拉普拉斯(Laplace)变换.
- 格式:ppt
- 大小:393.50 KB
- 文档页数:26
laplace变换公式表Laplace变换公式表引言Laplace变换是数学中一种常见的变换方法,广泛应用于控制理论、信号处理、电路分析等领域。
本文将介绍Laplace变换及其公式表,以帮助读者更好地理解和应用这一重要的数学工具。
一、Laplace变换简介Laplace变换是由法国数学家皮埃尔-西蒙·拉普拉斯于18世纪末提出的一种数学变换方法。
它将一个函数f(t)在复平面上的运算转换为另一个函数F(s),其中s是复变量。
Laplace变换在时域和频域之间建立了一种联系,使得复杂的微分方程可以转化为简单的代数方程,从而简化了问题的求解过程。
二、Laplace变换公式表下面是一些常用的Laplace变换公式,它们在不同的应用中起到重要的作用:1. 常数函数:L{1} = 1/s这个公式表明,Laplace变换会将一个常数函数1转换为1/s,其中s是复变量。
2. 单位阶跃函数:L{u(t)} = 1/s单位阶跃函数u(t)是一个在t=0时突变为1的函数。
该公式表明,Laplace变换会将单位阶跃函数转换为1/s。
3. 指数函数:L{e^at} = 1/(s-a)指数函数e^at是一个在复平面上以指数形式增长或衰减的函数。
该公式表明,Laplace变换会将指数函数转换为1/(s-a),其中a是一个常数。
4. 正弦函数:L{sin(at)} = a/(s^2+a^2)正弦函数sin(at)是一个周期性的函数。
该公式表明,Laplace变换会将正弦函数转换为a/(s^2+a^2)。
5. 余弦函数:L{cos(at)} = s/(s^2+a^2)余弦函数cos(at)也是一个周期性的函数。
该公式表明,Laplace变换会将余弦函数转换为s/(s^2+a^2)。
6. 指数衰减函数:L{e^(-at)u(t)} = 1/(s+a)指数衰减函数e^(-at)是一个在t>0时以指数形式衰减的函数。
该公式表明,Laplace变换会将指数衰减函数转换为1/(s+a)。
Laplace拉氏变换公式表1. 常数变换:对于常数C,其拉普拉斯变换为C/s,其中s是复数频率。
2. 幂函数变换:对于幂函数t^n,其中n为实数,其拉普拉斯变换为n!/s^(n+1)。
3. 指数函数变换:对于指数函数e^(at),其中a为实数,其拉普拉斯变换为1/(sa)。
4. 正弦函数变换:对于正弦函数sin(at),其中a为实数,其拉普拉斯变换为a/(s^2+a^2)。
5. 余弦函数变换:对于余弦函数cos(at),其中a为实数,其拉普拉斯变换为s/(s^2+a^2)。
6. 双曲正弦函数变换:对于双曲正弦函数sinh(at),其中a为实数,其拉普拉斯变换为a/(s^2a^2)。
7. 双曲余弦函数变换:对于双曲余弦函数cosh(at),其中a为实数,其拉普拉斯变换为s/(s^2a^2)。
8. 指数衰减正弦函数变换:对于指数衰减正弦函数e^(at)sin(bt),其中a和b为实数,其拉普拉斯变换为b/(s+a)^2+b^2。
9. 指数衰减余弦函数变换:对于指数衰减余弦函数e^(at)cos(bt),其中a和b为实数,其拉普拉斯变换为s+a)/(s+a)^2+b^2。
10. 指数增长正弦函数变换:对于指数增长正弦函数e^(at)sin(bt),其中a和b为实数,其拉普拉斯变换为b/(sa)^2+b^2。
Laplace拉氏变换公式表11. 幂函数与指数函数的乘积变换:对于函数t^n e^(at),其中n为实数,a为实数,其拉普拉斯变换为n!/(sa)^(n+1)。
12. 幂函数与正弦函数的乘积变换:对于函数t^n sin(at),其中n为实数,a为实数,其拉普拉斯变换可以通过分部积分法得到。
13. 幂函数与余弦函数的乘积变换:对于函数t^n cos(at),其中n为实数,a为实数,其拉普拉斯变换可以通过分部积分法得到。
