DSP重点知识点总结(修改版)
- 格式:pdf
- 大小:835.19 KB
- 文档页数:13
第四章连续时间信号的采样1、几个概念T 或:采样周期;:采样频率;:采样角频率s T T f s /1=T s /2πΩ=ω:归一化角频率与ω的关系:,可以这样理解,该归一化是指中的归一化s ΩT Ωω=)(Ωj X s s Ω=Ω到中的。
在中代入即可得到。
)(ωj e X πω2=)(Ωj X s T /ω=Ω)(ωj e X 2、采样过程数学上可以分为两部分:周期冲击串的调制和冲击串到离散时间序列的转换。
连续时间信号被周期冲击串调制到(注意,此时)(t x c ∑∞−∞=−=n nT t t s )()(δ)(t x s也是一个周期冲击串,并且数学上仍然属于连续时间信号),再经过频率归一化)(t x s )(t x s 在数学上消除信号与时间的关系,得到与时间无关的序列。
频域关系如下:)(][nT x n x c =∑∞−∞=Ω−Ω=Ωk s c s kj j X T j X )(1)(的离散时间傅里叶变换为:][n x )(ωj e X ∑∞−∞=−=k c j Tkj T j X T e X )2(1)(πωω3、奈奎斯特采样定理:N s TΩ≥=Ω22π注意:①输入信号一定要是带限的!!!②称为奈奎斯特频率;③而2称之N ΩN Ω为奈奎斯特率一定要注意!!!!4、由样本重构带限信号(原理框图看一下书)步骤1:序列到冲击串的转换其中T 就是x[n]的采样周期,所以要重构,光凭离散∑∞−∞=−=n s nT t n x t x ][][)(δ时间序列x[n]是不够的,你必须要知道x[n]产生时的采样周期T 步骤2:经过理想重构低通滤波器滤波,得到,该滤波器满足:)(t x r 增益为T截止频率(通常=/2=π/T )c Ωc Ωs Ω频率响应Tt T t t h r //sin )(ππ=由上两步,则整个系统的输出为:∑∞−∞=−−=n r TnT t T nT t n x t x /)()/)(sin(][)(ππ注解:①每一个函数在某些点上与的值相等,求和后能够在所TnT t T nT t n x /)()/)(sin(][−−ππ)(t x c 以采样点上与相等;)(t x c ②若重构时没有混叠,低通滤波器不仅能重构采样点的准确值,还在内插出采样点之间的点的准确值;③当然,若有混叠,则②不能达到,仅满足①。
DSP复习要点第一章:1.DSP 技术应用非常广泛,例如:移动通信系统、VOIP 、HFC 、软件无线电、数码相机、DB DIGITAL AC-3、汽车多媒体系统、噪声消除算法、机顶盒(SET-TOP-BOX )、飞机驾驶模拟器、全球定位系统(GPS )、雷达/声纳、巡航导弹、F-117发射激光制导灵巧炸弹、图像识别、图像鉴别、医院用的B 超、CT 、核磁共振、卫星遥感遥测;天气预报,地震预报,地震探矿;风动试验;数字化士兵,数字化战争;高清晰度电视、虚拟仪器2. 主要DSP 芯片厂商有:AD 公司、AT&T 公司(现在的Lucent 公司)、 Motorola 公司、TI 公司(美国德州仪器公司)、NEC 公司。
3. 3. DSP 芯片,也称数字信号处理器,是一种具有特殊结构的微处理器。
DSP 芯片的内部采用程序和数据分开的哈佛结构,具有专门的硬件乘法器,广泛采用流水线操作,提供特殊的DSP 指令,可以用来快速的实现各种数字信号处理算法。
4.冯·诺伊曼(Von Neuman )结构该结构采用单存储空间,即程序指令和数据共用一个存储空间,使用单一的地址和数据总线,取指令和取操作数都是通过一条总线分时进行。
5. 哈佛(Harvard )结构该结构采用双存储空间,程序存储器和数据存储器分开,有各自独立的程序总线和数据总线,可独立编址和独立访问,可对程序和数据进行独立传输,使取指令操作、指令执行操作、数据吞吐并行完成,大大地提高了数据处理能力和指令的执行速度,非常适合于实时的数字信号处理。
6. DSP 芯片的特点:7. 根据芯片工作的数据格式,按其精度或动态范围,可将通用DSP 划分为定点DSP 和浮点DSP 两类。
