1高中 必修一分数指数幂 知识点+例题 全面
- 格式:doc
- 大小:251.51 KB
- 文档页数:8
高中数学必修1知识点总结—指数及指数函数1、 根式na (一般的,如果n x a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈且.)35325325n n n ⎧=⎪⎨-=-⎪⎩正数的次方根是正数如当是奇数时,负数的次方根是负数如20,n a n an ⎧>±⎪⎨⎪⎩正数的次方根有个,且互为相反数如:则次方根为当是偶数时,负数没有偶次方根0的任何次方根都是0,记作0n2、nna的讨论 n nn a a =当是奇数时,;,0,0n n a a n a a a a ≥⎧==⎨-≤⎩当是偶数时, (2)分数指数幂的概念)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,mnmna a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:11()()(0,,,m mmnnnaa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义.义. 注意口诀:底数取倒数,指数取相反数.底数取倒数,指数取相反数. (3)分数指数幂的运算性质)分数指数幂的运算性质①(0,,)rsr saa aa r s R +⋅=>∈ ②()(0,,)r s rsa a a r s R =>∈③()(0,0,)rr rab a b a b r R =>>∈一、 指数计算公式:()Q s r a ∈>,,0_____=⋅s r a a ________=sraa _____)(=s r a ______)(=r ab )1,,0_______(>∈>=*n N n m a anm,________=n na 练习 计算下列各式的值:计算下列各式的值:(1))4()3)((636131212132b a b a b a ÷- (2)()322175.003129721687064.0+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛---(3)421033)21(25.0)21()4(--⨯+-- (4)33)3(625π-+-2.已知31=+-x x ,则=+-22x x 已知23=a,513=b,则=-ba 23=____________. 3. 若21025x x =,则10x x-等于_________________【2.1.2】指数函数及其性质(4)指数函数)指数函数函数名称函数名称指数函数指数函数定义定义函数(0x y a a =>且1)a ≠叫做指数函数叫做指数函数图象图象1a >01a <<定义域定义域 R 值域值域(0,)+∞过定点过定点 图象过定点(0,1),即当0x=时,1y =.奇偶性奇偶性 非奇非偶非奇非偶单调性单调性在R 上是增函数上是增函数在R 上是减函数上是减函数函数值的函数值的 变化情况变化情况1(0)1(0)1(0)x x x a x a x a x >>==<< 1(0)1(0)1(0)x x x a x a x a x <>==>< a 变化对变化对 图象的影响图象的影响 在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.越大图象越低.题型1、求函数经过的点 1、2)(f 1-=+x a x )10(≠>a a 且过定点______________2、函数y=4+a x -1的图象恒过定点P 的坐标是________________3.已知指数函数图像经过点)3,1(-p ,则=)3(f题型2、 图像问题1.下列说法中:下列说法中:①任取x ∈R 都有3x >2x ; ②当a >1时,任取x ∈R 都有a x >a -x ;③函数y =(3)-x 是增函数;④函数y =2|x |的最小值为1 ;⑤在同一坐标系中,y =2x 与y =2-x 的图象对称于y 轴。
第8课时 指数运算性质及指数函数知识点一 分数指数幂 给定正实数a ,对于任意给定的整数m ,n (m ,n 互素),存在唯一的正实数b ,使得b n =a m,我们把b 叫作a 的mn次幂,记作b =mn a .指数运算性质 一般地,在研究实数指数幂的运算性质时,约定底数为大于零的实数.当a >0,b >0时,有: (1)a m ·a n = ;(2)(a m )n = ;(3)(ab )n = ,其中m ,n ∈R . 例1 计算下列各式(式中字母都是正数).(1)10.5233277(0.027)21259-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭;2)211511336622(2)(6)(3)a b a b a b ÷--;2152.530.064-0⎡⎤-π.⎢⎥⎣⎦() 知识点二 指数函数一般地,函数 叫作指数函数,其中x 是自变量,函数的定义域是R .注意①底数是大于0且不等于1的常数;②指数函数的自变量必须位于指数的位置上;③a x 的系数必须为1;④指数函数等号右边不会是多项式,如y =2x +1不是指数函数. 知识点三 指数函数的图像和性质例2 (1)下列函数中是指数函数的是________.(填序号) ①y =2·(2)x ;②y =2x -1;③y =⎝⎛⎭⎫π2x;④y =13x-;⑤y =13x . (2)若函数y =(a 2-3a +3)·a x 是指数函数,则实数a =________. (3)若函数y =(2a -3)x 是指数函数,则实数a 的取值范围是________. 例3 (1)函数y =a x -1a(a >0,且a ≠1)的图像可能是( )(2)函数f (x )=1+a x -2(a >0,且a ≠1)恒过定点________.(3)已知函数y =3x 的图像,怎样变换得到y =⎝⎛⎭⎫13x +1+2的图像?并画出相应图像.跟踪训练3 (1)已知函数f (x )=4+a x +1(a >0,且a ≠1)的图像经过定点P ,则点P 的坐标是( ) A.(-1,5) B.(-1,4) C.(0,4) D.(4,0) 例4 比较下列各题中两个值的大小. (1)1.7-2.5,1.7-3;(2)1.70.3,1.50.3;(3)1.70.3,0.83.1.跟踪训练4 比较下列各题中的两个值的大小.(1)0.8-0.1,1.250.2;(2)⎝⎛⎭⎫1π-π,1;(3)0.2-3,(-3)0.2.例5 (1)不等式4x <42-3x的解集是________.(2)解关于x 的不等式:a 2x +1≤a x -5(a >0,且a ≠1).例6 判断f (x )=2213x x⎛⎫ ⎪⎝⎭-的单调性,并求其值域.反思感悟研究y =a f (x )型单调区间时,要注意a >1还是0<a <1.当a >1时,y =a f (x )与f (x )的单调性相同.当0<a <1时,y =a f (x )与f (x )的单调性相反.跟踪训练6 求函数y =223x x a +-的单调区间.课后作业1.化简238的值为( ) A.2 B.4 C.6 D.82.下列根式与分数指数幂的互化正确的是( ) A.-x =12()x -(x >0) B.1263=y y (y <0) C.33441=xx ⎛⎫⎪⎝⎭-(x >0) D.133=x x -(x ≠0) 3.式子a 2a ·3a 2(a >0)经过计算可得到( ) A.a B.1a6 C.5a 6 D.6a 5 4.计算124-⎝⎛⎭⎫12-1=________.5.下列各函数中,是指数函数的是( ) A.y =(-3)x B.y =-3x C.y =3x -1D.y =⎝⎛⎭⎫13x6.若函数y =(2a -1)x (x 是自变量)是指数函数,则a 的取值范围是( ) A.a >0,且a ≠1 B.a ≥0,且a ≠1 C.a >12,且a ≠1 D.a ≥127.函数f (x )=a x -b的图像如图所示,其中a ,b 均为常数,则下列结论正确的是( )A.a >1,b <0B.a >1,b >0C.0<a <1,b >0D.0<a <1,b <08.函数y =a x -3+3(a >0,且a ≠1)的图像恒过定点_________________________________. 9.函数f (x )=1-2x +1x +3的定义域为________. 10.下列各式中成立的是( )A.⎝⎛⎭⎫m n 7=177n m B.12(-3)4=3-3 C.4x 3+y 3=34()x y + D.39=3311.下列大小关系正确的是( )A.0.43<30.4<π0B.0.43<π0<30.4C.30.4<0.43<π0D.π0<30.4<0.43 12.方程42x -1=16的解是( )A.x =-32B.x =32 C.x =1 D.x =213.函数f (x )=2112x ⎛⎫⎪⎝⎭-的递增区间为( )A.(-∞,0]B.[0,+∞)C.(-1,+∞)D.(-∞,-1) 14.函数y =⎝⎛⎭⎫12x,y =2x ,y =3x的图像(如图)分别是________.(用序号作答)15.设0<a <1,则关于x 的不等式22232223x x x x aa -++->的解集为________.16.已知a =0.80.7,b =0.80.9,c =1.20.8,则a ,b ,c 的大小关系是( ) A.a >b >c B.b >a >c C.c >b >a D.c >a >b 17.已知函数f (x )=3x -⎝⎛⎭⎫13x ,则f (x )( ) A.是奇函数,且在R 上是增函数 B.是偶函数,且在R 上是增函数 C.是奇函数,且在R 上是减函数 D.是偶函数,且在R 上是减函数18.计算:⎝⎛⎭⎫2590.5-⎝⎛⎭⎫27813--⎝⎛⎭⎫-780+160.25=__________________________________.19.已知函数f (x )=2|x -a |(a 为常数),若f (x )在区间[1,+∞)上是增函数,则a 的取值范围是________. 20.已知函数f (x )=4x -14x +1.(1)解不等式f (x )<13;(2)求函数f (x )的值域.能力提升 已知定义在R 上的函数f (x )=a +14x +1是奇函数.(1)求a 的值;(2)判断f (x )的单调性(不需要写出理由);(3)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求实数k 的取值范围.。
分数指数幂: :【学习目标】理解分数指数的含义,了解实数指数幂的意义,理解n 次方根,n 次根式的概念,熟练掌握用根式与分数指数幂表示一个正实数的算术根;能运用有理指数幂的运算性质进行运算和化简,会进行根式与分数指数幂的相互转化。
【要点梳理】 要点一、整数指数幂 1.整数指数幂的概念()()),0(1010*Z*n a a a a a Z n a a a a nn an n ∈≠=≠=∈⋅⋅⋅=-个2.运算法则 (1)nm nma a a +=⋅;(2)()mn nma a =;(3)()0≠>=-a n m a aa nm n m ,;(4)()mm mb a ab =.要点二、根式 1.n 次方根的定义:若x n=y(n ∈N *,n>1,y ∈R),则x 称为y 的n 次方根.n 为奇数时,正数y 的奇次方根有一个,是正数,记为n y ;负数y 的奇次方根有一个,是负数,记为ny ;零的奇次方根为零,记为00=n ;n 为偶数时,正数y的偶次方根有两个,记为;负数没有偶次方根;零的偶次方根为零,记为0=.2.两个等式(1)当1n >且*n N ∈时,na =;(2)⎩⎨⎧=)(||)(,为偶数为奇数n a n a a n n要点诠释:①要注意上述等式在形式上的联系与区别;②计算根式的结果关键取决于根指数的取值,尤其当根指数取偶数时,开方后的结果必为非负数,可先写成||a 的形式,这样能避免出现错误.要点三、分数指数幂为避免讨论,我们约定a>0,n ,m ∈N *,且mn为既约分数,分数指数幂可如下定义: 1na =m m na ==-1m nm naa=要点四、有理数指数幂 1.有理数指数幂的运算性质()Q b a ∈>>βα,00,,(1);a a aαβαβ+⋅=(2)();a a αβαβ= (3)();ab a b ααα=当a>0,p 为无理数时,a p是一个确定的实数,上述有理数指数幂的运算性质仍适用. 要点诠释:(1)根式问题常利用指数幂的意义与运算性质,将根式转化为分数指数幂运算;(2)根式运算中常出现乘方与开方并存,要注意两者的顺序何时可以交换、何时不能交换.如2442)4()4(-≠-;(3)幂指数不能随便约分.如2142)4()4(-≠-. 2.指数幂的一般运算步骤有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数.底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数运算性质.在化简运算中,也要注意公式:a2-b2=(a-b)(a+b),(a±b)2=a2±2ab+b2,(a ±b)3=a3±3a2b+3ab2±b3,a3-b3=(a-b)(a2+ab+b2),a3+b3=(a+b)(a2-ab+b2)的运用,能够简化运算.【典型例题】类型一、根式例1.计算:(1+.(2【答案】【解析】对于(1)需把各项被开方数变为完全平方形式,然后再利用根式运算性质求解.对于(2),则应分子、分母同乘以分母的有理化因式.(12|-|22-(2)(211=【点评】对于多重根式的化简,一般是设法将被开方数化成完全n次方,再解答,或者用整体思想来解题.化简分母含有根式的式子时,将分子、分母同乘以分母的有理化因式即可,如本例(2)的分子、分母中同乘以1).举一反三:【变式1】化简:(1;(2|3) x<【答案】(11;(2)22(31),4(13).x xx---<<⎧⎨-≤<⎩。
课时4指数函数一. 指数与指数幂的运算(1)根式的概念 ①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n表示;当n 是偶数时,正数a 的正的nn次方根用符号0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n(0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r r ab a b a b r R =>>∈二.指数函数及其性质(4)指数函数a 变化对图象影响在第一象限内,a 越大图象越高,越靠近y 轴; 在第二象限内,a 越大图象越低,越靠近x 轴. 在第一象限内,a 越小图象越高,越靠近y 轴; 在第二象限内,a 越小图象越低,越靠近x 轴.三.例题分析1.设a 、b 满足0<a<b<1,下列不等式中正确的是(C) A.a a <a b B.b a <b b C.a a <b a D.b b <a b解析:A 、B 不符合底数在(0,1)之间的单调性;C 、D 指数相同,底小值小.故选C. 2.若0<a<1,则函数y=a x 与y=(a-1)x 2的图象可能是(D)解析:当0<a<1时,y=a x为减函数,a-1<0,所以y=(a-1)x 2开口向下,故选D.3.设指数函数f(x)=a x (a>0且a ≠1),则下列等式中不正确的是(D) A.f(x+y)=f(x)f(y)B.f(x-y)=)()(y f x f C.f(nx)=[f(x)]n D.f [(xy)n ]=[f(x)]n [f(y)]n (n ∈N *) 解析:易知A 、B 、C 都正确. 对于D,f [(xy)n]=a(xy)n,而[f(x)]n·[f(y)]n=(a x )n·(a y)n=anx+ny,一般情况下D 不成立.4.设a=31)43(-,b=41)34(-,c=43)23(-,则a 、b 、c 的大小关系是(B)A.c<a<bB.c<b<aC.b<a<cD.b<c<a解析:a=413131)34()34()43(>=-=b,b=434141)23()278()34(-=>=c.∴a>b>c.5.设f(x)=4x -2x+1,则f -1(0)=______1____________. 解析:令f -1(0)=a,则f(a)=0即有4a-2·2a=0.2a·(2a-2)=0,而2a>0,∴2a=2得a=1.6.函数y=a x-3+4(a>0且a ≠1)的反函数的图象恒过定点______(5,3)____________.解析:因y=a x的图象恒过定点(0,1),向右平移3个单位,向上平移4个单位得到y=a x-3+4的图象,易知恒过定点(3,5).故其反函数过定点(5,3).7.已知函数f(x)=xx xx --+-10101010.证明f(x)在R 上是增函数.证明:∵f(x)=1101101010101022+-=+---x x xx x x , 设x 1<x 2∈R ,则f(x 1)-f(x 2)=)110)(110()1010(21101101101101010101010101010212122112222111122222222++-=+--+-=+--+-----x x x x x x x x x x x x x x x x . ∵y=10x 是增函数, ∴21221010x x -<0. 而1210x +1>0,2210x +1>0, 故当x 1<x 2时,f(x 1)-f(x 2)<0, 即f(x 1)<f(x 2). 所以f(x)是增函数.8.若定义运算a ⊗b=⎩⎨⎧<≥,,,,b a a b a b 则函数f(x)=3x ⊗3-x 的值域为(A)A.(0,1]B.[1,+∞)C.(0,+∞)D.(-∞,+∞)解析:当3x ≥3-x ,即x ≥0时,f(x)=3-x ∈(0,1];当3x<3-x,即x<0时,f(x)=3x∈(0,1).∴f(x)=⎩⎨⎧<≥-,0,3,0,3x x x x 值域为(0,1).9.函数y=a x 与y=-a -x (a>0,a ≠1)的图象(C) A.关于x 轴对称B.关于y 轴对称 C.关于原点对称D.关于直线y=-x 对称解析:可利用函数图象的对称性来判断两图象的关系.10.当x ∈[-1,1]时,函数f(x)=3x -2的值域为_______[-35,1]___________. 解析:f(x)在[-1,1]上单调递增.11.设有两个命题:(1)关于x 的不等式x 2+2ax+4>0对一切x ∈R 恒成立;(2)函数f(x)=-(5-2a)x 是减函数.若命题(1)和(2)中有且仅有一个是真命题,则实数a 的取值范围是_______(-∞,-2)__________.解析:(1)为真命题⇔Δ=(2a)2-16<0⇔-2<a<2.(2)为真命题⇔5-2a>1⇔a<2.若(1)假(2)真,则a ∈(-∞,-2].若(1)真(2)假,则a ∈(-2,2)∩[2,+∞]=∅. 故a 的取值范围为(-∞,-2).12.求函数y=4-x -2-x +1,x ∈[-3,2]的最大值和最小值. 解:设2-x =t,由x ∈[-3,2]得t ∈[41,8],于是y=t 2-t+1=(t-21)2+43.当t=21时,y 有最小值43.这时x=1.当t=8时,y 有最大值57.这时x=-3. 13.已知关于x 的方程2a 2x-2-7a x-1+3=0有一个根是2,求a 的值和方程其余的根. 解:∵2是方程2a 2x-2-9a x-1+4=0的根,将x=2代入方程解得a=21或a=4. (1)当a=21时,原方程化为2·(21)2x-2-9(21)x-1+4=0.① 令y=(21)x-1,方程①变为2y 2-9y+4=0, 解得y 1=4,y 2=21.∴(21)x-1=4⇒x=-1,(21)x-1=21⇒x=2. (2)当a=4时,原方程化为2·42x-2-9·4x-1+4=0.② 令t=4x-1,则方程②变为2t 2-9t+4=0.解得t 1=4,t 2=21. ∴4x-1=4⇒x=2, 4x-1=21⇒x=-21. 故方程另外两根是当a=21时,x=-1; 当a=4时,x=-21. 14.函数y=243)31(x x -+-的单调递增区间是(D) A.[1,2]B.[2,3]C.(-∞,2]D.[2,+∞)解析:因为y=3x2-4x+3,又y=3t 单调递增,t=x 2-4x+3在x∈[2,+∞)上递增,故所求的递增区间为[2,+∞).15.已知f(x)=3x-b (2≤x ≤4,b 为常数)的图象经过点(2,1),则F(x)=f 2(x)-2f(x)的值域为(B) A.