人教版高中数学必修3全套教案
- 格式:doc
- 大小:2.67 MB
- 文档页数:84
第3课时案例3 进位制授课时间:第周年月日(星期)导入新课情境导入在日常生活中,我们最熟悉、最常用的是十进制,据说这与古人曾以手指计数有关,爱好天文学的古人也曾经采用七进制、十二进制、六十进制,至今我们仍然使用一周七天、一年十二个月、一小时六十分的历法.今天我们来学习一下进位制.提出问题(1)你都了解哪些进位制?(2)举出常见的进位制.(3)思考非十进制数转换为十进制数的转化方法.(4)思考十进制数转换成非十进制数及非十进制之间的转换方法.活动:先让学生思考或讨论后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:(1)进位制是人们为了计数和运算方便而约定的计数系统,约定满二进一,就是二进制;满十进一,就是十进制;满十二进一,就是十二进制;满六十进一,就是六十进制等等.也就是说:“满几进一”就是几进制,几进制的基数(都是大于1的整数)就是几.(2)在日常生活中,我们最熟悉、最常用的是十进制,据说这与古人曾以手指计数有关,爱好天文学的古人也曾经采用七进制、十二进制、六十进制,至今我们仍然使用一周七天、一年十二个月、一小时六十分的历法.(3)十进制使用0~9十个数字.计数时,几个数字排成一行,从右起,第一位是个位,个位上的数字是几,就表示几个一;第二位是十位,十位上的数字是几,就表示几个十;接着依次是百位、千位、万位……例如:十进制数3 721中的3表示3个千,7表示7个百,2表示2个十,1表示1个一.于是,我们得到下面的式子:3 721=3×103+7×102+2×101+1×100.与十进制类似,其他的进位制也可以按照位置原则计数.由于每一种进位制的基数不同,所用的数字个数也不同.如二进制用0和1两个数字,七进制用0~6七个数字.一般地,若k是一个大于1的整数,那么以k为基数的k进制数可以表示为一串数字连写在一起的形式a n a n-1…a1a0(k)(0<a n<k,0≤a n-1,…,a1,a0<k).其他进位制的数也可以表示成不同位上数字与基数的幂的乘积之和的形式,如110 011(2)=1×25+1×24+0×23+0×22+1×21+1×20,7 342(8)=7×83+3×82+4×81+2×80.非十进制数转换为十进制数比较简单,只要计算下面的式子值即可:a n a n-1…a1a0(k)=a n×k n+a n-1×k n-1+…+a1×k+a0.第一步:从左到右依次取出k进制数a n a n-1…a1a0(k)各位上的数字,乘以相应的k的幂,k的幂从n开始取值,每次递减1,递减到0,即a n×k n,a n-1×k n-1,…,a1×k,a0×k0;第二步:把所得到的乘积加起来,所得的结果就是相应的十进制数.(4)关于进位制的转换,教科书上以十进制和二进制之间的转换为例讲解,并推广到十进制和其他进制之间的转换.这样做的原因是,计算机是以二进制的形式进行存储和计算数据的,而一般我们传输给计算机的数据是十进制数据,因此计算机必须先将十进制数转换为二进制数,再处理,显然运算后首次得到的结果为二进制数,同时计算机又把运算结果由二进制数转换成十进制数输出.1°十进制数转换成非十进制数把十进制数转换为二进制数,教科书上提供了“除2取余法”,我们可以类比得到十进制数转换成k进制数的算法“除k取余法”.2°非十进制之间的转换一个自然的想法是利用十进制作为桥梁.教科书上提供了一个二进制数据与16进制数据之间的互化的方法,也就是先由二进制数转化为十进制数,再由十进制数转化成为16进制数.应用示例思路1例1 把二进制数110 011(2)化为十进制数.解:110 011(2)=1×25+1×24+0×23+0×22+1×21+1×20=1×32+1×16+1×2+1=51.强调:先把二进制数写成不同位上数字与2的幂的乘积之和的形式,再按照十进制的运算规则计算出结果.变式训练设计一个算法,把k进制数a(共有n位)化为十进制数b.算法分析:从例1的计算过程可以看出,计算k进制数a的右数第i位数字a i与k i-1的乘积a i·k i-1,再将其累加,这是一个重复操作的步骤.所以,可以用循环结构来构造算法.算法步骤如下:第一步,输入a,k和n的值.