14. 指数函数与正弦函数的乘积变换:对于函数e^(at) sin(bt),其中a和b为实数,其拉普拉斯变换为b/(sa)^2+b^2。
拉式变化公式表拉普拉斯变换(Laplace Transform)公式表:一、基本函数的拉普拉斯变换。
1. 单位阶跃函数。
- 函数定义:u(t)=0, t < 0 1, t≥0- 拉普拉斯变换:L[u(t)]=(1)/(s), Re(s)>02. 冲激函数(狄拉克δ函数)- 函数定义:δ(t),满足∫_-∞^∞δ(t)dt = 1且δ(t)=0 for t≠0 - 拉普拉斯变换:L[δ(t)] = 13. 指数函数。
- 函数定义:f(t)=e^at,其中a为常数。
- 拉普拉斯变换:L[e^at]=(1)/(s - a), Re(s)>a4. 正弦函数。
- 函数定义:f(t)=sin(ω t),其中ω为角频率。
- 拉普拉斯变换:L[sin(ω t)]=(ω)/(s^2)+ω^{2}, Re(s)>0 5. 余弦函数。
- 函数定义:f(t)=cos(ω t)- 拉普拉斯变换:L[cos(ω t)]=(s)/(s^2)+ω^{2}, Re(s)>0二、拉普拉斯变换的性质。
1. 线性性质。
- 若L[f_1(t)] = F_1(s),L[f_2(t)]=F_2(s),则对于任意常数a和b,L[af_1(t)+bf_2(t)]=aF_1(s)+bF_2(s)2. 时移性质。
- 若L[f(t)] = F(s),则L[f(t - t_0)u(t - t_0)]=e^-st_0F(s),其中t_0>03. 频移性质。
- 若L[f(t)] = F(s),则L[e^atf(t)]=F(s - a)4. 尺度变换性质。
- 若L[f(t)] = F(s),则L[f(at)]=(1)/(a)F((s)/(a)),a>05. 微分性质。
- 一阶导数:若L[f(t)] = F(s),则L[f^′(t)]=sF(s)-f(0)- 二阶导数:L[f^′′(t)] = s^2F(s)-sf(0)-f^′(0)- 一般地,n阶导数:L[f^(n)(t)]=s^nF(s)-s^n - 1f(0)-s^n - 2f^′(0)-·s - f^(n - 1)(0)6. 积分性质。
拉普拉斯变换性质
理解
拉普拉斯变换(Laplace transformation)是在积分变换中把连续时变信号转换成正负无穷大范围的指数型时定信号的单边变换,它是一种统计与信号分析的重要算法,建立在Fourier变换的基础上,被广泛应用于数学、电子、通讯及其他领域。
拉普拉斯变换的核心思想是用一个类似函数的谱线替换一个时变函数,解决复杂的求解问题,能够将难以求解的时变函数拆分成一组解析函数,利用标准函数轻松地求解出结果,从而提高求解算法的效率。
拉普拉斯变换具有以下性质:
(1)线性性质:在拉普拉斯变换中,加性和乘性定律成立,也即可以用拉普拉斯变换把复合函数分解成基本函数的叠加,且变换后的结果是它们变换的乘积的和。
(2)卷积性质:拉普拉斯变换能够有效地把连续时变信号的卷积操作转换成简单的乘法操作,拉普拉斯变换可以将连续时变函数的卷积操作转换为拉普拉斯变换之后函数的乘积操作。
(3)滞后性质:拉普拉斯变换的结果,只与函数的滞后的部分有关,因此可以使用拉普拉斯变换来实现信号的滞后处理。
(4)收敛性质:拉普拉斯变换的结果受被变换函数的收敛性的影响,而不受其具体形式的影响。
因此,对收敛的函数,可以通过拉普拉斯变换将其变换为正负无穷大范围的指数函数,使其受到解析处理,然后得到函数解析形式的结果。