[-1,+∞)B.[-1,63) C.[0,+∞)D.(0,63]解析:由f(2)=1,得32-b =1,b=2,f(x)=3x-2. ∴F(x)=[f(x)-1]2-1=(3x-2-1)2-1. 令t=3x-2,2≤x≤4.∴g(t)=(t -1)2-1,t∈[1,9]. ∴所求值域为[-1,63].2.1指数函数练习1.下列各式中成立的一项()A .7177)(m n mn= B .31243)3(-=-C .43433)(y x y x +=+D .3339=2.化简)31()3)((656131212132b a b a b a ÷-的结果()A .a 6B .a -C .a 9-D .29a3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是() A .f (x +y )=f(x )·f (y ) B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)(+∈=N n y f x f xy f n n n4.函数21)2()5(--+-=x x y()A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或5.若指数函数x a y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于 ()A .251+B .251+- C .251± D .215± 6.当a ≠0时,函数y ax b =+和y b ax =的图象只可能是 ()7.函数||2)(x x f -=的值域是()A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ()A .)1,1(-B .),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.函数22)21(++-=x x y 得单调递增区间是 ()A .]21,1[-B .]1,(--∞C .),2[+∞D .]2,21[10.已知2)(xx e e x f --=,则下列正确的是 ()A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数 11.已知函数f (x )的定义域是(1,2),则函数)2(x f 的定义域是. 12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点. 三、解答题:13.求函数y x x =--1511的定义域.14.若a >0,b >0,且a +b =c ,求证:(1)当r >1时,a r +b r <c r ;(2)当r <1时,a r +b r >c r .15.已知函数11)(+-=x x a a x f (a >1).(1)判断函数f (x )的奇偶性;(2)证明f (x )在(-∞,+∞)上是增函数.16.函数f(x)=a x(a>0,且a ≠1)在区间[1,2]上的最大值比最小值大,求a 的值.参考答案一、DCDDDAADDA二、11.(0,1);12.(2,-2); 三、13.解:要使函数有意义必须:∴定义域为:{}x x R x x ∈≠≠且01,14.解:rrrrr c b c a c b a ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+,其中10,10<<<<cbc a . 当r >1时,1=+<⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr,所以a r +b r <c r; 当r <1时,1=+>⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr ,所以a r +b r >c r . 15.解:(1)是奇函数.(2)设x 1<x 2,则1111)()(221121+--+-=-x x x x a a a a x f x f 。
高中数学必修一《指数幂与运算》精选练习(含详细解析)一、选择题1.若(1-2x有意义,则x的取值范围是( )A.x∈RB.x≠0.5C.x>0.5D.x<0.52化简[的结果为( )A.5B.C.-D.-53.+(-1)-1÷0.75-2+= ( )A. B. C.- D.-4.化简()4·()4的结果是( )A.a16B.a8C.a4D.a25设-=m,则= ( )A.m2-2B.2-m2C.m2+2D.m2二、填空题6.化简= .7已知a>0,化简-= .三、解答题8.(10分)将下列根式化为分数指数幂的形式.(1)(a>0).(2).(3)((b>0).9.(10分)已知+=3,求下列各式的值:(1)a+a-1. (2)a2+a-2.参考答案与解析1选D.将分数指数幂化为根式,可知需满足1-2x>0,解得x<0.5.2选B.[=(===.3选A.原式=-1÷+=-1÷+=-+=.4选C.原式=()4·()4=()4·()4=a2·a2=a4.5选 C.将-=m平方得(-)2=m2,即a-2+a-1=m2,所以a+a-1=m2+2,即a+=m2+2⇒=m2+2.6【解析】==a+b.答案:a+b7【解题指南】利用完全平方公式展开后合并同类项计算.【解析】因为a>0,所以-=-=4.答案:48【解析】(1)原式====.(2)原式======.(3)原式=[(==.9【解析】(1)因为+=3,所以(+)2=a+a-1+2=9,所以a+a-1=7.(2)因为a+a-1=7,所以(a+a-1)2=a2+a-2+2=49,所以a2+a-2=47.。
指数与指数幂的运算知识点总结与例题讲解本节知识点 (1)整数指数幂; (2)根式; (3)分数指数幂; (4)有理数指数幂; (5)无理数指数幂. 知识点一 整数指数幂1.正整数指数幂的定义:an na a a a 个⋅⋅=,其中∈n N*. 2.正整数指数幂的运算法则: (1)nm nmaa a +=⋅(∈n m ,N*);(2)nm nma a a -=÷(,,0n m a >≠且∈n m ,N*);(3)()mn nma a=(∈n m ,N*);(4)()mm mb a ab =(∈m N*);(5)m m mb a b a =⎪⎭⎫ ⎝⎛(,0≠b ∈m N*).3.两个规定(1)任何不等于零的数的零次幂都等于1.即()010≠=a a .零的零次幂没有意义.(2)任何不等于零的数的n -(n 为正整数)次幂,等于这个数的n 次幂的倒数.即:()01≠=-a a a nn . 零的负整指数幂没有意义. 知识点二 根式的概念及其性质 1.n 次方根(1)定义 一般地,如果a x n=(1>n 且∈n N*),那么x 叫做a 的n 次方根. (2)性质:①当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数,这时,a 的n 次方根用na 表示;②当n 为偶数时,正数的n 次方根有两个,这两个数互为相反数,表示为na ±.负数没有偶次方根;③0的任何次方根都是0,记作00=n.2.根式的定义 形如na (1>n 且∈n N*)的式子叫做根式,其中n 叫做根指数,a 叫做被开方数.对根式na 的理解,要注意以下几点: (1)1>n 且∈n N*; (2)当n 为奇数时,∈a R ; (3)当n 为偶数时,a ≥0.根式na (1>n 且∈n N*)的符号的确定:由n 的奇偶性和被开方数a 的符号共同确定. (1)当n 为奇数时,na 的符号与a 的符号相同; (2)当n 为偶数时,a ≥0,na 为非负数. 3.根式的性质: (1)()a a nn=;(2)对于n na ,当n 为奇数时,a a nn=;当n 为偶数时,()()⎩⎨⎧≤-≥==00a a a a a a nn . ()nna 与nn a 的联系与区别:(1)对于()nna ,当n 为奇数时,∈a R ;当n 为偶数时,a ≥0.而对于nn a ,是一个恒有意义的式子,不受n 的奇偶性的限制,但式子的值受到n 的奇偶性的限制. (2)当n 为奇数时,()=nna a a nn =.知识点三 分数指数幂1. 规定正数的正分数指数幂的意义是nm nm a a =(0>a ,∈n m ,N*,且1>n )于是在条件0>a ,∈n m ,N*,且1>n 下,根式都可以写成分数指数幂的形式.2. 正数的负分数指数幂的意义与负整数指数幂的意义相仿,规定nmnm nm aaa11==-(0>a ,∈n m ,N*,且1>n )3. 0的正分数指数幂等于0,0的负分数指数幂没有意义. 对分数指数幂的理解:(1)分数指数幂nm a 不能理解为nm个a 相乘,它是根式的一种新的写法; (2)分数指数nm不能随意约分. 如()()214233-≠-,事实上,()()424233-=-,式子是有意义的;而()3321-=-在实数范围内是没有意义的.(3)在保证相应的根式有意义的前提下,负数也存在分数指数幂.如上面提到的()()424233-=-,但()()434355-=-没有意义.所以对于分数指数幂nm a ,当a ≤0时,有时有意义,有时无意义.因此,在规定分数指数幂的意义时,要求0>a . 知识点四 有理数指数幂规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数. 整数指数幂的运算性质对于有理数指数幂同样适用: (1)sr s r a a a +=⋅(,0>a s r ,∈Q );(2)()rs sra a=(,0>a s r ,∈Q );(3)()rr rb a ab =(0,0>>b a r ∈Q ).有理数指数幂的运算还有如下性质: (4)sr sraa a -=÷(,0>a s r ,∈Q );(5)r r r b a b a =⎪⎭⎫ ⎝⎛(0,0>>b a r ∈Q ).常用结论:(1)当0>a 时,0>ba ; (2)若,0≠a 则10=a ;(3)若sr a a =(0>a ,且1≠a ),则s r =;(4)乘法公式适用于分数指数幂.如b a b a b a b a -=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+22122121212121(0,0>>b a ).知识点五 无理数指数幂一般地,无理数指数幂αa (0>a ,α是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.知识点六 运用公式进行指数幂的运算(条件求值) 常用公式:(1)平方差公式 ()()b a b a b a -+=-22.(2)完全平方公式 ()()2222222,2b ab a b a b ab a b a +-=-++=+.(3)立方和公式 ()()2233bab a b a b a +-+=+. (4)立方差公式 ()()2233bab a b a b a ++-=-.(5)完全立方和公式 ()3223333b ab b a a b a +++=+.(6)完全立方差公式 ()3223333b ab b a a b a -+-=-.常用公式变形:(1)()ab b a b a 2222-+=+,()ab b a b a 2222+-=+.(2)211222-⎪⎭⎫ ⎝⎛+=+x x x x ,211222+⎪⎭⎫⎝⎛-=+x x x x .或者写成()22122-+=+--x x x x ,()22122+-=+--x x x x .(3)⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+b b a a b a b a b a 212121213213212323;⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-b b a a b a b a b a 212121213213212323.例题讲解例1. 已知32121=+-x x ,求32222323++++--x x x x 的值.分析:采用整体思想方法,对所求式子进行合理变形,然后把条件整体代入求值.本题用到的公式和结论有:()22122-+=+--x x x x ;()()1112121121213213212323-+⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+------x x x x x x x x x x xx . 解:∵32121=+-xx∴92122121=++=⎪⎭⎫ ⎝⎛+--x x x x ,∴71=+-x x . ∴()4727222122=-=-+=+--x x x x .()()181731121213213212323=-⨯=+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+----x x x x x x xx ∴52502034721832222323==++=++++--x x x x .例2. 已知22121=+-a a ,求下列各式的值:(1)1-+a a ; (2)22-+a a ; (3)22--a a .分析:在求22--a a 的值时,直接入手比较困难,我们可以先求出()222--a a 的值,然后在进行开平方运算. 解:(1)∵22121=+-aa∴42122121=++=⎪⎭⎫ ⎝⎛+--a a a a ,∴21=+-a a ; (2)()222222122=-=-+=+--a a a a ;(3)∵()()04242222222=-=-+=---a a a a∴022=--a a .例3. 已知41=+-x x ,其中10<<x ,求xx x x 122+--的值.分析:要学会根式与分数指数幂的相互转化,在转化时要注意:根指数是分数指数的分母,被开方数(或式)的指数是分数指数的分子.解:∵41=+-x x∴4222121=-⎪⎭⎫ ⎝⎛+-x x ,∴622121=⎪⎭⎫ ⎝⎛+-x x ,∴62121=+-x x . ()1424222122=-=-+=+--x x x x∴()()19241442222222=-=-+=---x x x x∵10<<x ,∴22-<x x ,∴3819222-=-=--x x .∴24638121212222-=-=+-=+----x x x x x x x x . 例4. (1)已知42121=+-aa ,求21212323----aa a a 的值;(2)已知9,12==+xy y x ,且y x <,求21212121yx y x +-的值;解:(1)∵42121=+-aa∴212212142=++=⎪⎭⎫ ⎝⎛+--a a a a ,∴142161=-=+-a a . ∴()15114111212112121212132132121212323=+=++=-++⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=----------a a a a a a a a a a a a aa a a ; (2)∵9,12==+xy y x∴()()3192129212222221212212122121221212121=+-=++-+=++-+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛+-xy y x xy y x xy y x xy y x y x y x y x y x∵y x <,∴2121y x <,∴021212121<+-yx y x∴333121212121-=-=+-yx y x . 例5. 已知3232+=a ,求31311--++aa a a 的值.分析:借助于分式的性质. 解:∵3232+=a ∴3232113232-=+==-a a,()34732223234+=+=⎪⎭⎫⎝⎛=a a .∴()132323431313113131311++=⎪⎭⎫⎝⎛++=++-----a aa a a a a a a aa aa ()3333333333913232347=++=++=++-++=.解法二:∵3232+=a∴113232313132323131313133133131311-+=+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++--------a a a a a a a a a a a a aa a a 313232132132113232=--++=-+++=-+=aa .例6. (1)当22,22-=+=y x 时,求⎪⎭⎫ ⎝⎛++⋅⎪⎭⎫ ⎝⎛----323132343132y y x x y x 的值;(2)若122-=xa,求xx xx aa a a --++33的值. 分析: 结论 对于二次根式C B A ±,若C B A 22-是完全平方数,则C B A ±也是完全平方数. 本题中,22+=x ,被开方数22+不是完全平方数,所以x 不能化简,当确有()222222+=+=x .解:(1)∵22,22-=+=y x∴12331332323132343132------=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++⋅⎪⎭⎫ ⎝⎛-y x y x y y x x y x ()22122222221222+=+-+=--+=; (2)∵122-=x a∴()()()()1122223333-+=++-+=++=++--------xx xx x x x x x x x x x xx x a a aa a a a a a a a a a a a a 1121121122--+-=-+=xx a a 12211212-=-++-=. 另解:解例5的解法一.题型一 整数指数幂的运算例7. 已知a x x =+-22(a 为常数,且∈x Z ),求x x -+88的值.分析:因为()()()()x x x x x x x x x x 22333321222222288-----+-+=+=+=+,所以先由条件a x x =+-22求出x x 2222-+的值.完全立方和公式 ()3223333b ab b a a b a +++=+.解法一:∵a x x =+-22∴()2222222222-=-+=+--a x x x x∴()()()()x x x x x x x x x x 22333321222222288-----+-+=+=+=+()()a a a a a a 3312322-=-=--=.解法二:(完全立方和公式) ∵a x x =+-22∴()3322a x x =+-,展开得:()()()()3322322232232a x x x x x x =+⨯⨯+⨯⨯+---.整理得:()382238a x x x x =+++--,∴3838a a x x =++-. ∴a a x x 3883-=+-.例8. 已知3101=+-x x ,则=--22x x _________. 解:∵3101=+-x x ∴()9822310222122=-⎪⎭⎫ ⎝⎛=-+=+--x x xx ∴()()816400498242222222=-⎪⎭⎫ ⎝⎛=-+=---x x xx ∴98081640022±=±=--x x . 解法二分析:使用平方差公式得()()1122----+=-x x x x x x . 解法二:∵3101=+-x x ∴()()9644310422121=-⎪⎭⎫ ⎝⎛=-+=---x x xx ∴389641±=±=--x x . ∴()()980383101122±=⎪⎭⎫ ⎝⎛±⨯=-+=----x x x x x x . 例9. 若31=+-x x ,求2323-+x x 的值. 解:∵31=+-x x (这里0>x )∴3222121=-⎪⎭⎫ ⎝⎛+-x x ,∴522121=⎪⎭⎫ ⎝⎛+-x x . ∵02121>+-x x ,∴52121=+-xx .∴()1212132132123231----+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+x x x x x x xx ()52135=-⨯=.解法二:∵31=+-x x∴()723222122=-=-+=+--x x x x∴()()()202173122213322323=+-⨯=+-+=++=⎪⎭⎫ ⎝⎛+----x x x x x x x x ∴52202323==+-xx .例10. 已知41=+-x x ,则=+-2121x x【 】(A )2 (B )2或2- (C )6 (D )6或6- 分析:题目的隐含条件为0>x . 