信道容量
- 格式:doc
- 大小:54.00 KB
- 文档页数:3
一、信道的概念信道,是信号在通信系统中传输的通道,是信号从发射端传输到接收端所经过的传输媒质,这是狭义信道的定义。
广义信道的定义除了包括传输媒质,还包括信号传输的相关设备。
信道容量是在通信信道上可靠地传输信息时能够达到的最大速率。
根据有噪信道编码定理,给定信道的信道容量是其以任意小的差错概率传输信息的极限速率。
信道容量的单位为比特每秒、奈特每秒等等。
香农在第二次世界大战期间发展出信息论,并给出了信道容量的定义和计算信道容量的数学模型。
他指出,信道容量是信道的输入与输出的互信息量的最大值,这一最大取值由输入信号的概率分布决定。
二、信道的分类(一)狭义信道的分类狭义信道,按照传输媒质来划分,可以分为有线信道、无线信道和存储信道三类。
1. 有线信道有线信道以导线为传输媒质,信号沿导线进行传输,信号的能量集中在导线附近,因此传输效率高,但是部署不够灵活。
这一类信道使用的传输媒质包括用电线传输电信号的架空明线、电话线、双绞线、对称电缆和同轴电缆等等,还有传输经过调制的光脉冲信号的光导纤维。
2. 无线信道无线信道主要有以辐射无线电波为传输方式的无线电信道和在水下传播声波的水声信道等。
无线电信号由发射机的天线辐射到整个自由空间上进行传播。
不同频段的无线电波有不同的传播方式,主要有:地波传输:地球和电离层构成波导,中长波、长波和甚长波可以在这天然波导内沿着地面传播并绕过地面的障碍物。
长波可以应用于海事通信,中波调幅广播也利用了地波传输。
天波传输:短波、超短波可以通过电离层形成的反射信道和对流层形成的散射信道进行传播。
短波电台就利用了天波传输方式。
天波传输的距离最大可以达到400千米左右。
电离层和对流层的反射与散射,形成了从发射机到接收机的多条随时间变化的传播路径,电波信号经过这些路径在接收端形成相长或相消的叠加,使得接收信号的幅度和相位呈随机变化,这就是多径信道的衰落,这种信道被称作衰落信道。
视距传输:对于超短波、微波等更高频率的电磁波,通常采用直接点对点的直线传输。
信道、信道容量、数据传输速率简介:信道、信道容量、数据传输速率(比特率)、电脑装置带宽列表一、信道的概念信道,是信号在通信系统中传输的通道,是信号从发射端传输到接收端所经过的传输媒质,这是狭义信道的定义。
广义信道的定义除了包括传输媒质,还包括信号传输的相关设备。
信道容量是在通信信道上可靠地传输信息时能够达到的最大速率。
根据有噪信道编码定理,给定信道的信道容量是其以任意小的差错概率传输信息的极限速率。
信道容量的单位为比特每秒、奈特每秒等等。
香农在第二次世界大战期间发展出信息论,并给出了信道容量的定义和计算信道容量的数学模型。
他指出,信道容量是信道的输入与输出的互信息量的最大值,这一最大取值由输入信号的概率分布决定。
二、信道的分类(一)狭义信道的分类狭义信道,按照传输媒质来划分,可以分为有线信道、无线信道和存储信道三类。
1. 有线信道有线信道以导线为传输媒质,信号沿导线进行传输,信号的能量集中在导线附近,因此传输效率高,但是部署不够灵活。
这一类信道使用的传输媒质包括用电线传输电信号的架空明线、电话线、双绞线、对称电缆和同轴电缆等等,还有传输经过调制的光脉冲信号的光导纤维。
2. 无线信道无线信道主要有以辐射无线电波为传输方式的无线电信道和在水下传播声波的水声信道等。
无线电信号由发射机的天线辐射到整个自由空间上进行传播。
不同频段的无线电波有不同的传播方式,主要有:地波传输:地球和电离层构成波导,中长波、长波和甚长波可以在这天然波导内沿着地面传播并绕过地面的障碍物。
长波可以应用于海事通信,中波调幅广播也利用了地波传输。
天波传输:短波、超短波可以通过电离层形成的反射信道和对流层形成的散射信道进行传播。
短波电台就利用了天波传输方式。
天波传输的距离最大可以达到400千米左右。
电离层和对流层的反射与散射,形成了从发射机到接收机的多条随时间变化的传播路径,电波信号经过这些路径在接收端形成相长或相消的叠加,使得接收信号的幅度和相位呈随机变化,这就是多径信道的衰落,这种信道被称作衰落信道。
信道容量的公式信道容量是通信领域中的一个重要概念,它描述了在给定噪声条件下,信道能够可靠传输信息的最大速率。
