常用的一种思维方法——守恒.高中物理涉及的守恒定律有能量守恒定律、动量守恒定律、机械能守恒定律、质量守恒定律、电荷守恒定律等,它们是我们处理高中物理问题的主要工具.如图所示,长R =0.6 m 的不可伸长的细绳一端固定在O 点,另一端系着质量m 2=0.1 kg 的小球B ,小球B 刚好与水平面相接触.现使质量m 1=0.3 kg 的物块A 沿光滑水平面以v 0=4 m/s 的速度向B 运动并与B 发生弹性正碰,A 、B 碰撞后,小球B 能在竖直平面内做圆周运动.已知重力加速度g =10 m/s 2,A 、B 均可视为质点,试求:(1)在A 与B 碰撞后瞬间,小球B 的速度v 2的大小;(2)小球B 运动到最高点时对细绳的拉力.解析:(1)物块A 与小球B 碰撞时,由动量守恒定律和机械能守恒定律有: m 1v 0=m 1v 1+m 2v 212m 1v 20=12m 1v 21+12m 2v 22 解得碰撞后瞬间物块A 的速度v 1=m 1-m 2m 1+m 2v 0=2 m/s 小球B 的速度v 2=2m 1m 1+m 2v 0=6 m/s (2)碰撞后,设小球B 运动到最高点时的速度为v ,则由机械能守恒定律有: 12m 2v 22=12m 2v 2+2m 2gR 又由向心力公式有:F +m 2g =m 2v 2R联立解得F =1 N ,由牛顿第三定律知小球B 对细绳的拉力F ′=F =1 N.答案:(1)6 m/s (2)1 N。
物理思想方法§1.图形/图象图解法⏹图形/图象图解法就是将物理现象或过程用图形/图象表征出后,再据图形表征的特点或图象斜率、截距、面积所表述的物理意义来求解的方法。
尤其是图象法对于一些定性问题的求解独到好处。
§2 极限思维方法⏹极限思维方法是将问题推向极端状态的过程中,着眼一些物理量在连续变化过程中的变化趋势及一般规律在极限值下的表现或者说极限值下一般规律的表现,从而对问题进行分析和推理的一种思维办法。
§3 平均思想方法⏹物理学中,有些物理量是某个物理量对另一物理量的积累,若某个物理量是变化的,则在求解积累量时,可把变化的这个物理量在整个积累过程看作是恒定的一个值---------平均值,从而通过求积的方法来求积累量。
这种方法叫平均思想方法。
⏹物理学中典型的平均值有:平均速度、平均加速度、平均功率、平均力、平均电流等。
对于线性变化情况,平均值=(初值+终值)/2。
由于平均值只与初值和终值有关,不涉及中间过程,所以在求解问题时有很大的妙用.§4 等效转换(化)法⏹等效法,就是在保证效果相同的前提下,将一个复杂的物理问题转换成较简单问题的思维方法。
其基本特征为等效替代。
⏹物理学中等效法的应用较多。
合力与分力;合运动与分运动;总电阻与分电阻;交流电的有效值等。
除这些等效等效概念之外,还有等效电路、等效电源、等效模型、等效过程等。
卡文迪许《利用扭秤装置测定万有引力恒量实验》为例:其基本的思维方法便是等效转换。
卡文迪许扭秤发生扭转后,引力对t 形架的扭转力矩与石英丝由于弹性形变产主的扭转力矩这就是等效转换,间接地达到了无法达到的目的。
本实验中转换法还应用于石英丝扭转角度的测量上,这个角度不是直接测出的,而是利用平面镜反射光在刻度尺上移动的距离间接测出的;又如测力计是把力的大小转化为弹簧的伸长量;打点计时器是把流逝的时间转换成振针的周期性振动;电流表是利用电流在磁场中受力,把电流转换成指针的偏转角。
高中物理第九章静电场及其应用知识点总结全面整理单选题1、关于库仑定律的理解,下面说法正确的是()A.对任何带电体之间的静电力计算,都可以使用库仑定律公式B.两个点电荷之间的静电力,无论是在真空中还是在介质中,一定是大小相等、方向相反的C.只要是点电荷之间的静电力计算,就可以使用库仑定律公式D.摩擦过的橡胶棒吸引碎纸屑,说明碎纸屑一定带正电答案:BAC.库仑定律适用于真空中静止点电荷间静电力的计算,故AC错误;B.两个点电荷之间的静电力,是作用力和反作用力关系,故无论是在真空中还是在介质中,一定是大小相等、方向相反的,故B正确;D.摩擦过的橡胶棒吸引碎纸屑,纸屑带正电或不带电都可以,故D错误。
故选B。
2、如图所示,空心金属球壳上所带电荷量为+Q,关于O、M两点电场强度EO、EM的说法中正确的是()A.EO≠0EM=0B.EO=0 EM≠0C.EO=0 EM=0D.EO≠0EM≠0答案:C由题意,可知空心金属球壳处于静电平衡状态,根据处于静电平衡状态中的导体,内部电场强度处处为零,可知E O=0,E M=0。
故选C。
3、电场中有一点P,下列说法正确的是()A.若放在P点的电荷的电荷量变为原来的2倍,则P点电场强度变为原来的2倍B.若P点没有试探电荷,则P点的场强为零C.P点的场强方向为试探电荷在该点的受力方向D.P点的场强越小,则同一电荷在P点所受的静电力越小答案:DAB.电场强度是电场本身决定的,与放不放试探电荷,所放试探电荷的电性、电量无关,故AB错误;C.正电荷所受电场力的方向与场强方向相同,负电荷所受电场力的方向与场强方向相反,故C错误;D.由公式F=qE可知P点的场强越小,则同一电荷在P点受到的静电力越小,故D正确。
