人教版-数学-七年级上册-有理数 教材内容解析与重难点突破
- 格式:doc
- 大小:28.00 KB
- 文档页数:3
人教版七年级数学上册:1.2.1《有理数》说课稿1一. 教材分析《有理数》是人教版七年级数学上册第一章第二节的第一课时,本节课的内容主要包括有理数的定义、分类以及有理数的大小比较。
这部分内容是学生学习初中数学的基础,对于学生后续学习代数、几何等知识具有重要意义。
教材通过引入日常生活中熟悉的事物,如温度、高度等,引导学生认识有理数,并通过对有理数的分类和大小比较,让学生掌握有理数的基本性质。
二. 学情分析七年级的学生已经具备了一定的数学基础,对实数有一定的了解。
但在理解有理数的定义和性质方面,学生可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的认知水平,通过生动形象的例子和生活中的实际问题,帮助学生理解和掌握有理数的概念。
三. 说教学目标1.知识与技能:使学生理解有理数的定义,掌握有理数的分类和大小比较方法。
2.过程与方法:通过观察、思考、交流等过程,培养学生分析问题和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神。
四. 说教学重难点1.重点:有理数的定义、分类和大小比较。
2.难点:有理数的概念和学生对有理数性质的理解。
五. 说教学方法与手段1.教学方法:采用启发式教学法、小组合作学习法、案例教学法等。
2.教学手段:利用多媒体课件、实物模型、教学卡片等辅助教学。
六. 说教学过程1.导入:通过展示生活中熟悉的事物,如温度、高度等,引导学生思考这些事物可以用哪种数学符号来表示。
2.新课导入:介绍有理数的定义,让学生观察和思考有理数的性质。
3.案例分析:通过具体案例,让学生了解有理数的分类和大小比较。
4.课堂练习:设计一些练习题,让学生巩固所学知识。
5.小组讨论:让学生分组讨论,共同探究有理数的性质。
6.总结:对本节课的内容进行总结,强调有理数的重要性和应用。
7.课后作业:布置一些作业,让学生进一步巩固有理数的概念。
七. 说板书设计板书设计要有条理,突出有理数的关键概念和性质。
人教版七年级数学上册第一章有理数全章知识点总结归纳人教版七年级数学上册第一章有理数全章知识点归纳一、知识要点1、正数和负数1) 大于的数为正数。
2) 在正数前面加上负号“-”的数为负数。
3) 数既不是正数也不是负数,是正数与负数的分界。
4) 在同一个问题中,分别用正数与负数表示的量具有相反的意义。
2、有理数1) 凡能写成分数形式的数,都是有理数,整数和分数统称有理数。
注意:即不是正数,也不是负数;-a不一定是负数,如:-(-2)=4,这个时候的a=-2.不是有理数;正有理数:正整数、正分数。
负有理数:负整数、负分数。
零。
3) 自然数:和正整数;a>:a是正数;a<:a是负数;a≥0:a是正数或是非负数;a≤0:a是负数或是非正数。
3、数轴1) 用一条直线上的点表示数,这条直线叫做数轴。
它满足以下要求:在直线上任取一个点表示数,这个点叫做原点;通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3…;从原点向左,用类似的方法依次表示-1,-2,-3…2) 数轴的三要素:原点、正方向、单位长度。
3) 画数轴的步骤:一画(画一条直线并选取原点);二取(取正反向);三选(选取单位长度);四标(标数字)。
数轴的规范画法:是条直线,数字在下,字母在上。
注意:所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示有理数。
4) 一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
4、相反数1) 只有符号不同的两个数叫做互为相反数。
注意:a的相反数是-a;a-b的相反数是b-a;a+b的相反数是-(a+b)=-a-b;非零数的相反数的商为-1;相反数的绝对值相等。
2、设a是一个正数,数轴上与原点的距离是a的点有两个,它们分别在原点的两侧,表示a和-a。