解:∵41=+-x x∴42221211=-⎪⎭⎫ ⎝⎛+=+--x x x x ,∴622121=⎪⎭⎫ ⎝⎛+-x x ∵02121>+-x x∴62121=+-x x.选择【 C 】.例11. 已知212121++=⎪⎭⎫ ⎝⎛+--x x x x f ,则()=+1x f 【 】(A )42-x (B )()21+x(C )()()2111-+++-x x (D )322-+x x解:(换元法)设t xx =+-2121,则有∴222221211-=-⎪⎭⎫ ⎝⎛+=+--t x x x x∴()2222t t t f =+-=,∴()2x x f =. ∴()()211+=+x x f .选择【 B 】.解法二(凑整法):∵212121++=⎪⎭⎫ ⎝⎛+--x x x x f∴2212122121212122⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+---x x x x x x f ,∴()2x x f =.∴()()211+=+x x f .题型二 根式的化简在进行根式的化简时,主要用到的是根式的性质: (1)()a a nn=;(2)对于nna ,当n 为奇数时,a a nn=;当n 为偶数时,()()⎩⎨⎧≤-≥==00a a a a a a nn.注意 对于()nna ,当n 为奇数时,∈a R ;当n 为偶数时,a ≥0.而对于nn a ,是一个恒有意义的式子,不受n 的奇偶性的限制,但式子的值受到n 的奇偶性的限制.例12. 化简下列各式: (1)()()222535-+-;(2)()()2231x x -+-(x ≥1).解:(1)原式125532535=-+-=-+-=;(2)()()x x x x -+-=-+-313122.∵x ≥1∴当1≤x ≤3时,原式231=-+-=x x ; 当3>x 时,原式4231-=-+-=x x x . 例13. 化简: (1)()nnx π-; (2)62144+-a a (a ≤21).分析:对于(1),要对n 的奇偶性进行分类讨论. 解:(1)当n 为奇数时,()ππ-=-x x nn ;当n 为偶数时,()()()⎩⎨⎧<-≥-=-=-ππππππx x x x x x nn; (2)()()()33162626221212112144a a a a a a -=-=-=-=+-.注意:当底数为正数时,其分数指数可以约分.例14. 求下列各式的值: (1)223223-++;(2)347246625-+--+.分析: 结论 对于二次根式C B A ±,若C B A 22-是完全平方数,则C B A ±也是完全平方数.根据此结论,可知625+,246-,347-均可以化为完全平方的形式. 解:(1)原式()()221212*********2=-++=-++=-++=;(2)原式()()()222322232-+--+=22322232322232=-++-+=-+--+=.总结 形如n m 2±(0,0>>n m )的双重二次根式的化简,一般是将其化为()2ba ±的形式,然后再化简.由()ab b a ba n m 222±+=±=±得:⎩⎨⎧==+nab mb a 所以b a ,是一元二次方程02=+-n mx x 的两个实数根.例15. 化简32-. 解:()()226213213222132324322-=-=-=-=-=-. 例16. 计算:()()4123323-+-.解:原式()[]()58323233443=+-=-+-=-+-=.注意 在利用根式的性质进行nna 的化简时,一定要注意当n 为偶数时,底数a 的符号.例17. 化简下列各式: (1)()()665544b a b a a -+++(0<<b a );(2)1212----+x x x x (21<<x ). 解:(1)∵0<<b a∴原式()a b a b b a a b a b a a -=-+++-=-+++=2; (2)∵21<<x ,∴110<-<x ∴原式()()1111111122---+-=---+-=x x x x()1211111111-=-+-+-=---+-=x x x x x .例18. 求值=-++335252_________. 解:令y x =-=+3352,52,则有4525233=-++=+y x ,1-=xy .∴()()422=+-+y xy x y x ,∴()()[]432=-++xy y x y x设t y x =+,则0>t ,有()432=+t t ,∴0433=-+t t ,01333=--+t t∴()()0412=++-t t t∵042>++t t ,∴01=-t ,∴1=t . ∴1525233=-++. 解法二:设=x 335252-++,则有()x x 3452523333-=-++=,∴0432=-+x x∴()()03313=-+-x x ,()()0412=++-x x x ∵042>++x x ,∴01=-x ,∴1=x ∴1525233=-++. 例19. 根据已知条件求值: (1)已知32,21==y x ,求yx y x yx y x +---+的值;(2)已知b a ,是方程0462=+-x x 的两根,且0>>b a ,求ba b a +-的值.解:(1)∵32,21==y x ∴原式()()()()()()yx yx yx yx yx yx -+--+-+=22yx xyy x y x xy y x --+--++=22383221322144-=-⨯⨯=-=yx xy; (2)∵b a ,是方程0462=+-x x 的两根 ∴4,6==+ab b a∴()()204464222=⨯-=-+=-ab b a b a∵0>>b a ,∴0>-b a ∴5220==-b a . ∴()()()55515242622==-=--+=-+-=+-b a ab b a ba ba ba ba b a .(2)解法二:∵b a ,是方程0462=+-x x 的两根,∴4,6==+ab b a∴()()5110242642622222==+-=++-+=+-=⎪⎪⎭⎫⎝⎛+-abb a ab b a b a b a b a b a . ∵0>>b a ,∴b a >,∴0>+-ba b a∴5551==+-ba b a . 例20. 已知⎪⎭⎫ ⎝⎛-=-n n x 115521,∈n N*,求()n x x 21++的值.解:∵⎪⎭⎫ ⎝⎛-=-n nx 115521∴n n n n n n x 222221125215525411552111---++=⎪⎭⎫ ⎝⎛+-+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=+2115541⎪⎭⎫ ⎝⎛+=-n n.∴⎪⎭⎫ ⎝⎛+=+-n nx 11255211∴()55552155211111112=⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=++--nn n nn n n nx x .例21. 已知函数()53131--=x x x f ,()53131-+=x x x g .(1)证明:()x f 在()+∞,0上是增函数(已知31x y =在R 上是增函数);(2)分别计算()()()2254g f f -和()()()3359g f f -的值,由此概括出函数()x f 和()x g 对所有不等于0的实数x 都成立的一个等式,并加以证明.(1)证明:任取()+∞∈,0,21x x ,且21x x <∴()()55531131231231131231231131121⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=---=-----x x x x x x x x x f x f ∵()+∞∈,0,21x x ,且21x x <,31x y =在R 上是增函数 ∴312311312311,--><x x x x∴()()021<-x f x f ,∴()()21x f x f < ∴()x f 在()+∞,0上是增函数; (2)解:()()()2254g f f -0522522552222554432323232313131313131=---=⨯⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⨯--=-----.同样求得()()()03359=-g f f . 猜想:()()()052=-x g x f x f . 证明: ()()()x g x f x f 52-055555532323232313131313232=---=⨯⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⨯--=-----x x x x x x x x xx .例22. 当0,0>>y x ,且()()y x y y x x 53+⋅=+时,求yxy x y xy x -+++32的值.解:∵0,0>>y x ,且()()y x y y x x53+⋅=+∴y xy xy x 153+=+,0152=--y xy x ∴()()053=-+y x yx∴05=-y x ,y x y x 25,5==. ∴22958525355032==-+++=-+++yyy y y y y y yxy x y xy x .题型三 根式与分数指数幂的互化在进行根式与分数指数幂的互化时要注意两个对应: (1)根指数对应分数指数的分母;(2)被开方数(或式)的指数对应分数指数的分子. 当出现多重根号时,应从里向外化简.例23. 用根式或分数指数幂表示下列各式:51a ,()043>a a ,36a ,()013>a a;()0>a a a .解:551a a =;()43430a a a =>;23636a a a ==;()23233101-==>a aa a;()4323210a a a a a a a ==⋅=>.例24. 将根式53-a 化为分数指数幂是【 】(A )53-a (B )53a (C )53a - (D )35a - 解:选择【 A 】. 例25. 化简:()()=⋅÷⋅109532a a a a _________.(用分数指数幂表示)解:由题意可知:0>a .∴原式561012101451310921532a a a a a a a a ==÷=⎪⎭⎫⎝⎛⋅÷⎪⎭⎫ ⎝⎛⋅=.例26. 设0>a ,化简:434334aa a a -.解:∵0>a∴611616653163254343234434334---===⋅⋅=aaa aa a a aa aa aa.例27. 下列根式与分数指数幂的互化中,正确的是【 】 (A )()()0414>-=-x x x (B )()0551≠-=-x x x(C )()0,4343≠⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-y x x y y x (D )4182y y = 解:(A )()0414>-=-x x x ,故(A )错;(B )()0155151≠==--x xx x,故(B )错; (D )4182y y =,故(D )错. 选择【 C 】. 例28. 下列各式正确的是【 】 (A )35531aa=-; (B )2332x x =(C )⎪⎭⎫ ⎝⎛-⨯⨯-=814121814121aaa a (D )x x x x 412212323131-=⎪⎭⎫ ⎝⎛---解:(A )53535311aaa ==-,故(A )错;(B )3232x x =,故(B )错; (C )85814121814121a aaa a ==⎪⎭⎫ ⎝⎛-++-,故(C )错. 选择【 D 】.题型四 根式和分数指数幂有意义的条件1.对于n 次根式na ,当n 为奇数时,∈a R ;当n 为偶数时,a ≥0. 2.0的0次幂和负实数幂都没有意义.例29. 若()4321--x 有意义,则x 的取值范围是__________.解:∵()()()43434321121121x x x -=-=--∴021>-x ,解之得:21<x . 即x 的取值范围是⎪⎭⎫ ⎝⎛∞-21,.例30. 函数()()2125--+-=x x y 的定义域是【 】(A ){}2,5≠≠x x x (B ){}2>x x(C ){}5>x x (D ){}552><<x x x 或 解:∵()()()()()215215250210210-+-=-+-=-+-=-x x x x x x y∴⎩⎨⎧>-≠-0205x x ,解之得:2>x 且5≠x .∴该函数的定义域为()()+∞,55,2 .选择【 D 】.题型五 幂的运算目前,当底数大于0时,指数已经由整数指数推广到了实数指数,整数指数幂的运算性质适用于实数指数幂的运算.运算的结果可以化成根式形式或者保留分数指数幂的形式,但不能既有根式又有分数指数幂,也不能同时含有分母和负指数幂.(1)s r s r a a a +=⋅(∈>s r a ,,0R ); (2)()rs sr a a =(∈>s r a ,,0R );(3)()r r rb a ab =(∈>>r b a ,0,0R ).例31. 计算下列各式(式中的字母均为正数): (1)()()()c b a b a b a 24132124-----÷-⋅;(2)⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--+----------212121211122b a b a b a b a . 解:(1)原式()ca ac cb a b a 33112412423-=-=÷-=-----;(2)原式()()⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+---=--------21212121112121b a b a b a b a ()()()bb b a b a b a ba b a b a221111111111111==+-+=----+=------------- 例32. 化简下列各式: (1)212121211111aaa a a++------;(2)111113131313132---+++++-x xx x x x x x .解:(1)原式()()011112121212121211=-=+⎪⎭⎫ ⎝⎛+---=-----a a a a a a a a a ; (2)原式11111131323131333131323331-⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛=x x x x x x x x 31323132313131313131313231313231323111111111111xx x x x x x x x x x x x x x x x x --+-+-=-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-= 31x -=.例33. 化简:()()()()()1421443333211--------++-++-+aa a a a a a a a a a a. 解:原式()()()()()()1221442212212111---------+-+-++++-+-+=a a a a a a a a a a a a a aa a()[]()[]()()1214412222111--------++++++-+=aa a a a a a a a a a a()()aa a a a aa a a a a a a 21111144144=-++=-++++++=------ 例34. 化简下列各式:(1)436532yx xy⋅; (2)1111212331++-+++a a a a a .解:(1)原式1212143653231--==yx yx y x ;(2)原式111111111121212131313231213321313331++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=++-⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛=a a a a a a a a a a a a a a 21313221313211aa a a a a +-=-++-=例35. ()=-⎪⎭⎫⎝⎛⨯+⎪⎭⎫ ⎝⎛--21212001.04122532【 】(A )1516 (B )30173 (C )658- (D )0 解:()21212001.04122532-⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛--1516101324111001491411=-⨯+=-⨯+=.选择【 A 】.例36. 化简:=⎪⎪⎭⎫⎝⎛÷⋅⋅----321132132a b b a bab a _________.解:原式656161673223236167322121131212132--------=÷=⎪⎭⎫⎝⎛÷=⎪⎪⎪⎭⎫ ⎝⎛÷=b a ab b a b a b a ba ba b a b a .例37.=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛---442102324953121_________.解:原式22322322232491112=-++=-++-+=. 例38. 已知3,2==n m ,则32432332⎪⎪⎭⎫⎝⎛÷⋅----m n nm m n n m 的值是_________. 解:∵3,2==n m∴原式32325343322534312322332⎪⎭⎫ ⎝⎛÷=⎪⎭⎫ ⎝⎛÷=⎪⎪⎪⎭⎫ ⎝⎛÷=--------mn n m n m n m n m mn n m n m 27232333131=⨯==⎪⎭⎫⎝⎛=---mn n m . 例39. 已知函数()()⎪⎩⎪⎨⎧≥--<=1,351,312x x x x x f ,则=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛--4321353f f _________.解:⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛---4343213533353f f f f 33939335353331243=+-=+⎪⎭⎫⎝⎛-+-⨯=-. 题型六 解含幂的方程例40. 解下列方程:(1)2291381+⎪⎭⎫ ⎝⎛=⨯x x; (2)0123222=-⨯++x x .解:(1)()2224333+-=⨯x x ,424233--+=x x ∴4242--=+x x ,解之得:2-=x ;(2)()0123242=-⨯+⨯x x ,设t x =2,则0>t∴01342=-+t t ,()()0114=+-t t 解之得:1,241221-===-t t (舍去). ∴222-=x ,∴2-=x .结论 若sr a a =(0>a ,且1≠a ),则s r =题型七 指数幂等式的证明 设参数法例41. 设c b a ,,都是正数,且c b a 643==,求证:ba c 122+=. 证明:设t cba===643,则有cbat t t 12116,2,3===. ∵236⨯= ∴ba bacttt t 2112111+=⋅=,∴ba c 2111+= 等式两边同时乘以2得:b ac 122+=. 例42. 设m b a ==52,且211=+b a ,则=m _________.分析:这是指数幂的连等式,参数已经给出. 解:∵m ba==52,∴bam m 115,2==. ∵211=+ba ∴2111152m m m m ba ba==⋅=⨯+,∴102=m ,10±=m .∵0>m ,∴10=m . 例43. 已知333cz by ax ==,且1111=++zy x . 求证:()31313131222c b a czby ax ++=++.证明:设t cz by ax ===333,则zt cz y t by x t ax ===222,,. ∴⎪⎭⎫⎝⎛++=++z y x t cz by ax 111222.∵1111=++z y x ,∴t z y x t =⎪⎭⎫ ⎝⎛++111 ∴t cz by ax =++222,()3131222t czby ax =++∵3131313313313313131111t z y x t z t y t x t c b a =⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++∴()31313131222c b a czby ax ++=++.