信道容量的公式是由克劳德·香农(Claude Shannon)提出的,这个公式为 C = B * log₂(1 + S/N) ,其中 C 表示信道容量,B 表示信道带宽,S 表示信号功率,N 表示噪声功率。
咱们先来说说这个信道带宽 B 。
想象一下,信道就像是一条公路,带宽呢,就好比公路的宽度。
公路越宽,能同时通过的车辆就越多;同理,信道带宽越大,能同时传输的信息也就越多。
比如说,我们现在的 5G 网络,它的信道带宽可比之前的 4G 大多了,所以传输速度那叫一个快。
再来说说信号功率 S 和噪声功率 N 。
这俩就像是在公路上行驶的车辆,信号是正常行驶的车,噪声就是捣乱的车。
信号功率越大,就相当于正常行驶的车越多,信息传输就越顺畅;而噪声功率越大,就像捣乱的车越多,会干扰正常的信息传输。
我记得有一次,我家里的网络出了问题,看个视频老是卡顿。
我就琢磨着,这是不是信道容量不够啊。
于是我开始研究,发现原来是周围太多人同时使用网络,导致噪声功率增大,影响了我家的网络速度。
就好像公路上突然涌入了好多乱开的车,把路都堵了,我正常的信息传输也被堵住了。
那这个信道容量的公式有啥用呢?比如说,在设计通信系统的时候,工程师们可以根据这个公式来确定需要多大的带宽,以及如何控制信号功率和噪声功率,以达到期望的信道容量,保证信息能够快速、准确地传输。
在实际应用中,比如卫星通信。
卫星在太空中向地球发送信号,由于距离远,信号会衰减,噪声也会增加。
这时候,就得用信道容量的公式来计算,怎样调整参数,才能让我们在地球上能清晰地接收到卫星传来的信息,像看电视直播、导航定位啥的。
还有无线局域网,像咱们家里的Wi-Fi。
如果同时连接的设备太多,就可能会导致信道容量不足,网速变慢。
这时候,我们可以通过优化路由器的设置,增加带宽,或者减少周围的干扰源,来提高信道容量,让网络更顺畅。
无扰信道的信道容量
无扰信道的信道容量是指在没有任何干扰的情况下,信道能够传输的最大信息量。
根据香农定理(Shannon's theorem),无扰信道的信道容量可以通过以下公式计算:
C = B ×log2(1 + S/N)。
其中,C表示信道容量,B表示信道的带宽,S表示信号的平均功率,N表示信道的噪声功率。
这个公式表示,在给定带宽和信噪比的情况下,信道能够传输的最大信息量与信噪比成正比。
当信噪比很低时,信道容量会接近零;而当信噪比很高时,信道容量趋近于带宽的上限。
这里所讨论的是理想情况下的无扰信道,现实中的信道往往都会受到各种干扰,因此实际的传输速率可能会低于信道容量。
信道带宽和信道容量信道是通信双方之间以传输介质为基础传递信号的通路,由传输介质及其两端的信道设备共同构成。
信号带宽是信号频谱的宽度。
信道带宽则限定了允许通过该信道的信号下限频率和上限频率,也就是限定了一个通频带。
信道容量表示一个信道的最大数据传输速率。
信道容量与数据传输速率的区别是,前者表示信道的最大数据传输速率,是信道传输数据能力的极限,而后者是实际的数据传输速率。
它们的关系可以比喻为高速公路上的最大限速与汽车实际速度的关系。
带宽:一般用来描述两种对象,一个是信道(Channel),另一个是信号(signal)。
对于信道来说,又可分为两种,模拟信道和数字信道。
对信号来说,也可分为两种,数字信号和模拟信号。
信道的带宽:对信道来说,带宽是衡量其通信能力的大小的指标。
对模拟信道,使用信道的频带宽度来衡量。
如果一个信道,其最低可传输频率为f1的信号,最高可传输频率为f2的信号,则该模拟信道的带宽是:模拟信道的带宽= f2 - f1 (f2 > f1)描述模拟信道带宽时,带宽的单位是Hz。
对于数字信道的通信能力,使用信道的最大传输速率来衡量。
如果一个数字信道,其最大传输速率是100Mbps,我们称其带宽为100Mbps。
描述数字信道带宽时,带宽的单位是bps( bit per second)信号的带宽:模拟信号的带宽是指信号的波长或频率的范围,用于衡量一个信号的频率范围,单位是Hz(每秒种电波的重复震动次数)。
一般的电信号(模拟信号),都是由各种不同频率的电磁波所组成,对于这个电信号来说,其包含的电磁波的频率范围,称为这个电信号的带宽。
比如人的声波信号,其绝大部分的能量,集中在300Hz ~ 3400Hz这个范围,因此我们称语音信号的带宽是3.1Khz(3400-300)。
模拟信号的带宽单位与模拟信道带宽相同。