7. 一般来说,选择DSP 芯片时应考虑的重要因素:运算速度、价格、功耗第二章4. 改进型的哈佛结构是采用双存储空间和数条总线,即一条程序总线和多条数据总线,允许在程序空间和数据空间之间相互传送数据。
dsp知识点总结一、DSP基础知识1. 信号的概念信号是指用来传输信息的载体,它可以是声音、图像、视频、数据等各种形式。
信号可以分为模拟信号和数字信号两种形式。
在DSP中,我们主要研究数字信号的处理方法。
2. 采样和量化采样是指将连续的模拟信号转换为离散的数字信号的过程。
量化是指将信号的幅度离散化为一系列离散的取值。
采样和量化是数字信号处理的基础,它们决定了数字信号的质量和准确度。
3. 傅里叶变换傅里叶变换是一种将时域信号转换为频域信号的方法,它可以将信号的频率分量分解出来,从而可以对信号进行频域分析和处理。
傅里叶变换在DSP中有着广泛的应用,比如滤波器设计、频谱分析等。
4. 信号处理系统信号处理系统是指用来处理信号的系统,它包括信号采集、滤波、变换、编解码、存储等各种功能。
DSP技术主要用于设计和实现各种类型的信号处理系统。
二、数字滤波技术1. FIR滤波器FIR滤波器是一种具有有限长冲激响应的滤波器,它的特点是结构简单、稳定性好、易于设计。
FIR滤波器在数字信号处理中有着广泛的应用,比如音频处理、图像处理等。
2. IIR滤波器IIR滤波器是一种具有无限长冲激响应的滤波器,它的特点是频率选择性好、相位延迟小。
IIR滤波器在数字信号处理中也有着重要的应用,比如通信系统、控制系统等。
3. 数字滤波器设计数字滤波器的设计是数字信号处理的重要内容之一,它包括频域设计、时域设计、优化设计等各种方法。
数字滤波器设计的目标是满足给定的频率响应要求,并且具有良好的稳定性和性能。
4. 自适应滤波自适应滤波是指根据输入信号的特性自动调整滤波器参数的一种方法,它可以有效地抑制噪声、增强信号等。
自适应滤波在通信系统、雷达系统等领域有着重要的应用。
三、数字信号处理技术1. 数字信号处理器数字信号处理器(DSP)是一种专门用于数字信号处理的特定硬件,它具有高速运算、低功耗、灵活性好等特点。
DSP广泛应用于通信、音频、图像等领域,是数字信号处理技术的核心。
1.dsp芯片普遍采用数据总线和程序总线分离的哈佛结构和改进的哈佛结构,有1条程序总线(PB)和3条数据总线(CB、DB、EB)4组地址总线(PAB、CAB、DAB、EAB)。
2.dsp系统的处理过程:①将输入信号x(t)进行抗混叠滤波,滤掉高于折叠频率的分量,以防止信号频谱的混叠②经采样和A/D转换器,将滤波后的信号转换为数字信号x(n)③数字信号处理器对x(n)进行处理,得数字信号y(n)④经D/A转换器,将y(n)转换成模拟信号⑤经低通滤波器,滤除高频分量,得到平滑的模拟信号y(t)。
3.dsp系统的设计过程:①明确设计任务确定设计目标②算法模拟确定性能指标③选择dsp芯片和外围芯片④设计实时的dsp应用系统⑤硬件和软件测试⑥系统集成和测试。
4.双寻址RAM(DARAM):在一个指令周期内,可对其进行两次存取操作,一次读出和一次写入。
单寻址RAM(SARAM): 在一个指令周期内,只能进行一次存取操作。
5.CPU的基本组成:40位算术逻辑运算单元(ALU);2个40累加器(ACCA、ACCB);一个支持-16~31位移位的桶形移位寄存器;乘法器-加法器单元(MAC);比较、选择和存储单元(CSSU);指数编码器;CPU状态和控制寄存器。
6. 乘法器-加法器单元(MAC):具有强大的乘法累加运算功能可在一个流水线周期内完成一次乘法运算和一次加法运算。
7.CPU状态和控制寄存器:状态寄存器0(ST0)、状态寄存器1(ST1)、和处理器工作方式状态寄存器(PMST)。
8.’C54有8个辅助寄存器。
9.流水线操作的原理:将指令分为几个子操作,每个子操作有不同的操作阶段完成,每隔一个机器周期,每个操作阶段就可以进入一条新指令,在同一个机器周期内,在不同的操作阶段可以处理多条指令,相当于并行执行了很多条指令。
T1 T2 T3 T4 T5 T611.中断操作:分为可屏蔽中断和不可屏蔽中断。
12.基本的数据寻址方式:立即寻址、绝对寻址、累加器寻址、直接寻址、间接寻址、存储器映像寄存器寻址、堆栈寻址。