例44. 对于正整数c b a ,,(a ≤b ≤c )和非零实数ω,,,z y x ,若ω70===z y x c b a ,zy x 1111++=ω,求c b a ,,的值. 解:设k c b a zyx====ω70,则有ω111170,,,k k c k b k a zyx====.∴zy x k abc 111++=∵zy x 1111++=ω,∴70=abc . ∵c b a ,,为正整数,且a ≤b ≤c ∴752107170⨯⨯=⨯⨯==abc ∴10,7,1===c b a 或7,5,2===c b a当10,7,1===c b a 时,0===ωz y ,不符合题意,舍去. ∴7,5,2===c b a .本节易错题例45. 计算()()=-++44332121_________.分析 对于对于nna ,当n 为奇数时,a a nn=;当n 为偶数时,()()⎩⎨⎧≤-≥==00a a a a a a nn.解:原式2212212121=-++=-++=.例46. 化简()()=-⋅-43111a a _________. 分析:题目的隐含条件为1>a . 解:原式()()()()()()()414343431111111--=-⋅--=-⋅-=-⋅-=---a a a a a a a .例47. 已知1,0><<n b a ,∈n N*,化简()()nn nnb a b a ++-.解:当n 为奇数时,原式a b a b a 2=++-=; 当n 为偶数时,原式b a b a ++-=. ∵0<<b a ,∴原式a b a a b 2-=---=.其它例48. 已知函数()⎪⎩⎪⎨⎧≤⎪⎭⎫ ⎝⎛>=0,210,21x x x x f x ,则()=-)4(f f _________. 解:∵()1621121444=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=--f ∴()()4161616)4(21====-f f f .例49. 已知集合{}4,,2a a A -=,⎭⎬⎫⎩⎨⎧-=b a aa B 2,,33,且B A =,则=+b a _______.解:{}{}4,,4,,2a a a a A -=-=根据集合元素的互异性,a a -≠,∴0>a∴{}b b a a a a B 2,1,2,,33-=⎭⎬⎫⎩⎨⎧-=∴⎩⎨⎧==421b a ,解之得:⎩⎨⎧==21b a .∴=+b a 3.例50. 设()244+=x xx f ,若10<<x ,则=⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛10011000100131001210011f f f f _________. 解:∵()244+=x xx f∴()()=+++=+++=+++=-+--24224444444244244244111x x x xx x xx xx xx f x f 12424=++x x ∴⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛10011000100131001210011f f f f500111100150110015001001100010011=++=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛= f f f f .。
第三章指数运算与指数函数3.1指数幂的拓展 (1)3.2指数幂的运算性质 (7)3.3 指数函数 (12)1、指数函数的概念指数函数的图象和性质 (12)2、指数函数及其性质的应用 (21)复习巩固 (28)3.1指数幂的拓展学习目标核心素养1.理解分数指数幂的概念,会进行分数指数幂与根式的互化.(重点)2.了解无理数指数幂的概念,了解无理数指数幂可以用有理数指数幂逼近的思想方法.(易混点)1.通过指数幂的拓展的学习,培养逻辑推理素养.2.通过分数指数幂与根式的互化,培养数学运算素养.1.正分数指数幂的定义是什么?2.正分数指数幂有哪些性质?3.负分数指数幂的定义是什么?1.正分数指数幂(1)定义:给定正数a和正整数m,n,(n>1,且m,n互素),若存在唯一的正数b,使得b n=a m,则称b为a的mn次幂,记作b=a.这就是正分数指数幂.(2)性质:①当k是正整数时,分数指数幂a满足:a=a.②a=n a m.2.负分数指数幂给定正数a和正整数m,n(n>1,且m,n互素),定义a=1a=1n a m.能否将3-27=-3写成(-27)=-3?[提示]不能.因为在指数幂的概念中,总有a>0.于是,尽管有3-27=-3,但不可以写成(-27)=-3的形式.1.把下列各式中的b(b>0)写成正分数指数幂的形式:(1)b4=35;(2)b-3=32.[解](1)∵b4=35,∴b=3.(2)∵b-3=32,∴b=32.2.计算:(1)8=________;(2)27=________.(1)2(2)19[(1)设b=8,由定义,得b3=8,b=2,所以8=2.(2)由负分数指数幂的定义,得27=127.设b=27,由定义,得b3=272=93,b=9,所以27=19 .]类型1 根式的化简与求值【例1】化简:(1)n x-πn(x<π,n∈N*);(2)4()x+24.[解](1)∵x<π,∴x-π<0.当n为偶数时,n x-πn=|x-π|=π-x;当n为奇数时,n x-πn=x-π.综上可知,nx -πn=⎩⎨⎧π-x ,n 为偶数,n ∈N *,x -π,n 为奇数,n ∈N *.(2)4()x +24=||x +2=⎩⎨⎧x +2,x ≥-2-x -2,x <-2.正确区分n a n 与⎝ ⎛⎭⎪⎫n a n(1)n a n 表示a 的n 次方的n 次方根,而⎝ ⎛⎭⎪⎫na n表示a 的n 次方根的n 次方,因此从运算角度看,运算顺序不同.(2)运算结果不同①⎝ ⎛⎭⎪⎫n a n =a .②n a n=⎩⎨⎧a ,n 为奇数,|a |,n 为偶数.[跟进训练]1.若xy ≠0,则使4x 2y 2=-2xy 成立的条件可能是( ) A .x >0,y >0 B .x >0,y <0 C .x ≥0,y ≥0D .x <0,y <0B [∵4x 2y 2=2|xy |=-2xy ,∴xy ≤0. 又∵xy ≠0,∴xy <0,故选B.] 2.若2a -12=31-2a3,则实数a 的取值范围为________.⎝⎛⎦⎥⎤-∞,12 [2a -12=|2a -1|,31-2a3=1-2a .因为|2a -1|=1-2a ,故2a -1≤0,所以a ≤12.]类型2 根式与分数指数幂的互化 【例2】 (1)3可化为( ) A . 2B .33C .327 D.27(2)5a-2可化为( )A .a B.a C.a D.-a[思路点拨] 熟练应用n a m=a mn是解决该类问题的关键.(1)D(2)A[(1)3=()33=27. (2) 5a-2=()a-2=a.]根式与分数指数幂的互化规律1.关于式子n a m=a的两点说明(1)根指数n即分数指数的分母;(2)被开方数的指数m即分数指数的分子.2.通常规定a中的底数a>0.[跟进训练]3.将下列各根式化为分数指数幂的形式:(1)13a;(2)4a-b3.[解](1)13a =1a=a;(2)4a-b3=()a-b.类型3 求指数幂a mn的值【例3】求下列各式的值:(1)64;(2)81.[思路点拨] 结合分数指数幂的定义,即满足b n =a m 时,a =b (m ,n ∈ N +,a ,b >0)求解.[解] (1)设64=x ,则x 3=642=4 096, 又∵163=4 096, ∴64=16. (2)设81=x, 则x 4=81-1=181, 又∵⎝ ⎛⎭⎪⎫134=181,∴81=13.解决此类问题时,根据分数指数幂的定义将分数指数幂转化为熟悉的整数指数幂,进而转化为正整数指数幂.[跟进训练]4.求下列各式的值: (1)125;(2)128.[解] (1)设125=x ,则x 3=125, 又∵53=125, ∴125=5. (2)设128=x ,则x 7=128-1=1128, 又∵⎝ ⎛⎭⎪⎫127=1128,∴128=12. 随堂检测1.思考辨析(正确的画“√”,错误的画“×”) (1) 2表示23个2相乘.( )(2) a =m a n(a>0,m,n∈N+,且n>1).( )1(a>0,m,n∈N+,且n>1).( )(3) a=n a m[答案](1)×(2)×(3)√2.3a-2可化为( )A.a B.aC.a D.-a[答案]A3.计算243等于( )A.9 B.3C.±3D.-3B[由35=243,得243=3.]4.若b-3n=5m(m,n∈N+),则b=________.[答案]55.用分数指数幂表示下列各式(式中a>0),(1)a3=________;1(2)=________.3a53.2指数幂的运算性质学习目标核心素养1.掌握指数幂的运算性质.(重点)2. 能用指数幂的运算性质对代数式进行化简与求值.(难点)通过指数幂的运算,培养数学运算素养.指数幂的运算性质由哪些?指数幂的运算性质(a>0,b>0,α∈R,β∈R) 1.aα·aβ=aα+β;2.(aα)β=aαβ;3.(ab)α=aα·bα.以下计算正确吗?若计算错误,应该如何计算[提示]错误,.1.23×2×2-2=________.2.(x2y-1z3)=________.[答案]x y z类型1 指数幂的运算【例1】计算下列各式:[解] (1)原式=1+14×⎝ ⎛⎭⎪⎫49-⎝ ⎛⎭⎪⎫1100=1+16-110=1615.(2)原式=0.4-1-1+(-2)-4+2-3=52-1+116+18=2716.(3)原式=4×4100·a ·a ·b·b =425a 0b 0=425.在进行幂和根式的化简时,一般先将根式化成幂的形式,并化小数指数幂为分数指数幂,再利用幂的运算性质进行化简.[跟进训练] 1.计算:(2)(a -2b -3)·(-4a -1b )÷(12a -4b -2c ); (3)23a ÷46a ·b ·3b 3. [解] (1)原式=-13+1=0.3-52+43+2-13+1=64715. (2)原式=-4a -2-1b -3+1÷(12a -4b -2c )=-13a -3-(-4)b -2-(-2)c -1=-13ac -1=-a3c. (3)原式=.类型2 对指数幂的运算性质的理解【例2】 (1)下列函数中,满足f ()x +1=12f ()x 的是( )A .f ()x =4xB .f ()x =4-xC .f ()x =2xD .f ()x =2-x(2)=( )(1)D (2)A [(1)f ()x +1=2-(x +1)=12×2-x =12f ()x .故选D.1.根据需要,指数幂的运算性质可正用、逆用和变形使用.2.运用幂的运算性质化简时,其底数必须大于零,对于底数小于零的,要先化为底数大于零的形式.如先化为.[跟进训练]2.下列运算结果中,正确的是( ) A .a 2·a 3=a 6 B .()-a 23=()-a 32C.()a 23=a 5D .()-a 23=-a 6D [a 2·a 3=a 5,A 错;(-a 2)3=(-1)3×a 2×3=-a 6,(-a 3)2=(-1)2×a 3×2=a 6,B 错;()a 23=a 6,C 错,故选D.]类型3 根据条件求值 【例3】 已知a +a =5,求下列各式的值:(1)a +a -1; (2)a 2+a -2. [解] (1)将a +a=5两边平方,得a +a -1+2=5,所以a +a -1=3. (2)将a +a -1=3两边平方,得a 2+a -2+2=9,所以a 2+a -2=7.在本例条件不变的情况下,则a 2-a -2=______.±35 [令y =a 2-a -2,两边平方,得y 2=a 4+a -4-2=(a 2+a -2)2-4=72-4=45,∴y=±35,即a2-a-2=±3 5.] 条件求值的步骤[跟进训练]3.已知a,b分别为x2-12x+9=0的两根,且a<b,求a-ba+b的值.[解]a-b a+b=a-b2 a+b a-b=a+b-2aba-b.①∵a+b=12,ab=9,②∴(a-b)2=(a+b)2-4ab=122-4×9=108. ∵a<b,∴a-b=-6 3.③将②③代入①,得a-ba+b=12-2×9-63=-33.随堂检测1.思考辨析(正确的画“√”,错误的画“×”)(1) 对任意实数a,a m+n=a m a n.( )(2) 当a>0时,()a m n=a mn.( )(3)当a≠0时,a ma n=a m-n.( )[答案](1)×(2)√(3)√2.2·5=( )A .103B .10C .310D .7 3B [由实数指数幂的运算性质(ab )n =a n b n 知,2·5=()2×5=10.]3.已知x +x =5,则x 2+1x的值为( )A .5B .23C .25D .27B [∵x +x =5,∴x +2+x -1=25,∴x +x -1=23.∴x 2+1x =x +1x =x +x -1=23.]4.614- 3338+30.125 的值为________. 32[原式=⎝ ⎛⎭⎪⎫522-3⎝ ⎛⎭⎪⎫323+3⎝ ⎛⎭⎪⎫123=52-32+12=32.] 5.8×42+⎝ ⎛⎭⎪⎫32×36________.110 [原式==2+22×33=2+4×27=110.]3.3 指数函数1、指数函数的概念 指数函数的图象和性质学 习 目 标核 心 素 养1.通过具体实例,了解指数函数的实际意义,理解指数函数的概念.(重点) 2.能用描点法或借助计算工具画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点.(重点、难点)1.通过指数函数的图象的学习,培养直观想象素养.2.借助指数函数性质的应用,培养逻辑推理素养.1.指数函数的概念是什么?2.结合指数函数的图象,分别指出指数函数y =a x (a >1)和y =a x (0<a <1)的定义域、值域和单调性各是什么?3.y =a x和y =⎝ ⎛⎭⎪⎫1a x(a >0且a ≠1)的图象和性质有什么关系?知识点1 指数函数的概念1.定义:当给定正数a ,且a ≠1时,对于任意的实数x ,都有唯一确定的正数y =a x 与之对应,因此,y =a x 是一个定义在实数集上的函数,称为指数函数.2.性质:(1)定义域是R ,函数值大于0; (2)图象过定点(0,1).指数函数的解析式有什么特征?[提示] 指数函数解析式的3个特征:①底数a 为大于0且不等于1的常数;②自变量x 的位置在指数上,且x 的系数是1;③a x 的系数是1.1.思考辨析(正确的画“√”,错误的画“×”) (1)y =x 2是指数函数.( )(2)指数函数y =a x 中,a 可以为负数.( ) (3)y =2x +1是指数函数.( ) [答案] (1)× (2)× (3)×2.函数y =(a -2)a x 是指数函数,则a =________.3[由指数函数定义知a-2=1得a=3.]3.若函数f(x)是指数函数,且f(2)=2,则f(x)=________.(2)x[设f(x)=a x(a >0,a≠1),∵f(2)=2,∴a2=2,∴a=2,即f(x)=(2)x.]知识点2 指数函数的图象和性质1.对于函数y=a x和y=b x(a>b>1).(1)当x<0时,0<a x<b x<1;(2)当x=0时,a x=b x=1;(3)当x>0时,a x>b x>1.2.对于函数y=a x和y=b x(0<a<b<1).(1)当x<0时,a x>b x>1;(2)当x=0时,a x=b x=1;(3)当x>0时,0<a x<b x<1.3.指数函数的图象和性质a>10<a<1图象性质定义域:R值域:(0,+∞)过定点(0,1),即x=0时,y=1当x<0时,0<y<1;当x>0时,y>1当x<0时,y>1;当x>0时,0<y<1在R上是增函数,当x值趋近于正无穷大时,函数值趋近于正无穷大;当x值趋近于负无穷大时,函数值趋近于0在R上是减函数,当x值趋近于正无穷大时,函数值趋近于0;当x值趋近于负无穷大时,函数值趋近于正无穷大4.一般地,指数函数y=a x和y=⎝⎛⎭⎪⎫a(a>0,且a≠1)的图象关于y轴对称,且它们在R 上的单调性相反.(1)在直角坐标系中指数函数图象不可能出现在第几象限? (2)指数函数y =a x (a >0,a ≠1)的图象与底数a 有什么关系?[提示] (1)指数函数的图象只能出现在第一、二象限,不可能出现在第三、四象限.(2)底数a 与1的大小关系决定了指数函数图象的“升”与“降”.当a >1时,指数函数的图象是“上升”的;当0<a <1时,指数函数的图象是“下降”的.4.思考辨析(正确的画“√”,错误的画“×”) (1)函数y =⎝ ⎛⎭⎪⎫12x是减函数.( )(2)已知函数f (x )=3x ,若m >n ,则f (m )>f (n ).( ) (3)指数函数的图象一定在x 轴的上方.( ) [答案] (1)√ (2)√ (3)√5.下列函数中,是增函数的是________(填上正确的序号). ①y =⎝ ⎛⎭⎪⎫13x;②y =(3+1)x ;③y =2-x ;④y =(a 2+2)x . [答案] ②④6.函数f (x )=2x +3的值域为________. [答案] (3,+∞)7.函数y =a x -1-1(a >0,且a ≠1)的图象恒过点________. (1,0) [由于指数函数y =a x (a >0,且a ≠1)的图象恒过点(0,1),因而在函数y =a x -1-1中,当x =1时,恒有y =0,即函数y =a x -1-1的图象恒过点(1,0).]第1课时 指数函数的概念、图象和性质类型1 指数函数的概念 【例1】 给出下列函数:①y =2·3x ;②y =3x ;③y =32x ;④y =x 3. 其中,指数函数的个数是( ) A .0 B .1 C .2D .3C [①中,3x 的系数是2,故①不是指数函数; ②中,y =3x 是指数函数;③中,y =32x =9x ,故③是指数函数;④中,y =x 3中底数为自变量,指数为常数,故④不是指数函数.]判断一个函数是指数函数,需判断其解析式是否可化为y =a x (a >0,且a ≠1)的形式.[跟进训练]1.函数y =(a -2)2a x 是指数函数,则( ) A .a =1或a =3 B .a =1 C .a =3D .a >0且a ≠1C [由指数函数定义知⎩⎨⎧a -22=1,a >0,且a ≠1,所以解得a =3.]类型2 指数型函数的定义域和值域 【例2】 求下列函数的定义域和值域: (1)y =2;(2)y =⎝ ⎛⎭⎪⎫23-|x |;(3)y =1-⎝ ⎛⎭⎪⎫12x . [解] (1)∵x 应满足x -4≠0,∴x ≠4, ∴定义域为{x |x ≠4,x ∈R }. ∵1x -4≠0,∴2≠1,∴y =2的值域为{y |y >0,且y ≠1}.(2)定义域为R .∵|x |≥0,∴y =⎝ ⎛⎭⎪⎫23-|x |=⎝ ⎛⎭⎪⎫32|x |≥⎝ ⎛⎭⎪⎫320=1,∴此函数的值域为[1,+∞). (3)由题意知1-⎝ ⎛⎭⎪⎫12x≥0,∴⎝ ⎛⎭⎪⎫12x ≤1=⎝ ⎛⎭⎪⎫120, ∴x ≥0,∴定义域为{x |x ≥0,x ∈R }. ∵x ≥0,∴⎝ ⎛⎭⎪⎫12x≤1.又∵⎝ ⎛⎭⎪⎫12x >0,∴0<⎝ ⎛⎭⎪⎫12x≤1.∴0≤1-⎝ ⎛⎭⎪⎫12x<1,∴0≤y <1,∴此函数的值域为[0,1).函数y =a f (x )定义域、值域的求法(1)定义域:形如y =a f (x )形式的函数的定义域是使得f (x )有意义的x 的取值集合.(2)值域:①换元,令t =f (x ); ②求t =f (x )的定义域x ∈D ; ③求t =f (x )的值域t ∈M ;④利用y =a t 的单调性求y =a t ,t ∈M 的值域.注意:(1)通过建立不等关系求定义域时,要注意解集为各不等关系解集的交集.(2)当指数型函数的底数含字母时,在求定义域、值域时要注意分类讨论.[跟进训练] 2.函数f (x )=3x -4+2x-4的定义域是________. [2,4)∪(4,+∞) [依题意有⎩⎨⎧x -4≠0,2x-4≥0,解得x ∈[2,4)∪(4,+∞).]3.若函数f (x )=a x -a 的定义域是[1,+∞),则a 的取值范围是________. (1,+∞) [∵a x -a ≥0, ∴a x ≥a ,∴当a>1时,x≥1.