新人教版七年级数学上册第一章有理数教材分析与教学建议一、课标分析:(一)地位和作用:有理数是数与代数领域,数与式主题中的重要内容之一,是学生继续学习无理数实数的基础,也学生是继续研究代数式、方程、函数的基础。
本章的主要内容包括负数和有理数的相关概念,这是学生在小学学习的正有理数及其运算的基础上,把数的认识扩大到有理数范围,初步体会数系扩充中数集的扩大,发展了学生的抽象能力和推理能力。
那在这一章当中,数轴是数形结合思想的一个重要载体,是学生后续学习实数、不等式、平面直角坐标系等内容的基础,通过数轴的学习和使用可以进一步地发展学生的抽象能力和几何直观素养。
(二)课标要求:1、经历从实际问题中抽象出负数的过程,会用正数和负数表示具体情境中具有相反意义的量理解负数和有理数的意义,初步感悟数域扩充,发展抽象能力。
2、能用数轴上的点表示有理数,能借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数和绝对值的方法,初步体会数形结合的思想方法,培养几何直观素养。
3、通过探究获得比较有理数大小的方法,能比较有理数的大小,初步体会代数推理。
二、内容安排:本章的主要内容:一是引入负数,把数的范围扩大到有理数;二是学习数轴这一重要数学工具并借助数轴理解相反数和绝对值的意义,探究比较有理数大小的方法。
(一)具体内容:1.1正数与负数;1.2有理数及其大小比较和数学活动。
(二)教学课时安排:约需9课时,具体分配如下(仅供参考):1.1正数和负数 1课时1.2有理数及其大小比较(共8课时)1.1.2有理数的概念 1课时1.2.2 数轴 1课时1.2.3 相反数 1课时1.2.4 绝对值2课时1.2.5 有理数的大小比较 1课时数学活动 1课时小结 1课时(三)本章知识结构图:有理数 相反数正数和负数 绝对值 数轴 有理数的大小比较三、2024 版新教材与 2012 版教材内容对比分析:2024年4月,教育部印发《义务教育课程方案和课程标准(2024版)》,开启了义务教育课程改革的新征程。
有理数的乘法第2课时教材内容解析与重难点突破1.教材分析本节课内容分为两个部分,第一部分是若干个有理数的乘法运算,第二部分是乘法的运算律及其简单应用.若干个有理数相乘的符号法则与有理数乘法的运算律是本节课的教学重点,而负号问题的处理(包括若干个非零有理数相乘符号法则的应用,以及分配律使用时负号的处理)是本节课的教学难点.本节课教学,要选择一定量有代表性、典型性的问题,让学生练习以巩固若干个有理数相乘的符号法则及有理数乘法运算的运算律.2.重难点突破⑴多个有理数乘法的符号法则突破建议①探究多个有理数相乘的符号法则,可以利用两个有理数的乘法法则,通过若干个具体的正、负数相乘逐一计算验证,得到“若干个不为0的有理数相乘,其积的符号由负因数的个数决定”的结论.②几个不等于0的有理数相乘,先根据负因数的个数确定积的符号,然后再把各因数的绝对值相乘.若负因数的个数是偶数,其积为正数;若负因数的个数是奇数,其积为负数.③多个有理数相乘,若有一个数是0,则可以不逐一计算,直接得出最终结果为0.反之,如果若干个有理数相乘的积为0,那么这些因数中,至少有一个因数为0.例1.五个有理数的积为负数,则五个数中负数的个数是( ).A.1B.3C.5D.1或3或5解析:多个有理数相乘的符号法则:几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.由于本题中5个有理数的积为负数,负数的个数是奇数个,则五个数中负数的个数可能是1,或3,或5,因此答案应选D.例2.2013个数相乘,若积为0,那么这2013个数( ).A.都为0B.只有一个为0C.至少一个为0D.有两个数互为倒数解析:根据“0乘以任何数都等于0”可知,这2013个数相乘积为0,则其中至少有一个因数为0,所以答案应选择C.⑵乘法的运算律突破建议①有理数乘法的运算律有3条,分别是乘法的交换律、结合律与分配律.有理数乘法的交换律与结合律与有理数加法的交换律、结合律类似,只是运算不同而已,一个是加法,一个是乘法.有理数乘法的交换律是“交换两个因数的位置,积不变”;有理数乘法的结合律是“三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变”.教学时,可以使用类比的方法,既给学生以熟悉感,同时又要说明区别.