GPS静态观测和解算
- 格式:pdf
- 大小:135.93 KB
- 文档页数:2
静态GPS解算步骤GPS静态测量,是利用测量型GPS接收机进行定位测量的一种。
主要用于建立各种级别的控制网。
进行GPS静态测量时,认为GPS接收机的天线在整个观测过程中的位臵是静止,在数据处理时,将接收机天线的位臵作为一个不随时间的改变而改变的量,通过接收到的卫星数据的变化来求得待定点的坐标。
在测量中,GPS静态测量的具体观测模式是多台(3台以上)接收机在不同的测站上进行静止同步观测,时间由40分钟到十几小时不等。
使用GPS进行静态测量前,先要进行点位的选择,其基本要求有以下几点:1、周围应便于安臵接收设备和操作,视野开阔,市场内障碍物的高度角不宜超过15度;2、远离大功率无线电发射源(如电视台、电台、微波站等),其距离不小于200米;远离高压输电线和微波无线电信号传送通道,其距离不小于50米;3、附近不应有强烈反射卫星信号的物件(如大型建筑物、大面积水域等);4、地面基础稳定,易于点的保存;5、充分利用符合要求的旧有控制点。
GPS点位选好后,就可以架站进行静态数据采集了。
在采集静态数据时,一定要对中整平,在采集的过程中需要做好记录,包括每台GPS各自所对应的点位、不同时间段的静态数据对应的点位、采集静态数据时GPS 的天线高(S86量测高片高,S82量斜高)。
用GPS采集完静态数据后,就要对所采集的静态数据进行处理,得出各个点的坐标。
下面以为临城建设局做的GPS静态测量为例,介绍静态数据处理的过程。
打开GPS数据处理软件,在文件里面要先新建一个项目,需要填写项目名称、施工单位、负责人,并设臵坐标系统和控制网等级,基线的剔除方式。
在这里由于利用的旧有控制点所属的坐标系统是1954北京坐标系3度带,因此坐标系统设臵成1954北京坐标系3度带。
控制网等级设臵为E级,基线剔除方式选着自动。
在数据录入里面增加观测数据文件,若有已解算好的基线文件,则可以选择导入基线解算数据。
增加观测数据文件后,会在网图显示窗口中显示网图,还需要在观测数据文件中修改量取的天线高和量取方式(S86选择测高片,S82选择天线斜高)。
GPS静态数据检算各参数定义1.GPS观测数据获取GPS观测数据是通过GPS接收机来获取的,GPS接收机接收到来自卫星的信号后,在内部进行处理并输出观测数据。
GPS观测数据包括卫星的位置、卫星的伪距观测值、接收机时钟误差等。
2.数据处理方法GPS静态数据检算的数据处理方法主要包括数据预处理、观测值平差和参数计算等。
数据预处理的目的是通过消除一些误差项,提高数据的准确性。
观测值平差主要是根据最小二乘原理,对观测值进行加权平均,减小误差的影响。
参数计算则是根据预处理和平差后的数据,利用相应的模型和算法计算所需的参数。
3.计算参数定义在GPS静态数据检算中,常用的参数包括:(1)卫星的位置卫星的位置是指卫星在地球空间中的坐标,通常使用地心地固坐标系表示。
GPS静态数据检算中,通过观测数据,利用卫星轨道模型和算法计算得到。
(2)接收机的位置接收机的位置是指接收机在地球上的坐标,通常也使用地心地固坐标系表示。
GPS静态数据检算中,通过观测数据,利用卫星位置和伪距观测值,利用几何测量原理和算法计算得到。
(3)接收机的时钟误差接收机时钟误差是指接收机内部时钟和卫星时间的差异。
GPS静态数据检算中,通过观测数据,利用伪距观测值和卫星位置,利用时钟校准等方法计算得到。
(4)接收机的高度接收机的高度是指接收机所在的海拔高度,通常以海平面为基准。
GPS静态数据检算中,通过观测数据,利用大地水准面模型和算法计算得到。
(5)大气延迟大气延迟是指GPS信号在穿过大气层时受到的延迟现象。
GPS静态数据检算中,通过观测数据,利用大气延迟模型和算法计算得到。
(6)多路径效应多路径效应是指GPS信号在传播过程中,经过反射、散射等现象导致的信号多次到达接收机。
GPS静态数据检算中,通过观测数据,利用多路径模型和算法计算得到。
4.总结GPS静态数据检算是利用GPS观测数据进行数据处理,计算出各种参数的方法和定义。