故函数定义域为[1,+∞)时,a>1.]4.函数f(x)=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大a2,求a的值.[解]①当0<a<1时,函数f(x)=a x(a>0,且a≠1)在[1,2]上的最大值f(x)max=f(1)=a1=a,最小值f(x)min=f(2)=a2,所以a-a2=a2,解得a=12或a=0(舍去);②当a>1时,函数f(x)=a x(a>0,且a≠1)在[1,2]上的最大值f(x)max=f(2)=a2,最小值f(x)min=f(1)=a1=a,所以a2-a=a2,解得a=32或a=0(舍去).综上所述,a=12或a=32.类型3 指数型函数图象【例3】(1)函数f(x)=a x-b的图象如图所示,其中a,b为常数,则下列结论正确的是( )A.a>1,b<0 B.a>1,b>0C.0<a<1,b>0 D.0<a<1,b<0(2)在平面直角坐标系中,若直线y=m与函数f(x)=|2x-1|的图象只有一个交点,则实数m的取值范围是________.(1)D(2){m|m≥1,或m=0} [(1)从曲线的变化趋势,可以得到函数f(x)为减函数,从而有0<a<1;从曲线位置看,是由函数y=a x(0<a<1)的图象向左平移|-b|个单位长度得到,所以-b>0,即b<0.(2)画出函数f(x)=|2x-1|的图象,如图所示.若直线y=m与函数f(x)=|2x-1|的图象只有1个交点,则m≥1或m=0,即实数m的取值范围是{m|m≥1,或m=0}.]处理函数图象问题的策略(1)抓住特殊点:指数函数的图象过定点(0,1),求指数型函数图象所过的定点时,只要令指数为0,求出对应的y的值,即可得函数图象所过的定点.(2)巧用图象变换:函数图象的平移变换(左右平移、上下平移).(3)利用函数的性质:奇偶性确定函数的对称情况,单调性决定函数图象的走势.[跟进训练]4.函数f(x)=2x+2-x2x-2-x的大致图象为( )A B C DA[要使函数有意义,则2x-2-x≠0,即x≠0,故其定义域为{x|x≠0}.由于所有选项中的图象都具有奇偶性,因此考虑其奇偶性:f(-x)=2-x+2x 2-x-2x=-f(x),所以函数f(x)为奇函数.再考虑单调性:f(x)=2x+2-x2x-2-x=22x+122x-1=1+222x-1,当x>0时,f(x)为减函数,故符合条件的函数图象只有A.]5.(多选)函数y=a x-1a(a>0,a≠1)的图象可能是( )A B C DCD [当a >1时,1a ∈(0,1),因此x =0时,0<y =1-1a <1,且y =a x -1a在R上是增函数,故C 符合;当0<a <1时,1a>1,因此x =0时,y <0,且y =a x -1a在R 上是减函数,故D 符合.故选CD.]指数函数图象变换问题探究为研究函数图象的变换规律,某数学兴趣小组以指数函数f (x )=2x 为例,借助几何画板画出了下面4组函数的图象:(1)y =f (x -1);(2)y =f (|x |)+1;(3)y =-f (x );(4)y =|f (x )-1|.[问题探究]1.请分别写出这4组函数的解析式. [提示] (1)y =f (x -1)=2x -1; (2)y =f (|x |)+1=2|x |+1; (3)y =-f (x )=-2x ; (4)y =|f (x )-1|=|2x -1|.2.若给出函数f (x )=4x 的图象,能否由图象变换的方法得到上面这4组函数的图象?若能,试分别写出图象的变换过程.[提示] 能.(1)将函数y =f (x )=4x 的图象向右平移1个单位长度得到函数y =f (x -1)=4x -1的图象.(2)保留函数y =f (x )=4x 在y 轴右侧的图象,并对称至y 轴左侧,再向上平移1个单位长度得到y =f (|x |)+1=4|x |+1的图象.(3)函数y =-f (x )=-4x 与y =f (x )=4x 的图象关于x 轴对称.(4)将函数y =f (x )=4x 的图象向下平移1个单位长度得到函数y =f (x )-1=4x -1的图象,再将x 轴下方的图象沿x 轴翻折到x 轴的上方,便得到函数|f (x )-1|=|4x -1|的图象.随堂检测1.下列函数中,指数函数的个数为( ) ①y =⎝ ⎛⎭⎪⎫12x -1;②y =a x (a >0,且a ≠1);③y =1x;④y =⎝ ⎛⎭⎪⎫122x-1.A .0个B .1个C .3个D .4个B [由指数函数的定义可判定,只有②正确.]2.若函数y =(2a -1)x(x 是自变量)是指数函数,则a 的取值范围是( ) A .a >0,且a ≠1 B .a ≥0,且a ≠1 C .a >12,且a ≠1D .a ≥12C [依题意得:2a -1>0,且2a -1≠1,解得a >12,且a ≠1,故选C.]3.函数y =a x -a (a >0,且a ≠1)的图象可能是( )A BC DC [函数y =a x -a (a >0,且a ≠1)的图象恒过点(1,0),故可排除选项ABD.] 4.函数f (x )=2x -3(1<x ≤5)的值域是________.⎝ ⎛⎦⎥⎤14,4 [因为1<x ≤5,所以-2<x -3≤2.而函数f (x )=2x -3在其定义域上是增函数,所以14<f (x )≤4,即所求函数的值域为⎝ ⎛⎦⎥⎤14,4.]5.已知函数f (x )=a x +b (a >0,且a ≠1),经过点(-1,5),(0,4),则f (-2)的值为________.7 [由已知得⎩⎨⎧a -1+b =5,a 0+b =4,解得⎩⎨⎧a =12,b =3,所以f (x )=⎝ ⎛⎭⎪⎫12x +3,所以f (-2)=⎝ ⎛⎭⎪⎫12-2+3=4+3=7.]2、指数函数及其性质的应用类型1 指数式的大小比较【例1】 (链接教材第86页例3)比较下列各组数的大小: (1)1.52.5和1.53.2; (2)⎝ ⎛⎭⎪⎫311与⎝ ⎛⎭⎪⎫833;(3)1.50.3和0.81.2.[解] (1)∵函数y =1.5x 在R 上是增函数,2.5<3.2,∴1.52.5<1.53.2.(2)指数函数y =⎝ ⎛⎭⎪⎫311x 与y =⎝ ⎛⎭⎪⎫833x 的图象(如图),由图知⎝ ⎛⎭⎪⎫311>⎝ ⎛⎭⎪⎫833.(3)由指数函数的性质知1.50.3>1.50=1, 而0.81.2<0.80=1,∴1.50.3>0.81.2.比较指数式大小的3种类型及处理方法[跟进训练]1.比较下列各题中两个值的大小: (1)0.8-0.1,1.250.2; (2)1.70.3,0.93.1;(3)a 0.5与a 0.6(a >0,且a ≠1). [解] (1)∵0<0.8<1, ∴y =0.8x 在R 上是减函数. ∵-0.2<-0.1, ∴0.8-0.2>0.8-0.1,而0.8-0.2=⎝ ⎛⎭⎪⎫45-0.2=1.250.2, 即0.8-0.1<1.250.2.(2)∵1.70.3>1.70=1,0.93.1<0.90=1, ∴1.70.3>0.93.1.(3)a 0.5与a 0.6可看做指数函数y =a x 的两个函数值.当0<a <1时,函数y =a x 在R 上是减函数. ∵0.5<0.6,∴a 0.5>a 0.6.当a >1时,函数y =a x 在R 上是增函数. ∵0.5<0.6,∴a 0.5<a 0.6.综上所述,当0<a <1时,a 0.5>a 0.6;当a >1时,a 0.5<a 0.6. 类型2 解含指数型不等式 【例2】 求解下列不等式:(1)已知3x ≥⎝ ⎛⎭⎪⎫13-0.5,求实数x 的取值范围;(2)若a -5x >a x +7(a >0,且a ≠1),求x 的取值范围.[解] (1)因为⎝ ⎛⎭⎪⎫13-0.5=30.5,所以由3x≥⎝ ⎛⎭⎪⎫13-0.5可得3x ≥30.5,因为y =3x 在R上为增函数,故x ≥0.5.(2)①当0<a <1时,函数y =a x 在R 上是减函数,则由a -5x >a x +7可得-5x <x +7,解得x >-76.②当a >1时,函数y =a x 在R 上是增函数,则由a -5x >a x +7可得-5x >x +7,解得x <-76.综上,当0<a <1时,x >-76;当a >1时,x <-76.指数型不等式的解法(1)指数型不等式a f (x )>a g (x )(a >0,且a ≠1)的解法: 当a >1时,f (x )>g (x ); 当0<a <1时,f (x )<g (x ).(2)如果不等式的形式不是同底指数式的形式,要首先进行变形将不等式两边的底数进行统一,此时常用到以下结论:1=a 0(a >0,且a ≠1),a -x=⎝ ⎛⎭⎪⎫1a x(a >0,且a ≠1)等.[跟进训练]2.不等式⎝ ⎛⎭⎪⎫12x 2-2≤2x 的解集为________.{x |x ≥1,或x ≤-2} [∵⎝ ⎛⎭⎪⎫12x 2-2=(2-1)x 2-2=22-x 2,∴原不等式等价于22-x 2≤2x .∵y =2x 是R 上的增函数, ∴2-x 2≤x ,∴x 2+x -2≥0,即x ≤-2或x ≥1, ∴原不等式的解集是{x |x ≥1,或x ≤-2}.] 类型3 指数型函数性质的应用指数型函数的单调性问题【例3】 求函数y =⎝ ⎛⎭⎪⎫13x 2-2x +3的单调区间.[解] 令t =x 2-2x +3,则由二次函数的性质可知该函数在(-∞,1]上为减函数,在[1,+∞)上为增函数,且y =⎝ ⎛⎭⎪⎫13t 为减函数,故函数y =⎝ ⎛⎭⎪⎫13x 2-2x +3的单调增区间为(-∞,1],单调减区间为[1,+∞).指数型函数的奇偶性问题【例4】 若函数y =a -12x-1为奇函数. (1)确定a 的值; (2)求函数的定义域.[解] (1)由奇函数的定义,可得f (-x )+f (x )=0,即a -12-x -1+a -12x -1=0, ∴2a +1-2x1-2x =0.∴a =-12.(2)∵y =-12-12x -1,∴2x -1≠0,即x ≠0,∴函数y =-12-12x -1的定义域为{x |x ≠0}.指数型函数性质的综合问题【例5】 已知f (x )是定义在(-1,1)上的奇函数,当x ∈(0,1)时,f (x )=2x4x +1. (1)求f (x )在(-1,1)上的解析式; (2)求f (x )的值域.[解] (1)当x ∈(-1,0)时,-x ∈(0,1).∵函数f (x )为奇函数,∴f (x )=-f (-x )=-2-x 4-x +1=-2x1+4x.又f (0)=0.故当x ∈(-1,1)时,f (x )的解析式为f (x )=⎩⎪⎨⎪⎧2x4x +1,x ∈0,1,0,x =0,-2x 4x+1,x ∈-1,0(2)f (x )=2x1+4x ,x ∈(0,1)为减函数,证明如下:任取x 1,x 2∈(0,1),且x 1<x 2, 则f (x 1)-f (x 2)=2x 14x 1+1-2x 24x 2+1=2x 2-2x 12x 1+x 2-14x 1+14x 2+1.∵0<x 1<x 2<1,∴2x 2-2x 1>0,2x 1+x 2-1>0. ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), ∴f (x )在(0,1)上是减函数.由奇函数的对称性知f (x )在(-1,0)上也是减函数.∴当0<x <1时,f (x )∈⎝ ⎛⎭⎪⎫2141+1,2040+1,即f (x )∈⎝ ⎛⎭⎪⎫25,12;当-1<x <0时,f (x )∈⎝ ⎛⎭⎪⎫-2040+1,-2-14-1+1,即f (x )∈⎝ ⎛⎭⎪⎫-12,-25.而f (0)=0,故函数f (x )在(-1,1)上的值域为⎝ ⎛⎭⎪⎫-12,-25∪{0}∪⎝ ⎛⎭⎪⎫25,12.1.对于形如f (x )=a g (x )(a >0,且a ≠1)的函数,可以利用复合函数的单调性,转化为指数函数y =a x 及函数g (x )的单调性来处理.2.指数函数本身不具有奇偶性,但是与指数函数有关的函数可以具有奇偶性,其解决方法一般是利用函数奇偶性的定义和性质.[跟进训练]3.已知函数f (x )=⎝ ⎛⎭⎪⎫122x -x2,求f (x )的值域与单调区间.[解] 令u =2x -x 2,则u =-(x -1)2+1≤1,定义域为R ,故u 在(-∞,1)上是增函数,在[1,+∞)上是减函数,又y =⎝ ⎛⎭⎪⎫12u为减函数,所以根据复合函数的“同增异减”得y =⎝ ⎛⎭⎪⎫122x -x2在(-∞,1)上是减函数,在[1,+∞)上是增函数,所以⎝ ⎛⎭⎪⎫122x -x 2≥⎝ ⎛⎭⎪⎫121=12,故函数y =⎝ ⎛⎭⎪⎫122x -x 2的值域为⎣⎢⎡⎭⎪⎫12,+∞,单调增区间为[1,+∞),单调减区间为(-∞,1).4.求函数y =4x -2×2x +5的单调区间.[解] 函数的定义域为R ,令t =2x ,x ∈R 时,t ∈(0,+∞).y =(2x )2-2×2x +5=t 2-2t +5=(t -1)2+4,t ∈(0,+∞). 当t ≥1时,2x ≥1,x ≥0; 当0<t <1时,0<2x <1,x <0.∵y =(t -1)2+4在[1,+∞)上递增,t =2x 在[0,+∞)上递增,∴函数y =4x -2×2x +5的单调增区间为[0,+∞). 同理可得单调减区间为(-∞,0].随堂检测1.若函数f (x )=(1-2a )x 在实数集R 上是减函数,则实数a 的取值范围是( )A .⎝ ⎛⎭⎪⎫12,+∞B .⎝ ⎛⎭⎪⎫0,12C .⎝⎛⎭⎪⎫-∞,12D .⎝ ⎛⎭⎪⎫-12,12B [由已知,得0<1-2a <1,解得0<a <12,即实数a 的取值范围是⎝ ⎛⎭⎪⎫0,12.]2.下列判断正确的是( ) A .2.52.5>2.53 B .0.82<0.83 C .π2<π 2D .0.90.3>0.90.5D [∵y =0.9x 是减函数,且0.5>0.3, ∴0.90.3>0.90.5.]3.若f (x )=3x+1,则( ) A .f (x )在[-1,1]上为减函数B .y =3x+1与y =⎝ ⎛⎭⎪⎫13x+1的图象关于y 轴对称C .f (x )的图象过点(0,1)D .f (x )的值域为[1,+∞)B [f (x )=3x +1在R 上为增函数,则A 错误;y =3x +1与y =3-x +1的图象关于y 轴对称,则B 正确;由f (0)=2,得f (x )的图象过点(0,2),则C 错误;由3x>0,可得f (x )>1,则D 错误.故选B.]4.函数y =⎝ ⎛⎭⎪⎫121-x的单调增区间为________.(-∞,+∞) [由已知得,f (x )的定义域为R . 设u =1-x ,则y =⎝ ⎛⎭⎪⎫12u.因为u =1-x 在R 上为减函数,又因为y =⎝ ⎛⎭⎪⎫12u在(-∞,+∞)上为减函数,所以y =⎝ ⎛⎭⎪⎫121-x 在(-∞,+∞)上为增函数,所以函数y =⎝ ⎛⎭⎪⎫121-x的单调增区间为(-∞,+∞).]5.不等式52x 2>5x +1的解集是________. ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-12,或x >1 [由52x 2>5x +1得2x 2>x +1,解得x <-12或x >1.]复习巩固类型1 指数的运算【例1】 化简:(1);[解] (1)原式==2-1×103×10=2-1×10=102. (2)原式==a 2·a 2=a 4.指数运算应遵循的原则指数式的运算首先注意化简顺序,一般负指数先转化成正指数,根式化为分数指数幂运算,其次若出现分式则要注意分子、分母因式分解,以达到约分的目的.[跟进训练]1.0.25-⎣⎢⎡⎦⎥⎤-2×⎝ ⎛⎭⎪⎫3702×[(-2)3]+(2-1)-1-2=________.-1252 [原式=⎝ ⎛⎭⎪⎫14-(-2)2×(-2)4+12-1- 2=12-4×16+(2+1)- 2 =-1252.] 类型2 函数图象及其应用由解析式判断函数图象【例2】 定义运算a ⊕b =⎩⎨⎧a ,a ≤b ,b ,a >b ,则函数f (x )=1⊕2x的图象是( )A B C D A [∵当x ≥0时,2x ≥1,当x <0时,2x <1,∴f (x )=1⊕2x=⎩⎨⎧2x ,x <0,1,x ≥0,故选A.][跟进训练]2.函数y =2x -x 2的图象大致是( )A BC DA [对于函数y =2x -x 2,当x =2或4时,2x -x 2=0,所以排除B ,C ; 当x =-2时,2x-x 2=14-4<0,排除D.故选A.]应用函数图象研究函数性质【例3】 设函数y =x 3与y =⎝ ⎛⎭⎪⎫12x -2的图象的交点坐标为(x 0,y 0),则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)B [在同一坐标系中画出y =x 3与y =⎝ ⎛⎭⎪⎫12x -2的图象,如图,由图知当x <x 0时,⎝ ⎛⎭⎪⎫12x -2>x 3,当x >x 0时,⎝ ⎛⎭⎪⎫12x -2<x 3.代入x =2,⎝ ⎛⎭⎪⎫12x -2=1<23,∴2>x 0.再代入1,得⎝ ⎛⎭⎪⎫12x -2=2>13,∴x 0>1.] [跟进训练]3.已知函数f (x )=|2x -1|,a <b <c ,且f (a )>f (c )>f (b ),则下列结论中,一定成立的是( )A .2a +2c <2B .2-a <2cC .a <0,b ≥0,c >0D .a <0,b <0,c <0A [作出函数f (x )=|2x -1|的图象,如图所示.对于A ,∵a <c ,且f (a )>f (c ),结合函数图象,如果a ,c 位于函数的减区间(-∞,0),此时a <b <c <0,可得f (a )>f (b )>f (c ),与题设矛盾;如果a ,c 不位于函数的减区间(-∞,0),那么必有a <0<c ,则f (a )=|2a -1|=1-2a ,f (c )=|2c -1|=2c -1.又∵f (a )>f (c ),∴1-2a >2c -1,即2a +2c <2.故A 正确.对于B ,C ,D 选项,取a =-2,b =-12⎝ ⎛⎭⎪⎫或14,c =12, 满足a <b <c ,且f (a )>f (c )>f (b ),但是B ,C ,D 选项均不成立.]指数函数图象是研究指数函数性质的工具,所以要能熟练画出指数函数图象,并会进行平移、伸缩,对称、翻折等变换.类型3 指数函数的性质及应用比较大小【例4】(1)比较数的大小:(1)27,82;(2)比较1.5,23.1,2的大小关系是( )A.23.1<2<1.5B.1.5<23.1<2C.1.5<2<23.1D.2<1.5<23.1(1)[解]∵82=(23)2=26,由指数函数y=2x在R上单调递增知26<27,即82<27.(2)C[∵幂函数y=x在(0,+∞)上是增函数,1.5<2,∴1.5<2.又∵指数函数y=2x在(0,+∞)上是增函数,13.1<3.1,∴2<23.1,∴1.5<2<23.1.]数的大小比较常用方法:(1)当需要比较大小的两个实数均是指数幂时,可将其看成某个指数函数或幂函数的函数值,然后利用该函数的单调性比较.(2)比较多个数的大小时,先利用“0”和“1”作为分界点,即把它们分为“小于0”,“大于等于0小于等于1”,“大于1”三部分,再在各部分内利用函数的性质比较大小.[跟进训练]4.比较下列数的大小:a1.2,a1.3.[解]∵函数y=a x(a>0,且a≠1),当底数a>1时在R上是增函数,当底数0<a<1时在R上是减函数,而1.2<1.3,故当a>1时,有a1.2<a1.3;当0<a<1时,有a1.2>a1.3.函数性质综合应用【例5】已知f(x)=a+22x+1(a∈R).(1)若函数f(x)为奇函数,求实数a的值;(2)用定义法判断函数f(x)的单调性;(3)若当x∈[-1,5]时,f(x)≤0恒成立,求实数a的取值范围.[解](1)若函数f(x)为奇函数,∵x∈R,∴f(0)=a+1=0,得a=-1,验证当a=-1时,f(x)=-1+22x+1=1-2x1+2x为奇函数,∴a=-1.(2)任取x1,x2∈(-∞,+∞),且x1<x2,则f(x1)-f(x2)=22x1+1-22x2+1=22x2-2x12x1+12x2+1,由x1<x2,得2x1<2x2,∴2x2-2x1>0,又2x1 +1>0,2x2 +1>0,故f(x1)-f(x2)>0,即f(x1)>f(x2),∴f(x)在(-∞,+∞)上是减函数.