②分配律涉及到有理数的乘法、加法两种运算.正向运用去掉了括号,逆向运用提取了公因数,因此,乘法的分配律有着广泛的应用. 课本例4就是乘法分配律正向运用提高运算速度和准确率的例子.乘法分配律逆向运用可以变和为积,使得运算简便,可以应用于以后要学习的合并同类项、代数式化简等问题.③使用乘法的三条运算律与加法的运算律一样,一定要注意将有理数的符号作整体的移动,不能将符号丢掉或弄错.同时需要注意,两个或三个有理数相乘的运算律,可以推广到三个以上有理数相乘的情况,建议通过编制若干个具体的非零有理数相乘的练习题,引导学生加深对多个有理数相乘时可以使用交换律、结合律、分配律的理解.④用字母表示有理数乘法的运算律:,,,目的是表明运算律具有一般性,即表达式中的字母,可以表示任意有理数,可正、可负、可为0.同时,还需要提请学生注意,这三个运算律都既可以正向使用,也可以逆向使用.要通过编制一些正、逆向使用的练习题,让学生体会学习乘法运算律的必要性,争取让学生能够熟练和灵活应用乘法的运算律.例3.,这样简便运算的根据是( ).A.加法结合律B.乘法交换律C.乘法结合律D.分配律解析:根据算式形式与运算结果可知,此题利用了乘法的分配律,答案应选D.例4.用简便方法计算: .解析:观察算式可知,是三个积的加减法运算,每一个积的两个因数中,都有一个因数含有1.57的倍数,如3.14是1.57的2倍速,6.28是1.57的4倍,据此探究逆向使用乘法分配律的可能性.原式,答案等于314.2。
人教版七年级数学上册1.2《有理数》说课稿一. 教材分析《有理数》是人教版七年级数学上册第一章第二节的内容,本节内容是在学生已经学习了自然数、整数的基础上,引入负数和分数的概念,让学生初步理解有理数的定义及其性质。
教材通过丰富的实例和生动的语言,引导学生逐步认识和理解有理数,培养学生的抽象思维能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于自然数和整数有一定的认识。
但负数和分数对他们来说是一个新的概念,可能存在一定的理解难度。
因此,在教学过程中,需要关注学生的认知水平,通过生动的实例和贴近生活的情境,激发学生的学习兴趣,帮助他们理解和掌握有理数的概念和性质。
三. 说教学目标1.知识与技能目标:使学生理解有理数的定义,掌握有理数的性质,能够运用有理数的概念解决一些实际问题。
2.过程与方法目标:通过观察、分析、归纳等方法,培养学生抽象思维能力,提高学生解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用价值。
四. 说教学重难点1.教学重点:有理数的定义及其性质。
2.教学难点:负数的概念和性质,有理数的运算。
五. 说教学方法与手段1.教学方法:采用情境教学法、问题教学法、合作学习法等,引导学生主动探究,发现知识,培养学生的抽象思维能力。
2.教学手段:利用多媒体课件、实物模型、学习卡片等辅助教学,提高课堂教学效果。
六. 说教学过程1.导入新课:通过展示生活中的一些实例,如温度、海拔等,引导学生认识负数,激发学生的学习兴趣。
2.探究新知:引导学生观察、分析、归纳有理数的定义和性质,让学生在探究过程中掌握知识。
3.巩固新知:通过一些练习题,让学生运用所学知识解决问题,巩固新知识。
4.拓展应用:出示一些实际问题,让学生运用有理数的概念解决问题,培养学生的应用能力。
5.小结:对本节课的主要内容进行总结,强化学生的记忆。
6.布置作业:布置一些有关有理数的练习题,让学生课后巩固所学知识。
人教版七年级数学上册:1.2.1《有理数》教学设计2一. 教材分析《有理数》是人教版七年级数学上册第一章第二节的一部分,主要介绍了有理数的概念、分类和运算。
本节课的内容是学生学习数学的基础,对于培养学生的逻辑思维和抽象思维能力具有重要意义。
二. 学情分析七年级的学生已经具备了一定的数学基础,但是对于有理数的概念和运算可能还比较陌生。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出有理数的概念,并通过具体的例题和练习来让学生理解和掌握有理数的运算方法。
三. 教学目标1.了解有理数的概念和分类。
2.掌握有理数的加、减、乘、除运算方法。