通过获取GPS观测数据,进行数据预处理、观测值平差和参数计算等步骤,可以得到卫星位置、接收机位置、接收机时钟误差、接收机高度、大气延迟、多路径效应等参数。
GPS差分定位原理与解算方法介绍导语:全球定位系统(Global Positioning System,简称GPS)已经成为现代社会中不可或缺的一部分。
它的差分定位原理和解算方法是GPS定位精度提高的重要手段。
本文将从基本原理、差分定位方法和解算流程三个方面进行介绍,希望能带给读者更深入的了解。
一、GPS差分定位的基本原理GPS差分定位技术主要通过消除卫星信号传输过程中的时间延迟和误差,提高定位的精度。
其基本原理如下:1.1 卫星信号传输的时间延迟在GPS定位过程中,卫星信号需要经过大气层的传输。
然而,大气层中存在电离层和对流层等不均匀介质,会导致信号的传输速度和路径发生变化,从而引起时间延迟。
这种时间延迟是影响GPS定位精度的主要因素之一。
1.2 接收机和卫星钟差接收机和卫星钟差也会对GPS定位的精度产生影响。
接收机钟差是指接收机内部时钟的不准确性,而卫星钟差是指卫星内部时钟的不准确性。
误差累积后,会使GPS定位出现较大的误差。
二、GPS差分定位的方法GPS差分定位的方法有静态差分定位和动态差分定位两种。
2.1 静态差分定位静态差分定位主要适用于定位场景相对固定的情况,如建筑物测量和基础设施监测等。
它的工作原理是通过一个称为参考站(Reference Station)的固定GPS接收机对已知位置进行定位,并计算多普勒、钟差和大气层延迟等误差参数。
然后,通过无线通信将这些参数传输给移动接收机,移动接收机利用这些参数进行定位。
2.2 动态差分定位相对于静态差分定位,动态差分定位更适用于移动环境中的定位,如汽车导航和船舶定位等。
动态差分定位的关键是实时计算接收机位置的误差参数,并将其发送给移动接收机进行定位。
通常,这种方法需要两个或更多的接收机组成一个虚拟基线,并使用这些接收机之间的数据进行定位。
三、GPS差分定位的解算流程GPS差分定位的解算流程包括差分基准站的建立、测量数据的采集和处理。
3.1 差分基准站的建立差分基准站是差分定位的核心组成部分,它记录了精确的位置和时间信息,并对卫星信号进行实时观测和处理。
GPS 静态基线解算投影面与投影带选择(1) 有关投影变形平面控制测量投影面和投影带的选择,主要是解决长度变形问题。
这种投影变形主要是由于以下两种因素引起的:① 实测边长归算到参考椭球面上的变形影响,其值为1s ∆:RsH s m -=∆1式中:m H 为归算边高出参考椭球面的平均高程,s 为归算边的长度,R 为归算边方向参考椭球法截弧的曲率半径。
归算边长的相对变形:RHss m-=∆11s ∆值是负值,表明将地面实量长度归算到参考椭球面上,总是缩短的;1s ∆值与m H ,成正比,随m H 增大而增大。
② 将参考椭球面上的边长归算到高斯投影面上的变形影响,其值为2s ∆:02221s R y s mm⎪⎪⎭⎫⎝⎛=∆式中:10s s s ∆+=,即0s 为投影归算边长,m y 为归算边两端点横坐标平均值,m R 为参考椭球面平均曲率半径。
投影边长的相对投影变形为2221⎪⎪⎭⎫⎝⎛=∆mm R y s s2s ∆值总是正值,表明将椭球面上长度投影到高斯面上,总是增大的;2s ∆值随着my 平方成正比而增大,离中央子午线愈远,其变形愈大。
(2)工程测量平面控制网的精度要求工程测量控制网不但应作为测绘大比例尺图的控制基础,还应作为城市建设和各种工程建设施工放样测设数据的依据。
为了便于施工放样工作的顺利进行,要求由控制点坐标直接反算的边长与实地量得的边长,在长度上应该相等,这就是说由上述两项归算投影改正而带来的长度变形或者改正数,不得大于施工放样的精度要求。
一般来说,施工放样的方格网和建筑轴线的测量精度为1/5 000~1/20 000。
因此,由投影归算引起的控制网长度变形应小于施工放样允许误差的1/2,即相对误差为1/10 000~1/40 000,也就是说,每公里的长度改正数不应该大于10~2.5cm 。