(3)当x∈[-1,5]时,∵f(x)为减函数,∴f(x)max=f(-1)=43+a,若f(x)≤0恒成立,则满足f(x)max=43+a≤0,得a≤-43,∴a的取值范围为⎝⎛⎦⎥⎤-∞,-43.函数y=a f(x)(a>0,a≠1)的单调性的处理技巧(1)关于指数型函数y=a f(x)(a>0,且a≠1)的单调性由两点决定,一是底数a>1还是0<a<1;二是f(x)的单调性,它由两个函数y=a u,u=f(x)复合而成.(2)求复合函数的单调区间,首先求出函数的定义域,然后把函数分解成y =f(u),u=φ(x),通过考察f(u)和φ(x)的单调性,求出y=f(φ(x))的单调性.[跟进训练]5.已知函数f (x )=9x -3x +1+c (其中c 是常数).(1)若当x ∈[0,1]时,恒有f (x )<0成立,求实数c 的取值范围; (2)若存在x 0∈[0,1],使f (x 0)<0成立,求实数c 的取值范围. [解] f (x )=9x -3x +1+c =(3x )2-3·3x +c , 令3x =t ,则g (t )=t 2-3t +c .(1)当x ∈[0,1]时,t ∈[1,3],g (t )=t 2-3t +c <0恒成立. ∵二次函数g (t )=t 2-3t +c 图象的对称轴方程为t =32,∴根据二次函数的性质可知g (t )在[1,3]上的最大值为g (3), ∴g (3)=32-3×3+c <0,解得c <0.故c 的取值范围为{c |c <0}.(2)存在x 0∈[0,1],使f (x 0)<0,等价于存在t ∈[1,3],使g (t )=t 2-3t +c <0,于是只需g (t )在[1,3]上的最小值小于0即可.∵二次函数g (t )=t 2-3t +c 图象的对称轴方程为t =32,∴根据二次函数的性质可知g (t )在[1,3]上的最小值为g ⎝ ⎛⎭⎪⎫32=⎝ ⎛⎭⎪⎫322-3×32+c <0,解得c <94,故c 的取值范围为⎩⎨⎧⎭⎬⎫c ⎪⎪⎪c <94.1.(2015·山东卷)设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( )A .a <b <cB .a <c <bC .b <a <cD .b <c <aC [由函数y =0.6x 为R 上的减函数,得1>0.60.6>0.61.5>0,而1.50.6>1,所以b <a <c .故选C.]2.(2017·全国卷Ⅲ)设函数f (x )=⎩⎨⎧x +1,x ≤0,2x,x >0,则满足f (x )+f⎝⎛⎭⎪⎫x -12>1的x 的取值范围是________.⎝ ⎛⎭⎪⎫-14,+∞ [法一:当x >0时,f (x )=2x >1,则不等式f (x )+f ⎝ ⎛⎭⎪⎫x -12>1,恒成立当x ≤0时,f (x )+f ⎝ ⎛⎭⎪⎫x -12=x +1+x +12=2x +32>1,解得x >-14,综上知,x 的取值范围为⎝ ⎛⎭⎪⎫-14,+∞.法二:设F (x )=f (x )+f ⎝ ⎛⎭⎪⎫x -12,∵f (x )在R 上是增函数,∴F (x )为R 上的增函数,原不等式即为F (x )>1,∵F ⎝ ⎛⎭⎪⎫-14=1,∴原不等式等价于F (x )>F ⎝ ⎛⎭⎪⎫-14,即知x 的取值范围为⎝ ⎛⎭⎪⎫-14,+∞.]3.(2015·江苏卷)不等式2x 2-x <4的解集为________.{x |-1<x <2} [不等式可化为2x 2-x <22,∵函数y =2x 为R 上的增函数, 所以不等式等价于x 2-x <2,即x 2-x -2<0,解得-1<x <2.则知不等式的解集为{x |-1<x <2}.]4.(2015·山东卷)若函数f (x )=2x +12x -a 是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)C [f (x )=2x +12x -a ,f (-x )=2-x +12-x -a ,∵f (x )是奇函数,∴f (-x )=-f (x ),∴a =1.∴f (x )=2x +12x -1,∴f (x )>3,即2x +12x -1>3,故不等式可化为2x -22x -1<0,即1<2x <2,解得0<x <1,∴x 的取值范围为(0,1).]。
+⎩ + 指数函数2.1.1 指数与指数幂的运算〔1〕根式的概念 ①如果 xn= a , a ∈ R , x ∈ R , n > 1,且 n ∈ N ,那么 x 叫做 a 的 n 次方根.当 n 是奇数时,a 的 n 次 方根用符号 n a 表示;当 n 是偶数时,正数 a 的正的 n 次方根用符号 n a 表示,负的 n 次方根用符号 - na表示;0 的 n 次方根是 0;负数 a 没有 n 次方根.②式子 n a 叫做根式,这里 n 叫做根指数, a 叫做被开方数.当 n 为奇数时, a 为任意实数;当 n 为偶数时, a ≥ 0 .nnn n⎧a (a ≥ 0)③根式的性质:( a ) = a ;当 n 为奇数时, a = a ;当 n 为偶数时,=| a |= ⎨-a .(a < 0)〔2〕分数指数幂的概念m①正数的正分数指数幂的意义是: a n= n a m(a > 0, m , n ∈ N , 且 n > 1) .0 的正分数指数幂等于 0.②- m1 m1正数的负分数指数幂的意义是: an= ( ) n = n ( )m (a > 0, m , n ∈ N + , 且 n > 1) .0 的负分数指a a数幂没有意义. 注意口诀:底数取倒数,指数取相反数. 〔3〕分数指数幂的运算性质①a r ⋅ a s = a r +s (a > 0,r , s ∈ R )②(a r )s = a rs (a > 0, r , s ∈ R )③(ab )r = a r b r (a > 0, b > 0, r ∈ R )2.1.2 指数函数及其性质〔4〕指数函数 函数名称 指数函数定义函数 y = a(a > 0 且 a ≠ 1)叫做指数函数图象a > 10 < a < 1y = 1 yOy = ax(0, 1)xy = a xy = 1Oy( 0 , 1 )x定义域 R值域 〔0,+∞〕过定点 图象过定点〔0,1〕,即当 x=0 时,y=1.奇偶性 非奇非偶单调性在 R 上是增函数在 R 上是减函数函数值的变化情况y >1(x >0), y=1(x=0), 0<y <1(x <0)y >1(x <0), y=1(x=0), 0<y <1(x >0)a 变化对图象影响在第一象限内, a 越大图象越高,越靠近 y 轴; 在第二象限内, a 越大图象越低,越靠近 x 轴.在第一象限内, a 越小图象越高,越靠近 y 轴; 在第二象限内, a 越小图象越低,越靠近 x 轴.n a n39 1 + 5 1 ± 5 12.1 指数函数练习1.以下各式中成立的一项〔〕A . ( n )7 = n 7m 7mB . 12(-3)4 =C . 4x 3+ y 33(x + y )4D .=2 11 1 1 1 52.化简(a 3 b 2)(-3a 2 b 3) ÷ ( 3a 6b 6 )的结果〔〕A . 6aB . - aC . - 9aD . 9a23.设指数函数 f (x ) = a x(a > 0, a ≠ 1) ,那么以下等式中不正确的选项是〔 〕A .f (x +y )=f(x )·f (y )B . f 〔x - y 〕=f (x )f ( y )C . f (nx ) = [ f (x )]n(n ∈ Q )- 1D . f (xy )n= [ f (x )]n·[ f ( y )]n(n ∈ N + )4.函数 y = (x - 5)0+ (x - 2)2A .{x | x ≠ 5, x ≠ 2} C .{x | x > 5}〔〕B .{x | x > 2}D .{x | 2 < x < 5或x > 5}5.假设指数函数 y = a x在[-1,1]上的最大值与最小值的差是1,那么底数a 等于 〔〕A .B . 2 2C .D .2 26.当 a ≠ 0 时,函数 y = ax + b 和 y = b ax的图象只可能是〔〕7.函数 f (x ) = 2-|x |的值域是〔 〕A . (0,1]B . (0,1)⎧⎪2- x- 1, x ≤ 0 C . (0,+∞)D .R8.函数 f (x ) = ⎨ 1 ,满足 f (x ) > 1的 x 的取值范围⎪⎩x 2 , x > 0〔 〕A . (-1,1)B . (-1,+∞)C .{x | x > 0或x < -2}D .{x | x > 1或x < -1}9.函数 y = ( 1 ) 2- x 2 + x +2 得单调递增区间是〔 〕11A . [-1, ]2B . (-∞,-1]C . [2,+∞)D . [ 2,2]3 - 33 3- 1 + 5 5 ± 1⎩ x e x - e - x10. f (x ) =,那么以下正确的选项是 〔 〕2A .奇函数,在 R 上为增函数B .偶函数,在 R 上为增函数C .奇函数,在 R 上为减函数D .偶函数,在 R 上为减函数11.函数 f (x )的定义域是〔1,2〕,那么函数 f (2 x) 的定义域是 .12.当 a >0 且 a ≠1 时,函数 f (x )=a x -2-3 必过定点 .三、解答题:13.求函数 y = 1的定义域.5 x -1 - 114.假设a >0,b >0,且a +b =c ,求证:(1)当r >1时,a r +b r <c r ;(2)当r <1时,a r +b r >c r .15.函数 f (x ) =a x - 1 a x + 1(a >1).〔1〕判断函数f (x )的奇偶性;〔2〕证明f (x )在(-∞,+∞)上是增函数.16.函数 f(x)=a x (a>0,且 a ≠1)在区间[1,2]上的最大值比最小值大 a,求 a 的值. 2参考答案一、DCDDDAAD D A二、11.(0,1);12.(2,-2);三、13. 解:要使函数有意义必须:⎧x - 1 ≠ 0⎧x ≠ 1⎪x ⇒⎨ ≠ 0 ⎩ x - 1⎨x ≠ 0∴定义域为: {x x ∈ R 且x ≠ 0, x ≠ 1}⎪1 a +1 a +12 14. 解: a r + br⎛ a ⎫r⎛ b ⎫r,其中 0 < a < 1,0 < b < 1.= ⎪ c rc + ⎪c ⎝ ⎭ ⎝ ⎭ 当r >1时,⎛ a ⎫ r ⎛ b ⎫r a b ,所以a r+b r <c r ;⎪ + ⎪ < + = 1⎝ c ⎭ ⎝ c ⎭ c c当 r <1 时,⎛ a ⎫r⎛ b ⎫ra b,所以 a r +b r >c r . ⎪ + ⎪ > + = 1 ⎝ c ⎭ ⎝ c ⎭ c c15.解:(1)是奇函数.(2) x <x ,a x 1 -1 a x2 -1 。
指数与指数幂的运算【学习目标】1.理解分数指数的概念,掌握有理指数幂的运算性质(1)理解n 次方根,n 次根式的概念及其性质,能根据性质进行相应的根式计算;(2)能认识到分数指数是指数概念由整数向有理数的一次推广,了解它是根式的一种新的写法,能正确进行根式与分数指数幂的互化;(3)能利用有理指数运算性质简化根式运算.2.掌握无理指数幂的概念,将指数的取值范围推广到实数集;3.通过指数范围的扩大,我们要能理解运算的本质,认识到知识之间的联系和转化,认识到符号化思想的重要性,在抽象的符号或字母的运算中提高运算能力;4.通过对根式与分数指数幂的关系的认识,能学会透过表面去认清事物的本质. 【要点梳理】要点一、整数指数幂的概念及运算性质 1.整数指数幂的概念()()),0(1010*Z*n a aa a a Z n a a a a n n an n ∈≠=≠=∈⋅⋅⋅=-个2.运算法则 (1)nm nma a a +=⋅;(2)()mn nma a =;(3)()0≠>=-a n m a aa nm n m ,;(4)()mm mb a ab =.要点二、根式的概念和运算法则 1.n 次方根的定义:若x n =y(n ∈N *,n>1,y ∈R),则x 称为y 的n 次方根.n 为奇数时,正数y 的奇次方根有一个,是正数,记为n y ;负数y 的奇次方根有一个,是负数,记为ny ;零的奇次方根为零,记为00=n ;n 为偶数时,正数y 的偶次方根有两个,记为负数没有偶次方根;零的偶次方根为零,0=. 2.两个等式(1)当1n >且*n N ∈时,na =;(2)⎩⎨⎧=)(||)(,为偶数为奇数n a n a a n n要点诠释:①要注意上述等式在形式上的联系与区别;②计算根式的结果关键取决于根指数的取值,尤其当根指数取偶数时,开方后的结果必为非负数,可先写成||a 的形式,这样能避免出现错误.要点三、分数指数幂的概念和运算法则 为避免讨论,我们约定a>0,n ,m ∈N *,且mn为既约分数,分数指数幂可如下定义: 1na =m m na ==-1m nm naa=要点四、有理数指数幂的运算 1.有理数指数幂的运算性质()Q b a ∈>>βα,00,,(1);a a aαβαβ+⋅=(2)();a a αβαβ= (3)();ab a b ααα=当a>0,p 为无理数时,a p是一个确定的实数,上述有理数指数幂的运算性质仍适用. 要点诠释:(1)根式问题常利用指数幂的意义与运算性质,将根式转化为分数指数幂运算;(2)根式运算中常出现乘方与开方并存,要注意两者的顺序何时可以交换、何时不能交换.如2442)4()4(-≠-;(3)幂指数不能随便约分.如2142)4()4(-≠-.2.指数幂的一般运算步骤 有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数.底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数运算性质.在化简运算中,也要注意公式:a 2-b 2=(a -b )(a +b ),(a ±b )2=a 2±2ab +b 2,(a ±b )3=a 3±3a 2b +3ab 2±b 3,a 3-b 3=(a -b )(a 2+ab +b 2),a 3+b 3=(a +b )(a 2-ab +b 2)的运用,能够简化运算.【典型例题】 类型一、根式例1.计算:(1; (2.【答案】【解析】对于(1)需把各项被开方数变为完全平方形式,然后再利用根式运算性质求解.对于(2),则应分子、分母同乘以分母的有理化因式.(1==2|-|2|=2-(2(211=【总结升华】对于多重根式的化简,一般是设法将被开方数化成完全n次方,再解答,或者用整体思想来解题.化简分母含有根式的式子时,将分子、分母同乘以分母的有理化因式即可,如本例(2)的分子、分母中同乘以1).举一反三:【变式1】化简:(1(2|3) x<【答案】(11;(2)22(31),4(13).x xx---<<⎧⎨-≤<⎩。
高一上必修二第四章《指数函数、对数函数与幂函数》知识点梳理§4.4 幂函数学习目标 1.了解幂函数的概念.2.掌握y =x α(α=-1,12,1,2,3)的图像与性质.3.理解和掌握幂函数在第一象限的分类特征,能运用数形结合的方法处理幂函数的有关问题.知识点一 幂函数的概念一般地,函数y =x α称为幂函数,其中x 是自变量,α是常数.提醒 幂函数中底数是自变量,而指数函数中指数为自变量.知识点二 幂函数的图像和性质1.幂函数的图像在同一平面直角坐标系中,幂函数y =x ,y =x 2,y =x 3,y =,y =x -1的图像如图.2.五个幂函数的性质y =xy =x 2y =x 3y =y =x -1定义域R R R [0,+∞){x |x ≠0}值域R [0,+∞)R [0,+∞){y |y ≠0}奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性在R 上是增函数在[0,+∞)上是增函数,在(-∞,0]上是减函数在R 上是增函数在[0,+∞)上是增函数在(0,+∞)上是减函数,在(-∞,0)上是减函数12x 12x公共点(1,1)1.y =-1x 是幂函数.( × )2.当x ∈(0,1)时,x 2>x 3.( √ )3.y =与y =定义域相同.( × )4.若y =x α在(0,+∞)上为增函数,则α>0.( √ )一、幂函数的概念例1 (1)(多选)下列函数为幂函数的是( )A .y =x 3 B .y =(12)xC .y =4x 2D .y =x答案 AD解析 B 项为指数函数,C 中的函数的系数不为1,AD 为幂函数.(2)已知y =(m 2+2m -2)+2n -3是幂函数,求m ,n 的值.解 由题意得Error!解得Error!或Error!所以m =-3或1,n =32.反思感悟 判断一个函数是否为幂函数的方法判断一个函数是否为幂函数的依据是该函数是否为y =x α(α为常数)的形式,即函数的解析式为一个幂的形式,且需满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.跟踪训练1 已知f (x )=ax 2a +1-b +1是幂函数,则a +b 等于( )A .2 B .1 C.12 D .0答案 A解析 因为f (x )=ax 2a +1-b +1是幂函数,所以a =1,-b +1=0,即a =1,b =1,则a +b =2.32x 64x 22m x二、幂函数的图像例2 如图所示,图中的曲线是幂函数y =x n 在第一象限的图像,已知n 取±2,±12四个值,则对应于c 1,c 2,c 3,c 4的n 依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-12答案 B解析 根据幂函数y =x n 的性质,故c 1的n =2,c 2的n =12,当n <0时,|n |越大,曲线越陡峭,所以曲线c 3的n =-12,曲线c 4的n =-2.反思感悟 解决幂函数图像问题应把握的两个原则(1)依据图像高低判断幂指数大小,相关结论为:在(0,1)上,指数越大,幂函数图像越靠近x 轴(简记为指大图低);在(1,+∞)上,指数越大,幂函数图像越远离x 轴(简记为指大图高).(2)依据图像确定幂指数α与0,1的大小关系,即根据幂函数在第一象限内的图像(类似于y =x -1 或y =或y =x 3)来判断.跟踪训练2 函数f (x )=的大致图像是( )答案 A解析 因为-12<0,所以f (x )在(0,+∞)上单调递减,排除选项B ,C ;又f (x )的定义域为(0,+∞),故排除选项D.三、比较幂值的大小12x 12x例3 比较下列各组数中两个数的大小:(1)(25)0.5与(13)0.5;(2)(-23)-1与(-35)-1;(3)与.解 (1)∵幂函数y =x 0.5在(0,+∞)上是单调递增的,又25>13,∴(25)0.5>(13)0.5.(2)∵幂函数y =x -1在(-∞,0)上是单调递减的,又-23<-35,∴(-23)-1>(-35)-1.(3)∵函数y 1=(23)x为R 上的减函数,又34>23,∴>.又∵函数y 2=在(0,+∞)上是增函数,且34>23,∴>,∴>.反思感悟 比较幂值大小的方法跟踪训练3 比较下列各组值的大小:(1),;(2),,1.42.解 (1)∵y =为R 上的偶函数,∴=.又函数y =为[0,+∞)上的增函数,且0.31<0.35,3423⎛⎫⎪⎝⎭2334⎛⎫⎪⎝⎭2323⎛⎫ ⎪⎝⎭3423⎛⎫ ⎪⎝⎭23x 2334⎛⎫⎪⎝⎭2323⎛⎫ ⎪⎝⎭2334⎛⎫ ⎪⎝⎭3423⎛⎫⎪⎝⎭()650.31-650.35121.2121.465x ()650.31-650.3165x∴<,即<.(2)∵y =在[0,+∞)上是增函数,且1.2<1.4,∴<.又∵y =1.4x 为增函数,且12<2,∴<1.42,∴<<1.42.幂函数性质的应用典例 已知幂函数y =x 3m -9 (m ∈N +)的图像关于y 轴对称且在(0,+∞)上单调递减,求满足的a 的取值范围.解 因为函数y =x 3m -9在(0,+∞)上单调递减,所以3m -9<0,解得m <3.又因为m ∈N +,所以m =1,2.因为函数的图像关于y 轴对称,所以3m -9为偶数,故m =1.则原不等式可化为.因为y =在(-∞,0),(0,+∞)上单调递减,所以a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a ,解得23<a <32或a <-1.故a 的取值范围是Error!.[素养提升] (1)幂函数y =x α中只有一个参数α,幂函数的所有性质都与α的取值有关,故可由α确定幂函数的定义域、值域、单调性、奇偶性,也可由这些性质去限制α的取值.