数字信号的带宽使用数字信号的传输速度来表示。
数字信号一般传输速率是可变的。
在传输数字信号时,可以用最大信号速率(峰值速率)、平均信号速率或最小信号速率来描述数字信号。
信道容量和误码率的关系
信道容量和误码率之间有着密切的关系,它们在通信系统中起着至关重要的作用。
信道容量是指在特定信道条件下能够传输的最大信息率,通常以每秒传输的比特数来衡量。
而误码率则是指在传输过程中发生比特错误的概率。
首先,信道容量和误码率之间的关系可以从理论上通过香农定理来解释。
香农定理指出,在给定的信道带宽和信噪比条件下,存在一个理论上的最大传输速率,即信道容量。
当信道的误码率增加时,传输过程中出现比特错误的概率也会增加,这意味着在相同的信道条件下,实际传输速率会受到影响,从而降低了信道的有效容量。
其次,从实际通信系统的角度来看,信道容量和误码率之间的关系也非常明显。
在实际的通信环境中,信道的质量会受到多种因素的影响,包括信号衰减、多径效应、干扰噪声等。
这些因素都会导致信道的误码率增加,从而降低了信道的实际传输容量。
通信系统设计中通常需要考虑如何在保证一定的误码率条件下尽可能地提高信道容量,这需要采用一系列的信道编码、调制等技术手段来实现。
此外,误码率对于不同类型的通信应用也有着不同的影响。
例如,在对可靠性要求较高的通信系统中(如无线通信、卫星通信等),需要将误码率控制在较低的水平,以确保数据传输的可靠性
和完整性。
而在一些对实时性要求较高的应用中(如音视频传输),可以适当地容忍一定程度的误码率,以换取更高的传输速率和效率。
综上所述,信道容量和误码率之间的关系是密切相关的。
在通
信系统设计和实际应用中,需要综合考虑信道条件、误码率要求以
及传输效率等因素,以实现对信道容量和误码率的合理平衡。
当一个信道受到加性高斯噪声的干扰时,如果信道传输信号的功率和信道的带宽受限,则这种信道传输数据的能力将会如何?这一问题,在信息论中有一个非常肯定的结论――高斯白噪声下关于信道容量的山农(Shannon)公式。
本节介绍信道容量的概念及山农定理。
1、信道容量的定义
在信息论中,称信道无差错传输信息的最大信息速率为信道容量,记为。
从信息论的观点来看,各种信道可概括为两大类:离散信道和连续信道。
所谓离散信道就是输入与输出信号都是取值离散的时间函数;而连续信道是指输入和输出信号都是取值连续的。
可以看出,前者就是广义信道中的编码信道,后者则是调制信道。
仅从说明概念的角度考虑,我们只讨论连续信道的信道容量。
2. 山农公式
假设连续信道的加性高斯白噪声功率为(W),信道的带宽为(Hz),信号功率为(W),则该信道的信道容量为
这就是信息论中具有重要意义的山农公式,它表明了当信号与作用在信道上的起伏噪声的平均功率给定时,具有一定频带宽度的信道上,理论上单位时间内可能传输的信息量的极限数值。
由于噪声功率与信道带宽有关,故若噪声单边功率谱密度为(W/Hz),则噪声功率。
因此,山农公式的另一种形式为
由上式可见,一个连续信道的信道容量受、、三个要素限制,只要这三个要素确定,则信道容量也就随之确定。
3. 关于山农公式的几点讨论
山农公式告诉我们如下重要结论:
(1)在给定、的情况下,信道的极限传输能力为,而且此时能够做到无差错传输(即差错率为零)。
这就是说,如果信道的实际传输速率大于值,则无差错传输在理论上就已不可能。
因此,实际传输速率一般不能大于信道容量,除非允许存在一定的差错率。
(2)提高信噪比(通过减小或增大),可提高信道容量。
特别是,若,则,这意味着无干扰信道容量为无穷大;
(3)增加信道带宽,也可增加信道容量,但做不到无限制地增加。
这是因为,如果、一定,有
(4)维持同样大小的信道容量,可以通过调整信道的及来达到,即信道容量可以通过系统带宽与信噪比的互换而保持不变。
例如,如果=7,=4000Hz,则可得=l2×b/s;但是,如果=l5,=3000Hz,则可得同样数值值。
这就提示我们,为达到某个实际传输速率,在系统设计时可以利用山农公式中的互换原理,确定合适的系统带宽和信噪比。
通常,把实现了极限信息速率传送(即达到信道容量值)且能做到任意小差错率的通信系统,称为理想通信系统。
山农只证明了理想通信系统的“存在性”,却没有指出具体的实现方法。
但这并不影响山农定理在通信系统理论分析和工程实践中所起的重要指导作用。