DSP的结构特点:1、哈弗结构;将数据和存储空间分开,程序和数据各有自己的地址和数据总线;2、多总线结构;3、指令系统的流水线操作;4、专用的硬件加法器;5、特殊的DSP指令;6、快速的指令周期;7、硬件配置强;8、低功耗;DSP的构成:抗混叠滤波器——数据采集器——A/D转换器——数字信号处理器——D/A转换器——低通滤波器;C54x的CPU简介:1、一个40位的算术逻辑单元(MAU),用于完成二进制补码的算术运算,也可以完成布尔运算。
2、乘法器/加法器单元(MAC),用于进行数字信号处理算法中常见的乘法算法;3、两个40位的累加器(A和B),用于ALU或MAC的输出交换数据,同时也可以当做暂存器使用。
4、桶形寄存器(Barrel Shifter),用于对输入的数据0-31位的左移或者0-16位的右移;5、比较、选择和存储单元(CSSU),用于完成累加器的高位子节和低位字节之间的最大值比较;6、指数编译器(EXP Encoder),用于支持单周期指令EXP的专用硬件;DSP硬件结构:1、总线2、寄存器3、CPU状态和控制寄存器4、地址生成单元;CPU寄存器(26个)寻址方式:1、立即寻址;LD #30h,A2、直接寻址;LD #x,DP;/STL A,@x+10;3、间接寻址;STM #2,AR0;STM x,AR1;4、绝对寻址;MVDK *AR1+,1000h;LD #2,DP;PORTR 100h,input;5、存储器映像寻址;.mmregs;STM #2,AR2;6、堆栈寻址;size .set 200h;stk .uset “STACK”,size;7、寻址32位数据;段(Sections),是指连续占有存储空间的一个数据或者代码段。
段的两种基本类型:初初始化段和未初始化段。
有几个汇编器伪指令可用来将数据和代码各个部分与相应的段相联系。
汇编器在编译过程中产生段,大多数系统包括好几种存储器,使用段可以使目标存储器的使用更为有效。
dsp重点知识点总结1. 数字信号处理基础数字信号处理的基础知识包括采样定理、离散时间信号、离散时间系统、Z变换等内容。
采样定理指出,为了保证原始信号的完整性,需要将其进行采样,并且采样频率不能小于其最高频率的两倍。
离散时间信号是指在离散时间点上取得的信号,可以用离散序列表示。
离散时间系统是指输入、输出和状态都是离散时间信号的系统。
Z变换将时域的离散信号转换为Z域的函数,它是离散时间信号处理的数学基础。
2. 时域分析时域分析是对信号在时域上的特性进行分析和描述。
时域分析中常用的方法包括时域图形表示、自相关函数、互相关函数、卷积等。
时域图形表示是通过时域波形来表示信号的特性,包括幅度、相位、频率等。
自相关函数是用来描述信号在时间上的相关性,互相关函数是用来描述不同信号之间的相关性。
卷积是一种将两个信号进行联合的运算方法。
3. 频域分析频域分析是对信号在频域上的特性进行分析和描述。
频域分析中常用的方法包括频谱分析、傅里叶变换、滤波器设计等。
频谱分析是通过信号的频谱来描述信号在频域上的特性,可以得到信号的频率成分和相位信息。
傅里叶变换是将时域信号转换为频域信号的一种数学变换方法,可以将信号的频率成分和相位信息进行分析。
滤波器设计是对信号进行滤波处理,可以剔除不需要的频率成分或增强需要的频率成分。
4. 数字滤波器数字滤波器是数字信号处理中的重要组成部分,通过对信号进行滤波处理,可以实现对信号的增强、降噪、分离等效果。
数字滤波器包括有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器两种类型。
有限冲激响应(FIR)滤波器是一种只有有限个系数的滤波器,它可以实现线性相位和稳定性处理。
无限冲激响应(IIR)滤波器是一种有无限个系数的滤波器,它可以实现非线性相位和较高的滤波效果。
5. 离散傅里叶变换(DFT)和快速傅里叶变换(FFT)离散傅里叶变换(DFT)是将时域离散信号转换为频域离散信号的一种数学变换方法,其计算复杂度为O(N^2)。
数字信号处理Digital Signals Processing第一章:1、数字信号处理器利用计算机或专用处理设备,以数字的形式对信号进行分析、采集、合成、变换、滤波、估算、压缩、识别等加工处理,以便提取有用的信息并进行有效的传输与应用。