(2)通过具体实例抽象出幂函数的概念和性质,并应用单调性求解,体现了数学中数学运算与直观想象的核心素养.650.31650.35()650.31-650.3512x 121.2121.4121.4121.2121.433(1)(32)m m a a --+<-1133(1)(32)a a --+<-13x-1.下列函数是幂函数的是( )A .y =5x B .y =x 5C .y =5x D .y =(x +1)3答案 B解析 函数y =5x 是指数函数,不是幂函数;函数y =5x 是正比例函数,不是幂函数;函数y =(x +1)3的底数不是自变量x ,不是幂函数;函数y =x 5是幂函数.2.幂函数y =x α(α∈R )的图像一定不经过( )A .第四象限 B .第三象限C .第二象限 D .第一象限答案 A解析 由幂函数的图像可知,其图像一定不经过第四象限.3.设α∈{-1,1,12,3},则使函数y =x α的定义域为R 且为奇函数的所有α值为( )A .1,3B .-1,1C .-1,3D .-1,1,3答案 A解析 可知当α=-1,1,3时,y =x α为奇函数,又因为y =x α的定义域为R ,则α=1,3.4.已知幂函数f (x )=kx α(k ∈R ,α∈R )的图像过点(12,2),则k +α等于( )A.12 B .1 C.32 D .2答案 A解析 ∵幂函数f (x )=kx α(k ∈R ,α∈R )的图像过点(12,2),∴k =1,f(12)=(12)α=2,即α=-12,∴k +α=12.5.已知f (x )=,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f(1a )<f(1b)B .f (1a )<f(1b )<f (b )<f (a )C .f (a )<f (b )<f (1b )<f(1a )D .f (1a )<f (a )<f(1b )<f (b )12x答案 C解析 因为函数f (x )=在(0,+∞)上是增函数,又0<a <b <1<1b <1a ,故f (a )<f (b )<f(1b )<f(1a).1.知识清单:(1)幂函数的概念.(2)幂函数的图像.(3)幂函数的性质及其应用.2.方法归纳:数形结合.3.常见误区:幂函数与指数函数的区别;幂函数的奇偶性.1.幂函数f (x )=x α的图像经过点(2,4),则f (-12)等于( )A.12B.14 C .-14 D .2答案 B解析 幂函数f (x )=x α的图像经过点(2,4),则2α=4,解得α=2;∴f (x )=x 2,∴f (-12)=(-12)2=14.2.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( )A .y =x -2 B .y =x -1C .y =x 2 D .y =答案 A解析 所给选项都是幂函数,其中y =x -2和y =x 2是偶函数,y =x -1和y =不是偶函数,故排除选项B ,D ,又y =x 2在区间(0,+∞)上单调递增,不合题意,y =x -2在区间(0,+∞)上单调递减,符合题意.3.设a =,b =,c =,则a ,b ,c 的大小关系是( )12x 13x13x 2535⎛⎫ ⎪⎝⎭3525⎛⎫⎪⎝⎭2525⎛⎫⎪⎝⎭A .a >c >bB .a >b >cC .c >a >bD .b >c >a答案 A解析 ∵y =(x >0)为增函数,又35>25,∴a >c .∵y =(25)x (x ∈R )为减函数,又25<35,∴c >b .∴a >c >b .4.在同一坐标系内,函数y =x a (a ≠0)和y =ax -1a的图像可能是( )答案 C解析 选项A 中,幂函数的指数a <0,则y =ax -1a 应为减函数,A 错误;选项B 中,幂函数的指数a >1,则y =ax -1a 应为增函数,B 错误;选项D 中,幂函数的指数a <0,则-1a >0,直线y =ax -1a在y 轴上的截距为正,D 错误.5.若幂函数f (x )的图像过点(2,2),则函数g (x )=f (x )-3的零点是( )A.3 B .9 C .(3,0) D .(9,0)答案 B解析 ∵幂函数f (x )=x α的图像过点(2,2),∴f (2)=2α=2,解得α=12,∴f (x )=,∴函数g (x )=f (x )-3=-3,由-3=0,得x =9.∴函数g (x )=f (x )-3的零点是9.6.已知幂函数f (x )=x α的部分对应值如表:x11225x 12x 12x 12xf (x )122则f (x )的单调递增区间是________.答案 [0,+∞)解析 因为f(12)=22,所以(12)α=22,即α=12,所以f (x )=的单调递增区间是[0,+∞).7.已知幂函数f (x )=x α(α∈R )的图像经过点(8,4),则不等式f (6x +3)≤9的解集为________.答案 [-5,4]解析 由题意知8α=4,故α=log 84=23,由于f (x )==x 2为R 上的偶函数且在(0,+∞)上递增,故f (6x +3)≤9即为f (6x +3)≤f (27),所以|6x +3|≤27,解得-5≤x ≤4.8.设a =,b =,c =,则a ,b ,c 从小到大的顺序是________.答案 b <a <c解析 由a =,b =,可利用幂函数的性质,得a >b ,可由指数函数的单调性得c >a ,∴b <a <c .9.已知幂函数f (x )=x α的图像过点P (2,14),试画出f (x )的图像并指出该函数的定义域与单调区间.解 因为f (x )=x α的图像过点P (2,14),所以f (2)=14,即2α=14,得α=-2,即f (x )=x -2,f (x )的图像如图所示,定义域为(-∞,0)∪(0,+∞),单调递减区间为(0,+∞),单调递增区间为(-∞,0).10.已知幂函数f (x )=x 9-3m (m ∈N +)的图像关于原点对称,且在R 上单调递增.(1)求f (x )的解析式;(2)求满足f (a +1)+f (3a -4)<0的a 的取值范围.解 (1)由幂函数f (x )=x 9-3m (m ∈N +)的图像关于原点对称,且在R上单调递增,可得9-3m >0,解得m <3,m ∈N +,可得m =1,2,12x 23x 2312⎛⎫⎪⎝⎭2315⎛⎫ ⎪⎝⎭1312⎛⎫⎪⎝⎭2312⎛⎫ ⎪⎝⎭2315⎛⎫⎪⎝⎭若m =1,则f (x )=x 6的图像不关于原点对称,舍去;若m =2,则f (x )=x 3的图像关于原点对称,且在R 上单调递增,成立.则f (x )=x 3.(2)由(1)可得f (x )是奇函数,且在R 上单调递增,由f (a +1)+f (3a -4)<0,可得f (a +1)<-f (3a -4)=f (4-3a ),即为a +1<4-3a ,解得a <34.11.若函数f (x )=(m +2)x a 是幂函数,且其图像过点(2,4),则函数g (x )= log a (x +m )的单调递增区间为( )A .(-2,+∞) B .(1,+∞)C .(-1,+∞) D .(2,+∞)答案 B解析 由题意得m +2=1,解得m =-1,则f (x )=x a ,将(2,4)代入函数的解析式得,2a =4,解得a =2,故g (x )=log a (x +m )=log 2(x -1),令x -1>0,解得x >1,故g (x )在(1,+∞)上单调递增.12.函数y =-1的图像关于x 轴对称的图像大致是( )答案 B解析 y =的图像位于第一象限且为增函数,所以函数图像是上升的,函数y =-1的图像可看作由y =的图像向下平移一个单位长度得到的(如选项A 中的图所示),将y =-1的图像关于x 轴对称后即为选项B.13.为了保证信息的安全传输,有一种密钥密码系统,其加密、解密原理为:发送方由明文到密文(加密),接收方由密文到明文(解密).现在加密密钥为y =x α(α为常数),如“4”通过加密后得到密文“2”.若接收方接到密文“3”,则解密后得到的明文是________.答案 9解析 由题意可知加密密钥y =x α(α为常数)是一个幂函数,所以要想求得解密后得到的明文,就必须先求出α的值.由题意,得2=4α,解得α=12,则y =.由=3,得x =9,即明文是9.14.已知幂函数f (x )=,若f (a +1)<f (10-2a ),则a 的取值范围是________.12x 12x 12x 12x 12x 12x 12x 12x答案 (3,5)解析 ∵f (x )==1x(x >0),易知f (x )在(0,+∞)上为减函数,又f (a +1)<f (10-2a ),∴Error!解得Error!∴3<a <5.15.幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x α,y =x β的图像三等分,即有BM =MN =NA ,那么,αβ等于________.答案 1解析 由条件,得M (13,23),N (23,13),可得13=(23)α,23=(13)β,即α=13,β=23.所以αβ=13·23=lg 13lg 23·lg 23lg 13=1.16.已知幂函数g (x )过点(2,12),且f (x )=x 2+ag (x ).(1)求g (x )的解析式;(2)讨论函数f (x )的奇偶性,并说明理由.解 (1)设幂函数的解析式g (x )=x α(α为常数).因为幂函数g (x )过点(2,12),所以2α=12,解得α=-1,所以g (x )=1x.(2)由(1)得f (x )=x 2+a x.①当a =0时,f (x )=x 2.12x 23log 13log 23log 13log由于f(-x)=(-x)2=x2=f(x),可知f(x)为偶函数.②当a≠0时,由于f(-x)=(-x)2+a-x=x2-ax≠x2+ax=f(x),且f(-x)=(-x)2+a-x=x2-ax≠-(x2+a x)=-f(x),所以f(x)是非奇非偶函数.综上,①当a=0时,f(x)为偶函数;②当a≠0时,f(x)为非奇非偶函数.。
高中数学分数指数幂练习题(带答案)数学必修1(苏教版)2.2 指数函数2.2.1 分数指数幂在初中我们已经知道:若x2=a,则x叫做a的平方根,同理,若x3=a,则x叫做a的立方根.根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数,如4的平方根为2,负数没有平方根,一个数的立方根只有一个,如-8的立方根为-2;零的平方根、立方根均为零,那么类比平方根、立方根的概念,n次方根的概念是什么呢?基础巩固1.下列各式中,对xR,nN*恒成立的是()A.nxn=xB.n|x|n=xC.(nx)n=x D.2nx2n=|x|解析:nxn=x,n为奇数|x|,n为偶数.答案:D2.设a=424,b=312,c=6,则a,b,c的大小关系是() A.ac B.baC.ba D.ac解析:将根指数化为相同,再比较被开方数.答案:D3.式子3+5+3-5的化简结果为()A.1 B.10 C.100 D.10解析:3+5+3-5=6+252+6-252=5+122+5-122=10.答案:D4.614-3338+40.0625-(3+)0的值是()A.0 B.12 C.1 D.32解析:原式=52-32+0.5-1=12.答案:B5.已知x2+x-2=22且x1,则x2-x-2的值为()A.2或-2 B.-2 C.2 D.6解析:(x2+x-2)2=(22)2,即x4+x-4+2=8,即x4+x -4=6,而(x2-x-2)2=x4+x-4-2=4,又∵x1,x2x-2,故x2-x-2=2.解析:C6.计算:2+25-52+15-1=________.解析:5-5=-5(5-1),2+2=2(2+1).答案:-107.若4a2-4a+1=31-2a3,则a的取值范围是________.解析:∵2a-12=|2a-1|=1-2a,2a-10,即a12.答案:-,128.5+26+5-26=________.解析:原式=3+2+3-2=23.答案:239.化简:(-+1)(++1)(x-+1)=________. 解析:原式=[( +1)2-( )2](x-+1)=(x+1+ )(x-+1)=(x+1)2-( )2=x2+x+1.答案:x2+x+110.36a9463a94的结果是________.解析:[ ]4[ ]4==a2+2=a4.答案:a411.用分数指数幂表示4a3aa=________.解析:原式==答案:12.若m=(2+3)-1,n=(2-3)-1,则(m+1)-2+(n+1)-2=________.解析:∵m=2-3,n=2+3,原式=13-32+13+32=112-63+112+63==162+3+2-3=46=23.答案:2313.()(-)6(-)=________.解析:原式=-2-3 = .答案:14.计算: 33yx3x2y(x0).解析:原式=能力提升15.82+122+124+128+1+1=________.解析:(2+1)(22+1)(24+1)(28+1)+1=(2-1)(2+1)(22+1)(24+1)(28+1)+1=(22-1)(22+1)(24+1)(28+1)+1=(24-1)(24+1)(28+1)+1=(28-1)(28+1)+1=216-1+1=216.原式=22=4.答案:416.化简:a3b23ab2a14b1243ba(a,b0)的结果是________.解析:原式====ab.答案:ab17.x12,2,则4x2-4x+1+2x2-4x+4=________.解析:原式=|2x-1|+2|x-2|=2x-1+2(2-x)=2x-1+4-2x=3.答案:318.已知a= (nN*),求(a2+1+a)n的值.解析:∵a=,a2+1=+1a2+1+a=+ .(a2+1+a)n=2019.19.已知a2x=2+1,求a3x+a-3xax+a-x的值.解析:原式==a2x+a-2x-1=2+1+12+1-1=2+2-1=22-1. xKb 1. Com20.设x=3a+a2+b3+3a-a2+b3,求x3+3bx-2a的值.解析:设u=3a+a2+b3,v=3a-a2+b3,则x=u+v,u3+v3=2a,uv=3a2-a2+b3=-b.x3=(u+v)3=u3+u3+3uv(u+v)=2a-3bx,x3+3bx-2a=0.21.化简:- .解析:原式=-=-2 =-23xyxy.22.化简:+- .解析:原式看上去比较复杂,不易发现项与项之间、分子与分母之间的关系,如令b=,式子就变得简单些了.令b=,即a=b3,原式=b3-1b2+b+1+b3+1b+1-b3-bb-1=+-=b-1+b2-b+1-b2-b=-b=- .。
高中数学分数指数幂专题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 已知m >0,则√m 12√m 52√m 化为( )A.m 54 B.m 32C.mD.12. 用分数指数幂表示√a 12√a 12√a(a >0)其结果是( )A.aB.a 12C.a 14D.a 163. 化简(√√a 963)4⋅(√√a 936)4的结果等于( ) A.a 16 B.a 8 C.a 4 D.a 24. √a ⋅√a ⋅√a 3的分数指数幂表示为( )A.a 32 B.a 3C.a 34D.都不对5. 将√223化成分数指数幂为( ) A.232 B.2−12C.213D.2236. 下列等式成立的是( ) A.(−2)−2=4 B.2a −3=12a 3(a >0) C.(−2)0=−1D.(a −14)4=1a (a >0)7. 若a =(12)34,b =(34)12,c =log 23,则a ,b ,c 大小关系是( ) A.B.C.D.8. 已知a =(−2)13,b =416,c =(12)−14,d =8113,则a ,b ,c ,d 之间的大小关系为( )A.d <c <b <aB.a <d <c <bC.d <a <c <bD.a <c <d <b9. 已知x 12−x −12=√5,则x +1x 的值为( ) A.7 B.3√5 C.±3√5 D.2710. 下列各式正确的是( ) A.a −35=√a53B.√x 23=x 32C.a 12⋅a 14⋅a −18=a 12×14×(−18) D.2x −13(12x 13−2x −23)=1−4x11. (112)0−(1−0.5−2)÷(278)23的值为( ) A.−13B.13C.43D.7312. 已知a =243,b =425,c =2513,则( ) A.b <a <c B.a <b <c C.b <c <a D.c <a <b13. 若√a 2−4a +46=√2−a 3,则实数a 的取值范围是( ) A.a ∈R B.a =2C.a >2D.a ≤214. 计算:________.15. 若,且满足,则的最小值为________.16. 已知:y =√x−2+√2−x2+3,则x y =________.17. 式子a2⋅√a(其中a>0)用分数指数幂表示为________.18. 方程21−x=132的解为________.19. 已知x+x−1=3,则x2+x−2=________;x12+x−12=________.20. 计算813+(12)−2+(27−1+16−2)0=________.21. 化为分数指数幂的形式:3√b√ab3=________.22. 方程3x+1=19的解是________.23. 已知a+b=5,ab=3,则代数式a3b−2a2b2+ab3的值为________.24. 化简或求值(1);(2).25. 计算:0.16−12+(−59)+[(−2)3]43+16−0.75+|−0.001|13.26. 计算:(1+2−18)(1+2−14)(1+2−12)27. 用分数指数幂表示下列各式(式中字母均为正数);(1)√a6b5;(2)√m 23;(3)√(m −n)3(m >n);(4)√a ⋅√a 3;(5)√a √a √a . 28. (1)计算:(278)−23−(499)0.5+(0.008)−23×225;(2)已知集合A ={x|2x−3≥1},B ={x|a +1≤x <2a −1},若B ⊆A ,求实数a 的取值范围. 29. 解答.(1)求值:√(−27)23+√(2−π)2+√(4−π)44;(2)计算:2x −13(12x 13+x −23)x ;(3)计算:(x 12+2y 14)(x 12−2y 14)÷y −12.30. 化简求值: (1)0.125−13−(98)0+[(−2)2]32+(√2×√33)6;(2)(5116)0.5+√(−10)2−2√3×√276−4π0÷(34)−131. 已知x 12+x −12=3,求x 32+x−32−3x 2+x −2−2的值.参考答案与试题解析高中数学分数指数幂专题含答案一、选择题(本题共计 13 小题,每题 3 分,共计39分)1.【答案】C【考点】分数指数幂【解析】此题暂无解析【解答】解:m>0,√m12√m52√m=√m12√m52⋅m12=√m12√m3=√m12⋅m32=√m2=m.故选C.2.【答案】B【考点】分数指数幂【解析】利用分数指数幂与根式的互化公式直接求解.【解答】解:∵a>0,∴√a12√a12√a=√a 12√a12a12=√a 12√a=√a 12a12=√a=a12.故选B.3.【答案】C【考点】分数指数幂【解析】本题主要考查根式的化简及分数指数幂的运算. 【解答】解:因为(√√a 963)4=(((a 9)16)13)4=a 9×16×13×4=a 2, (√√a 936)4=a 9×13×16×4=a 2,所以((√√a 963)4⋅(√√a 936)4=a 2⋅a 2=a 4. 故选C . 4. 【答案】 C【考点】 分数指数幂 【解析】从内到外依次将根号写成分数指数幂的形式,再利用分数指数幂的运算性质化简. 【解答】解:√a ⋅√a ⋅√a 3=√a ⋅√a 323=√a ⋅a 12=√a 32=a 34.故选C . 5.【答案】 D【考点】 分数指数幂 【解析】直接化根式为分数指数幂得答案. 【解答】 解:√223=223.故选:D . 6.【答案】 D【考点】 分数指数幂 【解析】本题考查负数指数幂、分数指数幂的运算,属于基础题. 利用运算性质,逐项验证,即可求出结果. 【解答】解:A ,(−2)−2=14,故A 错误; B ,2a −3=2a 3(a >0),故B 错误;C ,(−2)0=1,故C 错误;D ,(a −14)4=a −1=1a (a >0),故D 正确.故选D . 7. 