第二步,将b的值初始化为0,i的值初始化为1.第三步,b=b+a i·k i-1,i=i+1.第四步,判断i>n是否成立.若是,则执行第五步;否则,返回第三步.第五步,输出b的值.程序框图如下图:程序:INPUT “a,k,n=”;a,k,nb=0i=1t=a MOD 10DOb=b+t*k^(i-1)a=a\\10t=a MOD 10i=i+1LOOP UNTIL i>nPRINT bEND例2 把89化为二进制数.解:根据二进制数“满二进一”的原则,可以用2连续去除89或所得商,然后取余数.具体计算方法如下:因为89=2×44+1,44=2×22+0,22=2×11+0,11=2×5+1,5=2×2+1,2=2×1+0,1=2×0+1,所以89=2×(2×(2×(2×(2×2+1)+1)+0)+0)+1=2×(2×(2×(2×(22+1)+1)+0)+0)+1=…=1×26+0×25+1×24+1×23+0×22+0×21+1×20=1 011 001(2).这种算法叫做除2取余法,还可以用右面的除法算式表示:把上式中各步所得的余数从下到上排列,得到89=1 011 001(2).上述方法也可以推广为把十进制数化为k进制数的算法,称为除k取余法.变式训练设计一个程序,实现“除k取余法”.算法分析:从例2的计算过程可以看出如下的规律:若十制数a除以k所得商是q0,余数是r0,即a=k·q0+r0,则r0是a的k进制数的右数第1位数.若q0除以k所得的商是q1,余数是r1,即q0=k·q1+r1,则r1是a的k进制数的左数第2位数.……若q n-1除以k所得的商是0,余数是r n,即q n-1=r n,则r n是a的k进制数的左数第1位数.这样,我们可以得到算法步骤如下:第一步,给定十进制正整数a和转化后的数的基数k.第二步,求出a除以k所得的商q,余数r.第三步,把得到的余数依次从右到左排列.第四步,若q≠0,则a=q,返回第二步;否则,输出全部余数r排列得到的k进制数.程序框图如下图:程序:INPUT “a,k=”;a,kb=0i=0DOq=a\\kr=a MOD kb=b+r*10^ia=qLOOP UNTIL q=0PRINT bEND思路2例1 将8进制数314 706(8)化为十进制数,并编写出一个实现算法的程序.解:314 706(8)=3×85+1×84+4×83+7×82+0×81+6×80=104 902.所以,化为十进制数是104 902.强调:利用把k进制数转化为十进制数的一般方法就可以把8进制数314 706(8)化为十进制数.例2 把十进制数89化为三进制数,并写出程序语句.解:具体的计算方法如下:89=3×29+2,29=3×9+2,9=3×3+0,3=3×1+0,1=3×0+1,所以:89(10)=10 022(3).强调:根据三进制数满三进一的原则,可以用3连续去除89及其所得的商,然后按倒序的顺序取出余数组成数据即可.知能训练将十进制数34转化为二进制数.分析:把一个十进制数转换成二进制数,用2反复去除这个十进制数,直到商为0,所得余数(从下往上读)就是所解:即34(10)=100 010(2)拓展提升把1 234(5)分别转化为十进制数和八进制数.解:1 234(5)=1×53+2×52+3×5+4=194.则1 234(5)=302(8)所以,1 234(5)=194=302(8)强调:本题主要考查进位制以及不同进位制数的互化.五进制数直接利用公式就可以转化为十进制数;五进制数和八进制数之间需要借助于十进制数来转化.课堂小结(1)理解算法与进位制的关系.(2)熟练掌握各种进位制之间转化.作业习题1.3A组3、4.第2课时授课时间:第周年月日(星期)导入新课思路1客观事物是相互联系的,过去研究的大多数是因果关系,但实际上更多存在的是一种非因果关系.比如说:某某同学的数学成绩与物理成绩,彼此是互相联系的,但不能认为数学是“因”,物理是“果”,或者反过来说.事实上数学和物理成绩都是“果”,而真正的“因”是学生的理科学习能力和努力程度.所以说,函数关系存在着一种确定性关系,但还存在着另一种非确定性关系——相关关系.为表示这种相关关系,我们接着学习两个变量的线性相关——回归直线及其方程.