20世纪70年代末,世界上第一块单片可编程DSP芯片的诞生。
单指令周期10ns左右。
2、TMS320C54X DSP。
它是16位定点DSP,支持浮点运算。
1)DSP芯片普遍采用数据总线和程序总线分离的哈佛结构或改进的哈佛结构。
哈佛结构采用双存储空间,程序存储器和数据存储器分开。
而改进型的哈佛结构是采用双存储空间和数条总线,即一条程序总线和多条数据总线。
2)采用多总线结构3)采用流水线技术。
将每条指令预取指、取指、译码、寻址、读操作数、执行等阶段4)多处理单元可在一个周期内同时进行运算。
5.)具有特殊的DSP指令6)指令周期短7)运算精度高8)硬件配置强第二章1、TMS320C54x的结构是以8组16位总线为核心1组程序总线主要用来传送取自程序存储器的指令代码和立即操作数。
3组数据总线CB和DB用来传送从数据存储器读出的数据;EB用来传送写入存储器的数据。
4组地址总线用来提供执行指令所需的地址。
中央处理器(CPU)由运算部件和控制部件组成运算部件40位算术逻辑运算单元ALU,和两个40-bit的累加器(高低16位,保护位8位)【例2-1】累加器A=FF 0123 4567H,执行带移位的STH和STL指令后,求暂存器T和A的内容。
STH A,8,T ; A的内容左移8位,AH存入TSTL A,-8,T ; A的内容右移8位,AL存入T40位的桶形移位器能把输入的数据进行0到31bits的左移和0到16bits的右移。
乘法器/加法器与一个40-bit的累加器在一个单指令周期里完成17x17-bit的二进制补码运算。
比较、选择和存储单元(CSSU)完成累加器的高位字和低位字之间的最大值比较指数编码器是用于支持指数运算指令EXP (单周期指令)的专用硬件。
1 DSP芯片的特点:(1).哈佛结构(程序空间和数据空间分开)(2).多总线结构.(3)流水线结构(取指、译码、译码、寻址、读数、执行)(4)多处理单元. (5)特殊的DSP指令(6).指令周期短. (7)运算精度高.(8)硬件配置强.(9)DSP最重要的特点:特殊的内部结构、强大的信息处理能力及较高的运行速度。
2 三类TMS320:(1)TMS320C2000适用于控制领域(2)TMS320C5000应用于通信领域(3)TMS320C6000应用于图像处理3 DSP总线结构:C54x片内有8条16位主总线:4条程序/数据总线和4条对应的地址总线。
1条程序总线(PB):传送自程序储存器的指令代码和立即操作数。
3条数据总线(CB、DB、EB):CB和EB传送从数据存储器读出的操作数;EB传送写到存储器中的数据。
4条地址总线(PAB、CAB、DAB、EAB)传送相应指令所需要的代码4存储器的分类:64k字的程序存储空间、64K字的数据存储空间和64K字的I/O空间(执行4次存储器操作、1次取指、2次读操作数和一次写操作数。
5存储器空间分配片内存储器的形式有DARAM、SARAM、ROM 。
RAM安排到数据存储空间、ROM构成程序存储空间。
(1)程序空间:MP/MC=1 40000H~FFFFH 片外MP/MC=0 4000H~EDDDH 片外FF00H~FFFFH 片内OVL Y=1 0000H~007FH 保留0080H~007FH 片内OVL Y=0 0000H~3FFFH片外(2)数据空间:DROM=1 F000H~F3FFH 只读空间FF00H~FFFH保留DROM=0 F000H~FEFFH 片外6数据寻址方式(1)立即寻址(2)绝对寻址<两位>(3)累加器寻址(4)直接寻址@<包换数据存储器地址的低7位>优点:每条指令只需一个字(5)间接寻址*按照存放某个辅助寄存器中的16位地址寻址的AR0~AR7(7)储存器映像寄存器寻址(8)堆栈寻址7寻址缩写语Smem:16位单寻址操作数Xmem Ymem 16位双dmad pmad PA16位立即数(0-65535)scr源累加器dst目的累加器lk 16位长立即数8状态寄存器ST0 15~13ARP辅助寄存器指针12TC测试标志位11C进位位10累积起A 的一出标志位OV A 9OVB 8~0DP数据存储器页指针9状态寄存器ST1 CPL:直接寻址编辑方式INTM =0开放全部可屏蔽中断=1关闭C16 双16位算数运算方式10定点DSP 浮点DSP:定点DSP能直接进行浮点运算,一次完成是用硬件完成的,而浮点需要程序辅助。