【答案】 A【考点】对数值大小的比较 分数指数幂【解析】根据题干,首先对a 1分别进行四次方,判断出a 1b 的大小,再和1进行比较得出. 【解答】根据题干条件知道,a =(12)2,a =18 b =(34)12b 4=916>a 4=0<a <b <b <1而c =log 23>1 故a <b <c故答案为:A . 8. 【答案】 B【考点】指数函数的单调性与特殊点 分数指数幂 【解析】 无【解答】解:因为a =(−2)13<0, b =416=213,c =214,d =2313, 因为313<14<13,而函数y =2x 在R 上单调递增, 所以0<d <c <b , 所以a <d <c <b . 故选B . 9.【答案】 A【考点】有理数指数幂的化简求值 分数指数幂 【解析】把x 12+x−12=3两边平方化简即可得出.【解答】解:∵x 12−x−12=√5,∴(x12−x−12)2=x+1x−2=5,∴x+1x=7.故选A.10.【答案】D【考点】分数指数幂【解析】此题暂无解析【解答】解:A,a−35=1a35=√a35,故此选项错误;B,√x23=x23,故此选项错误;C,a12⋅a14⋅a−18=a12+14−18=a58,故此选项错误;D,2x−13(12x13−2x−23)=1−4x−1=1−4x,故此选项正确.故选D.11.【答案】D【考点】分数指数幂【解析】此题暂无解析【解答】解:原式=1−(1−10.52)÷(32)2=1−(1−10.25)÷(32)2=1−(1−4)×4 9=1−(−3)×4 9=1+43=73.故选D.12.A【考点】 分数指数幂指数式、对数式的综合比较 【解析】 此题暂无解析 【解答】 此题暂无解答 13. 【答案】 D【考点】有理数指数幂的运算性质及化简求值 有理数指数幂 分数指数幂【解析】由偶次根式的性质求a 的范围. 【解答】√a 2−4a +44=√a −2)23≥0 √2−a 3≥0即2−a ≥0,a ≤2故答案为:D . 二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 14.【答案】加加2√2−3【考点】根式与分数指数幂的互化及其化简运算 顺序结构的应用 分数指数幂【解析】根据指数的运算公式和根式转化指数形式,即可得到答案 【解答】 2−12(−4)0√21√2−1−√(1−√5)0⋅823=1√21√2+√2+1−1×23=2√2+1−4=2√2−3 故答案为:2√2−3.I =…睛】本题考查指数式的运算,熟悉根式的性质、指数运算性质是解题的关键,考查计算能力. 15. 【答案】加加3+2√2【考点】根式与分数指数幂的互化及其化简运算 基本不等式 分数指数幂r 加加(2a +b )⋅(1a +1b )=2+2a b +b a +1=3+2a b +b a ≥3+2√b b ⋅bb =3+2√2【解答】由题则(2a +b )⋅(1a +1b )=2+2a b+b a +1=3+2a b+b a ≥3+2√2a b ⋅ba =3+2√2当且仅当2a b=ba.即a =1+√22,b =√2+1时,等号成立2a +b 的最小值为3+2√216. 【答案】 8【考点】 分数指数幂 【解析】 由函数y =√x−2+√2−x2+3的定义域求得x =2,进一步得到y =3,则答案可求.【解答】解:由{x −2≥02−x ≥0,解得x =2,∴ y =3,则x y =23=8. 故答案为:8. 17. 【答案】a 52【考点】 分数指数幂 【解析】根据根式与分数指数幂之间的关系进行化简即可. 【解答】 解∵ ∵ a >0∴ 根据根式与分数指数幂之间的关系可得a 2⋅√a =a 2⋅a 12=a 5故答案为:a 2518.【答案】 6【考点】 分数指数幂 【解析】分数化为以2为底的指数,指数相等即可解出x . 【解答】21−x =132=2−5 1−x =−5 ,解得x =6故答案为:6 19. 【答案】7,√5【考点】有理数指数幂的化简求值根式与分数指数幂的互化及其化简运算分数指数幂【解析】此题暂无解析【解答】解:因为x+x−1=3,所以(x+x−1)2=9,即x2+x−2+2=9,所以x2+x−2=7;∵(x12+x−12)2=x+2+x−1=5,∴x12+x−12=√5.故答案为:7;√5.20.【答案】7【考点】分数指数幂【解析】直接利用分数指数幂的运算法则求解即可.【解答】解:813+(12)−2+(27−1+16−2)0=2+4+1=7.故答案为:7.21.【答案】a 52b−1【考点】分数指数幂【解析】根据分数指数幂的定义√a mn=a m n进行化简.【解答】解:3√b√ab3=a3b12a12b32=a52b−1,故答案为:a 52b−1.22.【答案】x=−3【考点】 分数指数幂 【解析】由题意,将方程变为3x+1=19=3−2,再由同底数幂相等得到方程x +1=−2解出x 的值【解答】解:∵ 3x+1=19=3−2 ∴ x +1=−2,解得x =−3 故答案为x =−3 23.【答案】 39【考点】 分数指数幂 【解析】a 3b −2a 2b 2+ab 3=ab(a 2−2ab +b 2)=ab(a −b)2=ab[(a +b)2−4ab],由此能求出代数式a 3b −2a 2b 2+ab 3的值. 【解答】解:∵ a +b =5,ab =3,∴ a 3b −2a 2b 2+ab 3=ab(a 2−2ab +b 2) =ab(a −b)2=ab[(a +b)2−4ab] =3(25−12) =39.故答案为:39.三、 解答题 (本题共计 8 小题 ,每题 10 分 ,共计80分 ) 24.【答案】 (1)a 58,−7 (2)101【考点】根式与分数指数幂的互化及其化简运算 有理数指数幂的化简求值 分数指数幂【解析】(1)利用指数幂的运算性质即可得出. 【解答】 (1)原式=√ab 3b √ab=a ⋅a 13⋅b 13b ⋅a 12⋅122=a 12−73(2)原zx ¯=(94)12+(110)−2−[32)−13+1=32+100−32+1 =101【点.2青】本题考查了指数幂的运算性质,属于基础题. 25. 【答案】解:0.16−12+(−59)0+[(−2)3]43+16−0.75+|−0.001|13=2.5+1+116+18+110=30380【考点】分数指数幂 【解析】根据分数指数幂与根式之间的关系及指数的运算性质,我们分别计算出各项的值,代入即可得到答案. 【解答】 此题暂无解答 26. 【答案】 解:原式=(1−2−18)(1+218)(1+214)(1+212)1−2−18=(1−2−14)(1+214)(1+212)1−2−18=(1−2−12)(1+212)1−2−18=1−2−11−2−18=2−√278【考点】 分数指数幂 【解析】利用分数指数幂的运算法则即可得出. 【解答】 此题暂无解答 27.【答案】 解:(1)∵ a >0,b >0, ∴ √a 6b 5=a 3b 2√b =a 3b 52. (2)∵ m >0,∴ √m 23=m 23.(3)∵ m >n >0,∴ √(m −n)3=(m −1)32. (4)∵ a >0,∴ √a ⋅√a 3=a 12⋅a 13=a 56.(5)∵ a >0,∴ √a √a √a =√a ⋅√a ⋅a 12=√a ⋅a 34=a 78.【考点】 分数指数幂 【解析】 结合公式am n=√a m n ,利用分数指数幂的性质和运算法则求解.【解答】 解:(1)∵ a >0,b >0, ∴ √a 6b 5=a 3b 2√b =a 3b 52.(2)∵ m >0,∴ √m 23=m 23.(3)∵ m >n >0,∴ √(m −n)3=(m −1)32. (4)∵ a >0,∴ √a ⋅√a 3=a 12⋅a 13=a 56.(5)∵ a >0,∴ √a √a √a =√a ⋅√a ⋅a 12=√a ⋅a 34=a 78. 28. 【答案】 解:(1)(278)−23−(499)0.5+(0.008)−23×225=[(32)3]−23−[(73)2]12+[(0.2)3]−23×225=49−73+25×225=19.(2)因为2x−3≥1,即2x−3−x−3x−3≥0,所以5−x x−3≥0等价于{(5−x )(x −3)≥0,x −3≠0,解得3<x ≤5, 所以A ={x|2x−3≥1}={x|3<x ≤5}.因为B ={x|a +1≤x <2a −1},B ⊆A , 当B =⌀时,a +1≥2a −1,解得a ≤2; 当B ≠⌀时,{2a −1≤5,a +1>3,解得2<a ≤3.综上可得a ≤3.【考点】 分数指数幂集合关系中的参数取值问题 【解析】无 无 【解答】 解:(1)(278)−23−(499)0.5+(0.008)−23×225=[(32)3]−23−[(73)2]12+[(0.2)3]−23×225=49−73+25×225=19. (2)因为2x−3≥1,即2x−3−x−3x−3≥0,所以5−xx−3≥0等价于{(5−x )(x −3)≥0,x −3≠0,解得3<x ≤5,所以A ={x|2x−3≥1}={x|3<x ≤5}. 因为B ={x|a +1≤x <2a −1},B ⊆A , 当B =⌀时,a +1≥2a −1,解得a ≤2; 当B ≠⌀时,{2a −1≤5,a +1>3,解得2<a ≤3.综上可得a ≤3. 29. 【答案】解:(1)√(−27)23+√(2−π)2+√(4−π)44=32+π−2+4−π=9−2+4=11.(2)2x −13(12x 13+x −23)x=(1+2x −1)x =x +2. (3)(x 12+2y 14)(x 12−2y 14)÷y −12 =(x−4y 12)y 12=x √y −4y.【考点】根式与分数指数幂的互化及其化简运算 分数指数幂 【解析】解:(1)√(−27)23+√(2−π)2+√(4−π)24=32+π−2+4−π=9−2+4=11(2)2x−13(12x 13+x −23)x =(1+2x −1)x =x +2.(3)(x 12+2y 14)(x 12−2y 14)÷y−12=(x −4y 12)y 12=x √y −4y.【解答】解:(1)√(−27)23+√(2−π)2+√(4−π)44=32+π−2+4−π=9−2+4=11.(2)2x −13(12x 13+x −23)x=(1+2x −1)x =x +2. (3)(x 12+2y 14)(x 12−2y 14)÷y −12 =(x −4y 12)y 12=x √y −4y.30.【答案】解:根据指数幂与根式的运算,化简可得0.125−13−(98)0+[(−2)2]32+(√2×√33)6 =[(2)−3]−13−(98)0+[22]32+(212×313)6 =2−1+8+(212)6(313)6=2−1+8+8×9=81解:由分数指数幂及根式的运算,化简可得(5116)0.5+√(−10)2−2√3×√276−4π0÷(34)−1=[(32)4]0.5+10−2√3×(33)16−4×34=94+10−2√3×√3−3 =94+10−6−3=134【考点】根式与分数指数幂的互化及其化简运算 有理数指数幂的化简求值 分数指数幂【解析】(1)根据指数幂与根式的运算,化简即可得解 (2)由分数指数幂及根式的运算,化简即可求解. 【解答】 此题暂无解答 31. 【答案】解:∵ x 12+x −12=3,∴ x +2+x −1=9,∴ x +x −1=7, ∴ x 2+2+x −2=49,∴ x 2+x −2=47,∴x32+x−32−3x2+x−2−2=(x12+x−12)(x−1+x−1)−347−2=3×(7−1)−345=1545=13【考点】有理数指数幂的化简求值分数指数幂【解析】通过平方将目标式与已知式联系,代入求值.【解答】此题暂无解答。
第十三讲 分数指数幂【知识要点】1.整数指数幂形如na 叫做a 的n 次幂, a 叫做幂的底数, )(Z n n ∈叫做幂的指数,这样的幂叫做整数的指数幂.其中0≠a 正整数指数幂的运算法则: (1)nm nma a a +=⋅ (2) mnnm a a =)( (3))0,(≠>=-a n m aaa nm n m (4)m m m b a ab =)( 2.根式(1)平方根:如果a x =2,则x 叫做a 的平方根(或二次方根),其中a 叫做被开方数,次数2叫做根指数, x 叫做a 的平方根.当0>a 时,它有两个互为相反数的平方根,记做a a -,;当0=a 时, 00=;当0<a 时,在R 内没有平方根(2)立方根:如果a x =3,则x 叫做a 的立方根(或三次方根),对任意R a ∈,它有唯一的立方根3a(3)n 次方根:如果a x n =,那么x 叫做a 的n 次实数方根,其中+∈>N n n ,1.求a 的n 次方根,叫做把a 开n 次方,这种运算叫做开方运算,式子n a 叫做根式,n 叫做根指数,a 叫做被开方数 3.分数指数幂:(1)分数指数幂与根式的转化 ①正分数指数幂的规定:)1,0(1>∈>=+n N n a a a nn且;nmN n m a a an m nm 且、,,0(+∈>=为既约分数) ②负分数指数幂规定: 10,,)m nm nmaa m n N na-+==>∈、且为既约分数 ③0的正分数指数幂为0,0的负分数指数幂没有意义(2)分数指数幂的运算法则:设βα、,0,0>>b a 是有理数,则βαβα+=⋅a a a 、αββαa a =)( αααb a ab ⋅=)(.【典型例题】例1.求值:(1)①33)8(-= ; ②2)10(-= ;③44)3(π-= ; ④)()(2b a b a >-=(2)①212= ②21)4964(-=③4310000-= ④32)27125(-=例2.求值:5544332)3()3()2()2()2(---+-+-ππ63125.132)3(⨯⨯例3.计算:(1)5.02120)01.0()412(2)532(-⋅+--(2)2175.003125.016)87(064.0++---.例4.化简(式中字母都是正数):211511336622(1)(2)(6)(3)a b a b a b -÷-2例5.已知:51=--aa ,且0>a ,求下列各式的值.①1-+a a ; ②22-+a a ; ③3221212323+-+---aa a a1.将)A.122- B.122-- C.132- D.132--2.化简111118163224(12)(12)(12)(12)(12)-----+++++的结果是( )A.11321(12)2---B.1132(12)--- C.13212-- D.1321(12)2--3.化简(1(2)2115113366221()(3)()3a b a b a b ⋅-⋅÷4.已知310=m ,210=n,求2310n m -的值5.已知:322=--xxaa 且0>a 求xx xx aa a a --++33的值1.下列各式中成立的一项( )A.7177)(m n mn = B.31243)3(-=-C.43433)(y x y x +=+ D.3339=2.计算(122--⎡⎤⎢⎥⎣⎦的结果是( )C.2D.2-3.851323x--⎫⎪⎪⎝⎭化成分数指数幂为 ( ) A.12x- B.415x C.415x- D.25x4.23)425(-=5.423981⨯=6.已知13x x -+=,求下列各式的值:(1)1122x x -+ (2)3322x x-+。
人教版数学高中《必修一》《分数指数幂》
人教版数学高中《必修一》《分数指数幂》
1、分数指数幂的定义。
2、分数指数幂的相关运算。
详细请看本课视频。
本课程终生免费,目的是为了更好的为学生服务,为了让更多的人听到焦老师的课程,您可以点击标题下方“焦阳初中数学”快速关注,也可以保存并转发此公众号名片,您的关注,是对公益事业的支持,你的转发,也是在做公益,谢谢。
感谢各位朋友的支持,感谢大家的推广。
今天,我们要学习的课程是人教版数学高中《必修一》《分数指数幂》。
今后每天会更新七、八、九年级及高中的课程,同步于课堂,敬请关注,谢谢。
关于“北师大版“和“苏教版“课程的声明:
目前焦老师一个人在做这个公益平台,录制课程蓝本为人教版数学教材,但是各教材的制订,课程标准是相同的,只是编排顺序不同,所以您看到的课程虽然是人教版课程,但不影响北师版的学习。
公众号置顶,添加到桌面,学生观看更方便。
人教版数学高中《必修一》《分数指数幂》。
《必修一》基本初等函数知识点【知识点一、指数函数】 (一)指数与指数幂的运算1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。
当n 是奇数时,a a n n =, 当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn2.分数指数幂正数的分数指数幂的意义,规定: )1,,,0(*>∈>=n N n m a a a n m nm, )1,,,0(11*>∈>==-n N n m a a a anmnmnm◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义3.实数指数幂的运算性质(1)r a ·s r r a a +=),,0(R s r a ∈>; (2)rs s r a a =)(),,0(R s r a ∈>; (3)s r r a a ab =)(),,0(R s r a ∈>. 【例1】.下列正确的是( )A .a 0=1B .221a a=- C .10-1=0.1 D .a a =2【例2】.416的值为( )A .±2B .2C .-2D .4【例3】.32)27125(-的值为A .925 B .259 C .925-D .259-【例4】.化简382313232---xx x xxx 的结果是( )A .34xB .x 2C .x 3D .x 4【例5】、化简1111132168421212121212-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,结果是( )A 、11321122--⎛⎫- ⎪⎝⎭B 、113212--⎛⎫- ⎪⎝⎭C 、13212-- D 、1321122-⎛⎫- ⎪⎝⎭【例6】、44等于( )A 、16aB 、8aC 、4aD 、2a【例7】、若1,0a b ><,且b b a a -+=则b b a a --的值等于( )A 、6B 、2±C 、2-D 、2【高考例题1】.已知11223a a-+=,求下列各式的值(1)1a a -+= ; (2)22a a -+=【高考例题2】若11225xx-+=,则21x x+的值是【高考例题3】.若13a a -+=,求下列各式的值:(1)1122a a -+= ; (2)22a a -+= ;【知识点二:指数函数及其性质】1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 因为负数对一些分数次方无意义,0的负数次方无意义。
学科教师辅导教案―分数指数幂
(n a
a a a
a 个
2、分数指数幂
观察:(25)2=210
51022= 2
1010
22
=
(1)正数的正分数指数幂的意义是:n
m a =n
a m (a >0,m 、n ∈N *,且n>1); (2)正数的负分数指数幂的意义是:n
m a
-=
n
m a
1 (a >0,m 、n ∈N *,且n>1);
(3)0的正分数指数幂等于0,0的负分数指数幂没有意义.
注意:不要轻易对n
m 进行约分,否则有时会改变a 的取值范围导致出错,若.0,;,41
48
2≥=∈a a a R a a
[例1]求下列各式的值:
(1)2
1
25-
(2)5)2
1(- (3)43)8116(- (4)0
421
)127(-+
[巩固]计算求值: (1) 0212
3
1)1627()2
1(8---+++
(2)21
4)4
25()15(4)21(25.0----÷--⨯
[例2] 将下列分数指数幂化为根式 (1)_______53
4=(2)_______22
1=-(3)_______2
3=a (4)_______2
5=-
a
[巩固] 用分数指数幂表示下列各式:
(1)_____2=(2)_____)0(32=>a a (3)_____)(57
=-b a (4)_____)()(224322=≥-b a b a
3、有理数指数幂的运算性质
(1)a t a s =a t +
s (a >0,t 、s ∈Q ); (2)(a t )s =a ts (a >0,t 、s ∈Q ); (3)(ab )t =a t b t (a >0,b >0,t ∈Q ).
[例1]化简
精典例题透析
精典例题透析。