思路2某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对照表:如果某天的气温是-5 ℃,你能根据这些数据预测这天小卖部卖出热茶的杯数吗?为解决这个问题我们接着学习两个变量的线性相关——回归直线及其方程.提出问题(1)作散点图的步骤和方法?(2)正、负相关的概念?(3)什么是线性相关?(4)看人体的脂肪百分比和年龄的散点图,当人的年龄增加时,体内脂肪含量到底是以什么方式增加的呢?(5)什么叫做回归直线?(6)如何求回归直线的方程?什么是最小二乘法?它有什么样的思想?(7)利用计算机如何求回归直线的方程?(8)利用计算器如何求回归直线的方程?活动:学生回顾,再思考或讨论,教师及时提示指导.讨论结果:(1)建立相应的平面直角坐标系,将各数据在平面直角坐标中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图.(a.如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.b.如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系.c.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系)(2)如果散点图中的点散布在从左下角到右上角的区域内,称为正相关.如果散点图中的点散布在从左上角到右下角的区域内,称为负相关.(3)如果所有的样本点都落在某一直线附近,变量之间就有线性相关的关系.(4)大体上来看,随着年龄的增加,人体中脂肪的百分比也在增加,呈正相关的趋势,我们可以从散点图上来进一步分析.(5)如右图:从散点图上可以看出,这些点大致分布在通过散点图中心的一条直线附近.如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线(regression line).如果能够求出这条回归直线的方程(简称回归方程),那么我们就可以比较清楚地了解年龄与体内脂肪含量的相关性.就像平均数可以作为一个变量的数据的代表一样,这条直线可以作为两个变量具有线性相关关系的代表.(6)从散点图上可以发现,人体的脂肪百分比和年龄的散点图,大致分布在通过散点图中心的一条直线.那么,我们应当如何具体求出这个回归方程呢?有的同学可能会想,我可以采用测量的方法,先画出一条直线,测量出各点与它的距离,然后移动直线,到达一个使距离的和最小的位置,测量出此时的斜率和截距,就可得到回归方程了.但是,这样做可靠吗?有的同学可能还会想,在图中选择这样的两点画直线,使得直线两侧的点的个数基本相同.同样地,这样做能保证各点与此直线在整体上是最接近的吗?还有的同学会想,在散点图中多取几组点,确定出几条直线的方程,再分别求出各条直线的斜率、截距的平均数,将这两个平均数当成回归方程的斜率和截距.同学们不妨去实践一下,看看这些方法是不是真的可行?(学生讨论:1.选择能反映直线变化的两个点.2.在图中放上一根细绳,使得上面和下面点的个数相同或基本相同.3.多取几组点对,确定几条直线方程.再分别算出各个直线方程斜率、截距的算术平均值,作为所求直线的斜率、截距.)教师:分别分析各方法的可靠性.如下图:上面这些方法虽然有一定的道理,但总让人感到可靠性不强.实际上,求回归方程的关键是如何用数学的方法来刻画“从整体上看,各点与此直线的距离最小”.人们经过长期的实践与研究,已经得出了计算回归方程的斜率与截距的一般公式⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=---=∑∑∑∑====.)1(,)())((2121121x b y a x n x yx n yx x x y y x x b n i i ni ii n i i ni i i其中,b 是回归方程的斜率,a 是截距.推导公式①的计算比较复杂,这里不作推导.但是,我们可以解释一下得出它的原理. 假设我们已经得到两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ), 且所求回归方程是^y =bx+a,其中a 、b 是待定参数.