DSP技术及应用各章知识要点《DSP技术及应用》知识要点第1章绪论1.DSP的概念,包括英文名称;哈佛结构和冯诺依曼结构的比较;流水线技术的优点;定点芯片和浮点芯片的区别。
2.进制转换(重点是16进制);原、反、补码(重点是补码);Q表示法及定点格式数据的转换。
第2章T MS320C54x的CPU结构和存储器配置1.‘C54x的基本结构:有哪几大部件。
2.‘C54x的内部总线结构:有几组总线和各自功能。
3.‘C54x的CPU:40位的ALU;累加器A和B的结构;乘法累加单元(MAC);比较、选择和存储单元(CSSU);指数编码器(EXP);CPU状态寄存器ST0所有位的功能,状态寄存器ST1的CPL、OVM、SXM、C16、FRCT、ASM的功能,处理器工作方式状态寄存器PMST的MP/MC、OVLY、DROM的功能。
4.‘C54x的存储空间结构:程序、数据和I/O存储空间各有多大;MP/MC和OVLY位对程序存储空间配置的影响;中断向量表的存储空间;DROM对数据存储器配置的影响;数据存储器中页的概念;数据存储器第0页存储器映像寄存器(MMR)中有哪些常用的寄存器。
第3章TMS320C54x的指令系统1.掌握32位数据在存储器中的存放;寻址方式:看懂表3-2中的寻址缩略语,掌握常用寻址方式(立即寻址、绝对寻址、直接寻址、间接寻址、MMR寻址、堆栈寻址)。
2.指令的表示方法:看懂表3-9中常用的符号或缩略语,掌握常用符号在指令中的使用。
3.指令系统:算术运算(ADD、ADDC、ADDM、ADDS、SUB、SUBB、SUBS、MPY、SQUR、MAC、MAS、DADD、DSUB、ABS、CMPL、MAX、MIN、NEG);逻辑运算(全部);程序控制(B、BANZ、BC、CALL、RET、PSHD、PSHM、POPD、POPM、NOP、RSBX、SSBX);数据传送(DLD、LD、LDM、DST、ST、STH、STL、STLM、STM、MV的所有指令);并行操作(表3-37中的第一条);重复操作(RPT、RPTZ、RPTB)。
DSP复习要点第一章绪论1、数的定标:Qn表示。
例如:16进制数2000H=8192,用Q0表示16进制数2000H=0.25,用Q15表示2、‟C54x小数的表示方法:采用2的补码小数;.word 32768 *707/10003、定点算术运算:乘法:解决冗余符号位的办法是在程序中设定状态寄存器STl中的FRCT位为1,让相乘的结果自动左移1位。
第二章CPU结构和存储器设置一、思考题:1、C54x DSP的总线结构有哪些特点?答:TMS320C54x的结构是围绕8组16bit总线建立的。
(1)、一组程序总线(PB):传送从程序存储器的指令代码和立即数。
(2)、三组数据总线(CB,DB和EB):连接各种元器件,(3)、四组地址总线(PAB,CAB,DAB和EAB)传送执行指令所需要的地址。
2、C54x DSP的CPU包括哪些单元?答:'C54X 芯片的CPU包括:(1)、40bit的算术逻辑单元(2)、累加器A和B(3)、桶形移位寄存器(4)、乘法器/加法器单元(5)、比较选择和存储单元(6)、指数编码器(7)、CPU状态和控制寄存器(8)、寻址单元。
1)、累加器A和B分为三部分:保护位、高位字、地位字。
保护位保存多余高位,防止溢出。
2)、桶形移位寄存器:将输入数据进行0~31bits的左移(正值)和0~15bits的右移(负值)3)、乘法器/加法器单元:能够在一个周期内完成一次17*17bit的乘法和一次40位的加法4)、比较选择和存储单元:用维比特算法设计的进行加法/比较/选择运算。
5)、CPU状态和控制寄存器:状态寄存器ST0和ST1,由置位指令SSBX和复位指令RSBX控制、处理器模式状态寄存器PMST2-3、简述’C54x DSP的ST1,ST0,PMST的主要功能。
答:’C54x DSP的ST1,ST0,PMST的主要功能是用于设置和查看CPU的工作状态。
•ST0主要反映处理器的寻址要求和计算机的运行状态。