投影变形的处理方法(1)通过改变m H 从而选择合适的高程参考面,将抵偿分带投影变形,这种方法通常称为抵偿投影面的高斯正形投影;(2)通过改变m y ,从而对中央子午线作适当移动,来抵偿由高程面的边长归算到参考椭球面上的投影变形,这就是通常所说的任意带高斯正形投影;(3)通过既改变m H (选择高程参考面),又改变m y (移动中央子午线),来共同抵偿两项归算改正变形,这就是所谓的具有高程抵偿面的任意带高斯正形投影。
静态GPS测量及数据处理研究摘要:GPS技术虽然开始应用,但在很多技术环节方面还很不成熟,处在摸索阶段。
本文将结合我地区实际,通过试验和研究应用全面系统地GPS 测量基层技术,主要研究内容包括以下几个方面:GPS 定位原理,GPS 静态定位在测量中的应用,布设GPS 网,GPS 静态的内业处理,GPS 注意事项。
主要论述GPS 基本原理及静态测量应用。
关键词:静态GPS;测量;数据处理;研究近年来,全球定位系统(GPS)作为新一代的卫星导航定位系统,经过二十多年的发展,已发展成为一种被广泛采用的系统,它的应用领域和应用前景已远远超出了该系统设计者当初的设想。
目前,它在航空、航天、军事、交通、运输、资源勘探、通信、气象等几乎所有领域中,都被作为一项非常重要的技术手段和方法,用来进行导航、定时、定位、地球物理参数测定和大气物理参数测定等。
特别在交通和地形测量方面尤为突出。
1 GPS 定位原理GPS(Global Pos itioning Sys tem)主要根据空中卫星发射的信号,确定空间卫星的轨道参数,计算出锁定的卫星在空间的瞬时坐标,然后将卫星看作为分布于空间的已知点,利用GPS 地面接收机,接收从某几颗(5 颗或 5 颗以上)中国领土上一般全天候有5- 6 颗)卫星在空间运行轨道上同一瞬时发出的超高频无线电信号,再经过系统的处理,获得地面点至这几颗卫星的空间距离,用空间后方距离交会的方法,求得地面点的空间位置。
GPS系统主要由三大部分组成:空间卫星部分、地面控制(监控站等)和用户设备部分(接收机等)。
1.1 GPS定位方法GPS定位的方法是有很多种,可以根据不同的需要用不同的定位方法。
GPS 定位方法可以依据不同的分类标准,一般采用定位时接收机的运动状态分类(单点定位和差分定位)。
1.1.1 动态定位主机相对于固定坐标有明显运动,这样的定位就叫动态定位。
动态定位分导航应用和工程精确测量。
在实际测量应用中导航就是我们要在所定位的区域里放线或沿预定航线到达目标。
关于不同GPS的静态混合解算目前市场上GPS型号众多,同一单位可能购买了不同厂家的GPS,这就带来了静态混算的问题。
不同厂家的接收机具有不同的数据格式,与接收机配套的数据处理软件(随机软件/商用软件)一般可以直接读取自己的格式数据,而不能读取其它厂家的格式数据,不利于多种型号的接收机联合作业。
为解决这一问题,1998年由Astronomical Institute,University of Berne的Werner Gurtner提出了RENIX第一个版本,当时的目的是处理EUREF 89数据,现在升级到了2.10版。
RENIX数据格式的特点:1、存储方式:ASCII2、内容:观测值、星历(导航信息)、气象数据、钟数据等3、特点:通用性强,已成为事实上的标准;利于多种型号的接收机联合作业;大多数软件能够处理。
RENIX数据格式内容文件类型。
ssss ddd f.yy t其中,SSSS:4字符测站名;DDD:年积日一天内的文件序;F:号(时段号),为0~9,A~Z,若为0,则表示文件包含当天的所有观测数据;YY:两位年号。
98:199800:200011:2011;T:文件类型;O:观测值;N:星历;M:气象数据;G:GLONASS星历;H:同步卫星GPS 载荷的导航电文;C:钟文件。
基本上所有的商用软件都可以把自己的数据转换成RENIX格式的数据,也可以解算此格式的数据。
在此介绍一下不同厂家GPS的数据转换,以徕卡LEICA Geo Office,天宝TGO1.6,topcon Pinnacle,以及南方静态数据为例。
1,Topcon Pinnacle数据转换图-12.天宝数据转换图-23、徕卡LEICA Geo Office图-3这几款软件转换数据时的注意事项:1、天线高的量取2、点名的更改天线高要求转换到相位中心,前缀要求前四位是点名如图-2点名为opki大部分软件对于解算自己的数据都可以,徕卡的LGO静态解算功能要单独购买,其他几款都可以免费获得。