当变量x 取x i (i=1,2,…,n)时可以得到^y =bx i +a(i=1,2,…,n), 它与实际收集到的y i 之间的偏差是y i -^y =y i -(bx i +a)(i=1,2,…,n).这样,用这n 个偏差的和来刻画“各点与此直线的整体偏差”是比较合适的.由于(y i -^y )可正可负,为了避免相互抵消,可以考虑用∑=-ni i iy y1^||来代替,但由于它含有绝对值,运算不太方便,所以改用Q=(y 1-bx 1-a)2+(y 2-bx 2-a)2+…+(y n -bx n -a)2 ② 来刻画n 个点与回归直线在整体上的偏差.这样,问题就归结为:当a,b 取什么值时Q 最小,即总体偏差最小.经过数学上求最小值的运算,a,b 的值由公式①给出.通过求②式的最小值而得出回归直线的方法,即求回归直线,使得样本数据的点到它的距离的平方和最小,这一方法叫做最小二乘法(method of least square ).(7)利用计算机求回归直线的方程.根据最小二乘法的思想和公式①,利用计算器或计算机,可以方便地求出回归方程.以Excel软件为例,用散点图来建立表示人体的脂肪含量与年龄的相关关系的线性回归方程,具体步骤如下:①在Excel中选定表示人体的脂肪含量与年龄的相关关系的散点图(如下图),在菜单中选定“图表”中的“添加趋势线”选项,弹出“添加趋势线”对话框.②单击“类型”标签,选定“趋势预测/回归分析类型”中的“线性”选项,单击“确定”按钮,得到回归直线.③双击回归直线,弹出“趋势线格式”对话框.单击“选项”标签,选定“显示公式”,最后单击“确定”按钮,得到回归直线的回归方程^y=0.577x-0.448.(8)利用计算器求回归直线的方程.用计算器求这个回归方程的过程如上:所以回归方程为^y=0.577x-0.448.正像本节开头所说的,我们从人体脂肪含量与年龄这两个变量的一组随机样本数据中,找到了它们之间关系的一个规律,这个规律是由回归直线来反映的.直线回归方程的应用:①描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系.②利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间.③利用回归方程进行统计控制规定Y值的变化,通过控制x的范围来实现统计控制的目标.如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO2的浓度.应用示例思路1例1 有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表:(1)画出散点图;(2)从散点图中发现气温与热饮销售杯数之间关系的一般规律;(3)求回归方程;(4)如果某天的气温是2 ℃,预测这天卖出的热饮杯数.解:(1)散点图如下图所示:(2)从上图看到,各点散布在从左上角到右下角的区域里,因此,气温与热饮销售杯数之间呈负相关,即气温越高,卖出去的热饮杯数越少.(3)从散点图可以看出,这些点大致分布在一条直线的附近,因此,可用公式①求出回归方程的系数.利用计算器容易求得回归方程^y=-2.352x+147.767.(4)当x=2时,^y=143.063.因此,某天的气温为2 ℃时,这天大约可以卖出143杯热饮.思考气温为2 ℃时,小卖部一定能够卖出143杯左右热饮吗?为什么?这里的答案是小卖部不一定能够卖出143杯左右热饮,原因如下:1.线性回归方程中的截距和斜率都是通过样本估计出来的,存在随机误差,这种误差可以导致预测结果的偏差.2.即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x的预报值,能够与实际值y很接近.我们不能保证点(x,y)落在回归直线上,甚至不能百分之百地保证它落在回归直线的附近,事实上,y=bx+a+e=^y+e.这里e是随机变量,预报值^y与实际值y的接近程度由随机变量e的标准差所决定.一些学生可能会提出问题:既然不一定能够卖出143杯左右热饮,那么为什么我们还以“这天大约可以卖出143杯热饮”作为结论呢?这是因为这个结论出现的可能性最大.具体地说,假如我们规定可以选择连续的3个非负整数作为可能的预测结果,则我们选择142,143和144能够保证预测成功(即实际卖出的杯数是这3个数之一)的概率最大.