拉普拉斯变换拉普拉斯(Laplace)变换是分析和求解常系数线性微分方程的一种简便的方法,而且在自动控制系统的分析和综合中也起着重要的作用.本章将扼要地介绍拉普拉斯变换(以下简称拉氏变换)的基本概念、主要性质、逆变换以及它在解常系数线性微分方程中的应用.1拉氏变换的基本概念在代数中,直接计算是很复杂的,而引用对数后,可先把上式变换为,然后通过查常用对数表和反对数表,就可算得原来要求的数.这是一种把复杂运算转化为简单运算的做法,而拉氏变换则是另一种化繁为简的做法.1.1 拉氏变换的基本概念定义 设函数当时有定义,若广义积分在的某一区域内收敛,则此积分就确定了一个参量为的函数,记作,即(7-1)称(1-1)式为函数的拉氏变换式,用记号表示.函数称为的拉氏变换(Laplace) (或称为的象函数).函数称为的拉氏逆变换(或称为象原函数),记作,即.关于拉氏变换的定义,在这里做两点说明:(1) 在定义中,只要求在时有定义.为了研究拉氏变换性质的方便,以后总假定在时,.(2)在较为深入的讨论中,拉氏变换式中的参数是在复数范围内取值.为了方便起见,本章我们把作为实数来讨论,这并不影响对拉氏变换性质的研究和应用.(3)拉氏变换是将给定的函数通过广义积分转换成一个新的函数,它是一种积分变换.一般来说,在科学技术中遇到的函数,它的拉氏变换总是存在的.例7-1 求一次函数(为常数)的拉氏变换.解.1.2 单位脉冲函数及其拉氏变换在研究线性电路在脉冲电动势作用后所产生的电流时,要涉及到我们要介绍的脉冲函数,在原来电流为零的电路中,某一瞬时(设为)进入一单位电量的脉冲,现要确定电路上的电流,以表示上述电路中的电量,则由于电流强度是电量对时间的变化率,即328.957812028.6⨯⨯=N 53)164.1(⨯164.1lg 53)20lg 28.9lg 5781(lg 3128.6lg lg ++-+=N N )(t f 0≥t dte tf pt ⎰∞+-0)(P P )(P F dte tf P F pt ⎰∞+-=)()()(t f )()]([P F t f L =)(P F )(t f )(t f )(t f )(P F )(P F )()]([1t f P F L =-)]([)(1P F L t f -=)(t f 0≥t 0<t 0)(=t f P P at t f =)(a t ,0≥⎰⎰⎰∞+-∞+-∞+-∞+-+-=-==00][)(][dte pa e p at etd pa dt ateat L pt pt ptpt2020][0p a e p a dt e papt pt =-=+=∞+-∞+-⎰)0(>p 0=t )(t i )(t Q ⎩⎨⎧=≠=.0,1,0,0)(t t t Q,所以,当时,;当时,.上式说明,在通常意义下的函数类中找不到一个函数能够用来表示上述电路的电流强度.为此,引进一个新的函数,这个函数称为狄拉克函数.定义设,当0时,的极限称为狄拉克(Dirac )函数,简称为函数.当时,的值为;当时,的值为无穷大,即.和的图形如图7-1和图7-2所示.显然,对任何,有,所以.工程技术中,常将函数称为单位脉冲函数,有些工程书上,将函数用一个长度等于的有向线段来表示(如图7-2所示),这个线段的长度表示函数的积分,叫做函数的强度.例1-2 求的拉氏变换.解 根据拉氏变换的定义,有,即.例1-3 求单位阶梯函数的拉氏变换.解,.t t Q t t Q dt t dQ t i t ∆∆∆)()(lim )()(0-+==→0≠t 0)(=t i 0=t ∞=-=-+=→→)1(lim )0()0(lim)0(00t t Q t Q i t t ∆∆∆∆∆⎪⎩⎪⎨⎧>≤≤<=εεεδεt t t t ,,,00100)(ε→)(t εδ)(lim )(0t t εεδδ→=-δ0≠t )(t δ00=t )(t δ⎩⎨⎧=∞≠=0,0,0)(t t t δ)(t εδ)(t δ0>ε11)(0==⎰⎰∞+∞-dt dt t εεεδ1)(=⎰∞+∞-dt t δ-δ-δ1-δ-δ)(t δdte dt edt edt et t L pt