3.能够运用有理数解决实际问题。
四. 教学重难点1.有理数的概念和分类。
2.有理数的运算方法。
五. 教学方法1.情境教学法:通过实际问题引导学生抽象出有理数的概念。
2.例题教学法:通过具体的例题讲解和练习让学生掌握有理数的运算方法。
3.小组合作学习:学生分组讨论和解决问题,培养学生的合作意识和团队精神。
六. 教学准备1.教学PPT:制作详细的PPT,内容包括有理数的概念、分类和运算方法。
2.例题和练习题:准备一些有代表性的例题和练习题,用于讲解和巩固知识点。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)通过一个实际问题引入有理数的概念,例如:“小明的零花钱有3元,小红给了小明2元,请问小明现在有多少元?”引导学生思考和讨论,从而引出有理数的概念。
2.呈现(15分钟)通过PPT展示有理数的定义、分类和运算方法。
用简洁明了的语言解释有理数的概念,并用图示和实例展示有理数的分类。
接着讲解有理数的加、减、乘、除运算方法,并通过具体的例题进行演示。
3.操练(10分钟)让学生分组进行练习,每组选择一道例题进行讲解和讨论。
学生在讲解过程中,教师进行指导和点评。
然后,让学生独立完成一些练习题,教师巡回辅导。
4.巩固(5分钟)选取一些典型的练习题,让学生上台板书并进行讲解。
人教版七年级数学上册第一章 有理数主要内容:主要内容是有理数的有关概念及其运算。
首先,从实例引入负数,接着引进关于有理数的一些概念(数轴、相反数、绝对值、倒数等),在此基础上,介绍有理数的加减法、乘除法和乘方运算的意义、法则和运算律。
重点:有理数的运算。
数轴的绘画以及运用。
绝对值以及相反数的运用。
科学记数法的掌握 难点:对有理数运算法则的理解,特别是对有理数乘法法则的理解。
实例:20XX 年莆田市初中毕业升学考试中涉及到有理数中的知识 1. ._______2=-6.20XX 年北京奥运会的主场馆----“鸟巢”的建筑面积是258000平方米,将258000用 科学记数法表示应是____________________。
13.解集在数轴上表示如图所示的不等式组是(A.21x x ≤-⎧⎨≥⎩B.21x x ≥-⎧⎨≥⎩C.21x x ≤-⎧⎨≤⎩D. 1x x ≥-⎧⎨≤⎩20XX 年莆田市初中毕业升学考试中涉及到有理数中的知识1.3-的相反数是 .2.20XX 年莆田市参加初中毕业、升学考试的学生总人数约为43000人,将43000用 科学记数法表示是___________.3. 不等式组2410x x <⎧⎨+>,的解集在数轴上表示正确的是( )A B . C D 20XX 年莆田市初中毕业升学考试中涉及到有理数中的知识1. 2-的倒数是( ) A. 2 B.12 C. 12- D. 15- 10. 20XX 年我国全年国内生产总值约335000亿元,用科学记数法表示为__________元18. 解不等式213436x x --≤,并把它的解集在数轴上表示出来. 20XX 年莆田市初中毕业升学考试中涉及到有理数中的知识1. 2011-的相反数是( )A . 2011-B . 12011-C . 2011D . 120113. 已知点P (1a a -,)在平面直角坐标系的第一象限内,则a 的取值范围在数轴上可表示为( )9. 一天有86400秒,用科学记数法表示为____________ 秒;分析:从08到11年试卷的试题中出现的有关有理数的知识可以看出,每年的试题类型的 差不多这几种。
有理数教材内容解析与重难点突破
1.教材分析
本小节教学内容包括三个部分,一是回顾思考,主要是复习和回顾小学,以及前一节课所学习的整数、分数、0,以及正数、负数等概念,为给出有理数的概念作铺垫,同时也体会有理数概念扩充的过程及其必要性;二是有理数的意义及其分类.教学中,应引导学生学会从正、负数与0的角度给有理数进行分类,之后再细化正数包括正整数、正分数,负数包括负整数、负分类;也可以从整数、分数统称为有理数的角度给有理数进行分类,之后再细化整数包括正整数、负整数,分数包括正分数、负分数.从中让学生体会分类思想在有理数概念学习中的作用.三是有理数的判断.通过实例让学生熟练判断一个有理数是否为正整数、负整数、正分数、负分数,还是0.