故选D。
4、如图所示,一均匀带电的金属球体,半径r=√5cm,球体所带电荷量为Q=5×10-12C,静电力常量为k=9.0×109N·m2/C2,则关于该金属球形成的场强说法正确的是()A.由于该金属球的体积较大,不能看成是点电荷,所以无法计算其空间某点的场强B.距离球心O为3r的某点场强为100N/CC.距离球心O为0.3r的某点场强为0D.把正的试探点电荷放在金属球外空间某点,则其该点场强变大答案:CA.均匀带电球体可以看成电荷量集中在球心处的点电荷,根据点电荷电场强度的计算公式能计算空间某点的场强,A错误;B.根据A选项分析可知,距离球心3r的某点场强E=kQ(3r)2=9.0×109×5×10−12(3×√5×10−2)2N C⁄=10.0N C⁄B错误;C.由静电平衡可知,带电导体内部场强处处是0,因此距离球心O为0.3r的某点场强是0,C正确;D.把正的试探电荷放在金属球外空间某点,由于金属球带正电,相互排斥,则金属球所带电荷的等效位置不再位于球心,在球心的左侧,则该点距等效位置间距变大,则该点场强变小,D错误。
高中物理必修三第九章静电场及其应用基础知识点归纳总结单选题1、如图是教材中的二个实验装置,这二个实验蕴含的物理思想方法中共同的方法是()A.极限的思想方法B.放大的思想方法C.控制变量的方法D.猜想的思想方法答案:B两个实验都是将微小量进行放大,即应用了放大的思想方法。
故选B。
2、我们赖以生存的地球,是一颗带负电的天体。
假设它是一个均匀带电的球体,将一带负电的粉尘置于距地球表面h高处,恰处于悬浮状态,假设科学家将同样的带电粉尘带到距地球表面5h高处无初速度释放,则此带电粉尘将(不考虑地球的自转影响)()A.向星球中心方向下落B.被推向太空C.仍在那里悬浮D.无法确定答案:C根据平衡条件得GMm(R+ℎ)2=kQq(R+ℎ)2根据上式得GMm(R+5ℎ)2=kQq(R+5ℎ)2假设科学家将同样的带电粉尘带到距地球表面5h高处无初速度释放,此带电粉尘仍在那里悬浮。
故选C。
3、有两个完全相同的小球A、B,质量均为m,带等量异种电荷,其中A带电荷量为+q,B带电荷量为-q.现用两长度均为L、不可伸长的细线悬挂在天花板的O点上,两球之间夹着一根绝缘轻质弹簧.在小球所挂的空间加上一个方向水平向右、大小为E的匀强电场.如图所示,系统处于静止状态时,弹簧位于水平方向,两根细线之间的夹角为θ=60°,则弹簧的弹力为(静电力常量为k,重力加速度为g)( )A.kq2L2B.√33mg+kq2L2C.kq2L2+qE D.√33mg+kq2L2+qE答案:D对A球受力分析,由共点力平衡可得F−qE−kq⋅qL2−Tcos60°=0Tsin60°−mg=0联立解得F=√33mg+kq2L2+qE故选D。
4、有两个半径为r的金属球如图放置,两球表面间距离为3r。
今使两球带上等量的异种电荷Q,两球间库仑力的大小为F,那么()A.F=k Q2(5r)2B.F>k Q2(5r)2C.F<k Q2(5r)2D.无法判定答案:B异种电荷相互吸引,则电荷间的距离小于5r,由库仑定律可知F>k Q2(5r)2故选B。
初中十大物理思想方法总结(3篇)初中十大物理思想方法总结(通用3篇)初中十大物理思想方法总结篇1一、逆向思维法逆向思维是解答物理问题的一种科学思维方法,对于某些问题,运用常规的思维方法会十分繁琐甚至解答不出,而采用逆向思维,即把运动过程的“末态”当成“初态”,反向研究问题,可使物理情景更简单,物理公式也得以简化,从而使问题易于解决,能收到事半功倍的效果。
二、对称法对称就是事物在变化时存在的某种不变。
自然界和自然科学中,普遍存在着优美的对称现象。
利用对称解题时有时可能一眼就看出,大大简化解题步骤。
从科学思维方法的角度来讲,对称性最突出的功能是启迪和培养学生的直觉思维能力。
用对称法解题的关键是敏锐地看出并抓住事物在某一方面的对称,这些对称往往就是通往的捷径。
三、图象法图象能直观地描述物理过程,能形象地表达物理规律,能鲜明地表示物理量之间的关系,一直是物理学中常用的工具,图象问题也是每年高考必考的一个知识点。
运用物理图象处理物理问题是识图能力和作图能力的综合体现。
它通常以定作图为基础(有时也需要定量作出图线),当某些物理问题分析难度太大时,用图象法处理常有化繁为简、化难为易的功效。
四、假设法假设法是先假定某些条件,再进行推理,若结果与题设现象一致,则假设成立,反之,则假设不成立。
求解物理试题常用的假设有假设物理情景,假设物理过程,假设物理量等,利用假设法处理某些物理问题,往往能突破思维障碍,找出新的解题途径。
在分析力或摩擦力的有无及方向时,常利用该法。
五、整体、隔离法物理习题中,所涉及的往往不只是一个单独的物体、一个孤立的过程或一个单一的题给条件。
这时,可以把所涉及到的多个物体、多个过程、多个未知量作为一个整体来考虑,这种以整体为研究对象的解题方法称为整体法;而把整体的某一部分(如其中的一个物体或者是一个过程)单独从整体中抽取出来进行分析研究的方法,则称为隔离法。
六、图解法图解法是依据题意作出图形来确定正确的方法。