ptptpt-→∞+-→-→∞+-⎰⎰⎰⎰=⋅+==εεεεεεεεδδ01lim0lim)1lim()()]([11lim 1)()1(lim 11lim 1][1lim 00000==''-=-=-=-→-→-→-→εεεεεεεεεεεp p p pt pe p e p e p p e 1)]([=t L δ⎩⎨⎧≥<=0,10,0)(t t t u p e p dt e dt et u t u L pt pt pt1]1[1)()]([00=-=⋅==∞+-∞+-∞+-⎰⎰)0(>p例1-4求指数函数(为常数)的拉氏变换. 解 ,即.类似可得;.习题1–1求1-4题中函数的拉氏变换1..2..3.4.是常数).1.2 拉氏变换的性质拉氏变换有以下几个主要性质,利用这些性质,可以求一些较为复杂的函数的拉氏变换. 性质1 (线性性质) 若 ,是常数,且,,则. (7-2)证明.例7-5 求下列函数的拉氏变换:(1); (2).解(1).(2). 性质2(平移性质) 若,则(为常数). (7-3)证明.位移性质表明:象原函数乘以等于其象函数左右平移个单位.ate tf =)(a dt e dt e e e L t a p ptat at ⎰⎰∞+--∞+-=⋅=0)(0][)(1a p a p >-=)(1][a p a p e L at >-=)0(][sin 22>+=p p t L ωωω)0(][cos 22>+=p p pt L ωωte tf 4)(-=2)(t t f =atte t f =)(ϕωϕω,()sin()(+=t t f 1a 2a )()]([11p F t f L =)()]([22p F t f L =)]([)]([)]()([22112211t f L a t f L a t f a t f a L +=+)()(2211p F a P F a +=dte tf a dt et f a dt et f a t f a t f a t f a L pt ptpt-∞+-∞+-∞+⎰⎰⎰+=+=+)()()]()([)]()([02211221102211)()()]([)]([22112211p F a p F a t f L a t f L a +=+=)1(1)(at e a t f --=t t t f cos sin )(=)(1}11{1]}[]1[{1]1[1)]1(1[a p p a p p a e L L a e L a e a L at at at +=+-=-=-=----412221]2sin 21[]cos [sin 222+=+⋅==p p t L t t L )()]([p F t f L =)()]([a p F t f e L at -=a ⎰⎰∞+--∞+--===)(0)()()()]([a p F dt e t f dt et f e t f e L t a p ptat atat e a例1-6 求 ,和. 解 因为,,,由位移性质即得性质3(滞后性质) 若,则. (7-4)证明=,在拉氏变换的定义说明中已指出,当时,.因此,对于函数,当(即)时,,所以上式右端的第一个积分为,对于第二个积分,令,则滞后性质指出:象函数乘以等于其象原函数的图形沿轴向右平移个单位(如图1-3所示).由于函数是当时才有非零数值.故与相比,在时间上滞后了一个值,正是这个道理,我们才称它为滞后性质.在实际应用中,为了突出“滞后”这一特点,常在这个函数上再乘,所以滞后性质也表示为.例1-7 求.解 因为,由滞后性质得. 例1-8 求.解 因为,所以.例1-9 求下列函数的拉氏变换:(1) (2)解 (1)由图7-4容易看出,当时,的值是在的基础上加上了(),][at te L ]sin [t e L atω-]cos [t e L at ω-21][p t L =22][sin ωωω+=p t L 22][cos ωω+=p p t L 。