实验报告GPS静态测量试验四GPS静态测量一、试验目的试验的目的是使同学了解采纳GPS定位技术建立工程控制网的过程,使所学理论学问与实践相结合,巩固和加深对新学问的理解,增加同学的动手能力,培养同学解决问题、分析问题的能力。
通过学习,应达到如下要求:1、娴熟把握GPS接收机的使用办法,外业观测的记录要求。
选点、埋石的要求。
2、合理分配时段、把握星历预告对时段的要求。
PDOP值的大小对观测精度的影响,图形结构的设计及外业工作。
外业观测时手机或对讲机的合理应用。
3、把握GPS控制测量数据处理处理的流程,能自立完成基线解算及网平差二、试验地点:城市学院校区内,试验学时:4小时三、试验前的预备工作1、试验内容介绍:对试验的任务和意义作好充分了解。
2、使用的仪器及物品:GPS接收机(含电池)、基座、脚架若干台,作业调度表,外业观测手簿,小钢尺,铅笔,安装有传输软件和数据处理软件的计算机,数据传输线若干根,便携式存储器。
3、搜集资料①广泛收集测区及其附近已有的控制测量成绩和地形图资料a.控制测量资料包括成绩表、点之记、展点图、路线图、计算说明和技术总结等。
收集资料时要查明施测年月、作业单位、依据规范、坐标系统和高程基准、施测等级和成绩的精度评定。
b.收集的地形图资料包括测区范围内及周边地区各种比例尺地形图和专业用图,主要查明地图的比例尺、施测年月、作业单位、依据规范、坐标系统、高程系统和成图质量等。
c.假如收集到的控制资料的坐标系统、高程系统不全都,则应收集、收拾这些不同系统间的换算关系。
(注:本试验采纳地科系2022年5月建立的校内控制网资料)①收集有关GPS测量定位的技术要求通过参考测量规范,收集有关的测量技术要求。
GPS测量规范包括:a.《全球定位系统GPS测量规范》GB/T 18314-2022b.《工程测量规范》GB 50026-2022四、GPS控制网的布设1、GPS网图形设计原则①GPS网应按照测区实际需要和交通情况,作业时的卫星情况,预期达到的精度,成绩的牢靠性以及工作效率,根据优化设计原则举行。
GPS测量数据处理中的基线解算与坐标转换方法GPS(全球定位系统)是一种使用卫星技术进行地理测量和定位的先进工具。
在实际的测绘和测量工作中,GPS测量数据处理是一个重要的环节。
其中,基线解算与坐标转换方法是其中的核心内容之一。
基线解算是指根据通过GPS观测得到的卫星观测数据,计算出两个或多个测站之间的距离和方向的过程。
对于两个测站之间的基线,首先需要解算出基线长度,即测站之间的直线距离。
然后,根据相同的基线长度,可以得到基线的坐标方向。
基线解算方法主要有静态基线解算、动态基线解算和RTK(实时动态差分)基线解算。
静态基线解算是利用长时间内(通常为几个小时到一天)的GPS观测数据,通过一些统计学方法计算出基线的精度。
这种方法适用于不需要实时性的测量任务,例如大范围的地形测量和控制网的建立。
静态基线解算的优点是计算结果精度高,但缺点是耗时较长。
动态基线解算是利用运动中的GPS接收机,通过较短时间内的观测数据,计算出基线的精度。
这种方法适用于需要实时性的测量任务,例如航空和航海等应用。
动态基线解算的优点是计算速度快,但相对于静态基线解算,精度稍低。
RTK(实时动态差分)基线解算是一种利用两个或多个接收机之间的无线电链路,进行实时差分校正的方法。
这种方法适用于需要高精度和实时性的测量任务,例如建筑物和道路测量。
RTK基线解算的优点是计算精度高且实时性强,但缺点是对设备的要求较高。
坐标转换是指将GPS观测得到的坐标转换为地理坐标系统或工程坐标系统中的相应坐标的过程。
常用的坐标转换方法有七参数法、四参数法和三参数法等。
七参数法是指通过观测得到的七个参数,包括三个旋转参数、三个平移参数和一个尺度参数,来实现坐标转换的方法。
这种方法适用于大范围的坐标转换,例如全球定位系统和国家坐标系之间的转换。
七参数法的优点是转换精度高,但缺点是计算复杂。
四参数法是指通过观测得到的四个参数,包括两个平移参数和两个尺度参数,来实现坐标转换的方法。