作为教师,在自编练习题时,要避免出现圆周率(或含有的数)给学生判断.因为含圆周率(或含有的数)通常是无理数,学生暂时还没有学到,不要超前出现.教学中,还要关注小数、百分数等可以化为分数的交待与说明.相信通过教师的解释与交待,学生能够理解.但是,对于有理数可以用分数(,都是整数,)来表示,可作简要介绍,不必作过细讲解.因为过多地介绍,可能会增加学生学习难度,让学生感到困难与无措.对例题和练习题判断正数集合、负数集合等提法,可作为一个普通名词作简要介绍,不宜作过细解释.对于相应集合填入数后所用的省略号“…”,需要点到为止,不宜对集合、对省略号作过多说明.
根据以上分析,1.2.1有理数教学建议用1个课时完成.
2.重难点突破
⑴有理数及相关概念
突破建议:
①0和正整数统称为自然数,正整数、负整数和0统称为整数.正分数和负分数统称为分数.整数和分数统称为有理数.教学时,要让学生理解这些数之间的逻辑关系及其发展过程.
②有限小数和无限循环小数都可以化成分数(,都是整数,)的形式.因此有限小学和无限循环小学都是有理数.而无限不循环小数不能够化为分数的形式,因此无限不循环小数不是有理数.
③圆周率3.1415926…,是一个无限不循环小数,因此圆周率(或含有的数)都不是有理数.
例1.下列说法正确的是( ).
A.有理数是指整数、分数、正有理数、0、负有理数;
B.一个有理数不是正数就是负数;
C.一个有理数不是整数就是分数;
D.0不是有理数.
解析:根据有理数的意义及其分类可知,正确的答案为C.
⑵有理数的分类
突破建议:
有理数可以用两种不同的标准(一是根据定义,即整数(包括0)和分数;二是根据性质,即正数、负数与0)对其进行分类:
①按定义分类:
,其中正整数和零称为自然数;
②按性质分类:
,其中正有理数和零组成非负有理数,简称非负数.
例 2.将下列各数,分别填入正数集合、负数集合、整数集合、分数集合、非负数集合和有理数集合:
-1,-3.141589,,-10%,-6.8,2014,-0.01,200%,0.
解析:正整数、零和负整数统称为整数;正分数和负分数统称为分数;整数和分数统称为有理数;非负数集合是指全体正数和0的集合.
答案:正数集合:{2014,200%,…};
负数集合:{-1,-3.141589,,-10%,-6.8,-0.01,…};
整数集合:{-1,2014,200%,0,…};
分数集合:{-3.141589,,-10%,-6.8,-0.01,…};
非负数集合:{2014,200%,0,…};
有理数集合:{-1,-3.141589,,-10%,-6.8,2014,-0.01,200%,0,…}.
⑶有理数“0”的理解
突破建议:
数0在有理数中的意义特殊,现将“0”的不同意义列表如下:
意义
举例
表示数的性质
0是自然数、整数,也是有理数
表示没有
下课了,教室里没有人,可用0人表示
表示某种特殊状态
0℃表示冰点,海拨0m来表示海平面平均高度
表示正、负数的分界点
0既不是正数,也不是负数,它是正数与负数的分界数
例3.下列关于“0”的说法,错误的是( ).
A.0是整数,也是有理数;
B.0既不是正整数,也不是负整数;
C.0既不是正分数,也不是负分数;
D.0是正整数,也是自然数.
解析:根据有理数的意义及其分类可知,0是整数、自然数,不是正整数,它既不是正数,也不是负数,更不是分数.本题答案应选D.。