例2 下表为某地近几年机动车辆数与交通事故数的统计资料.(1)请判断机动车辆数与交通事故数之间是否有线性相关关系,如果不具有线性相关关系,说明理由;(2)如果具有线性相关关系,求出线性回归方程.解:(1)在直角坐标系中画出数据的散点图,如下图. 直观判断散点在一条直线附近,故具有线性相关关系. (2)计算相应的数据之和:∑=81i ix=1 031,∑=81i iy=71.6,∑=812i ix=137 835,∑=81i ii yx =9 611.7.将它们代入公式计算得b≈0.077 4,a=-1.024 1, 所以,所求线性回归方程为=0.077 4x-1.024 1.思路2例1 给出施化肥量对水稻产量影响的试验数据:(1)画出上表的散点图; (2)求出回归直线的方程. 解:(1)散点图如下图.(2)表中的数据进行具体计算,列成以下表格:故可得到 b=230770003.39930787175⨯-⨯⨯-≈4.75, a=399.3-4.75×30≈257.从而得回归直线方程是^y =4.75x+257.例2 一个车间为了规定工时定额,需要确定加工零件所花费的时间.为此进行了10次试验,测得数据如下:请判断y 与x 是否具有线性相关关系,如果y 与x 具有线性相关关系,求线性回归方程. 解:在直角坐标系中画出数据的散点图,如下图.直观判断散点在一条直线附近,故具有线性相关关系.由测得的数据表可知:∑===1012,7.91,55i ix y x =38 500,∑=1012i iy =87 777,∑=101i i i y x =55 950.b=22101210155********.915510559501010⨯-⨯⨯-=--∑∑==x xyx yx i ii ii≈0.668.a=x b y -=91.7-0.668×55≈54.96.因此,所求线性回归方程为^y =bx+a=0.668x+54.96.例3 已知10条狗的血球体积及红血球数的测量值如下:(1)画出上表的散点图; (2)求出回归直线的方程. 解:(1)散点图如下.(2)101=x (45+42+46+48+42+35+58+40+39+50)=44.50, 101=y (6.53+6.30+9.52+7.50+6.99+5.90+9.49+6.20+6.55+8.72)=7.37. 设回归直线方程为^y =bx+a,则b=210121011010x xyx yx i ii ii --∑∑===0.175,a=x b y -=-0.418,所以所求回归直线的方程为^y =0.175x-0.148. 知能训练1.下列两个变量之间的关系哪个不是函数关系( )A.角度和它的余弦值B.正方形边长和面积C.正n边形的边数和它的内角和D.人的年龄和身高答案:D2.三点(3,10),(7,20),(11,24)的线性回归方程是()A.^y=5.75-1.75x B.^y=1.75+5.75xC.^y=1.75-5.75x D.^y=5.75+1.75x答案:D3.已知关于某设备的使用年限x与所支出的维修费用y(万元),有如下统计资料:(1)线性回归方程^y=bx+a的回归系数a,b;(2)估计使用年限为10年时,维修费用是多少?答案:(1)b=1.23,a=0.08;(2)12.38.4.我们考虑两个表示变量x与y之间的关系的模型,δ为误差项,模型如下:模型1:y=6+4x;模型2:y=6+4x+e.(1)如果x=3,e=1,分别求两个模型中y的值;(2)分别说明以上两个模型是确定性模型还是随机模型.解:(1)模型1:y=6+4x=6+4×3=18;模型2:y=6+4x+e=6+4×3+1=19.(2)模型1中相同的x值一定得到相同的y值,所以是确定性模型;模型2中相同的x值,因δ的不同,所得y值不一定相同,且δ为误差项是随机的,所以模型2是随机性模型.5.以下是收集到的新房屋销售价格y与房屋大小x的数据:(1)画出数据的散点图;(2)用最小二乘法估计求线性回归方程. 解:(1)散点图如下图.(2)n=5,∑=51i ix=545,x =109,∑=51i iy=116,y =23.2,∑=512i ix=60 952,∑=51i ii yx =12 952,b=2545609525116545129525-⨯⨯-⨯≈0.199,a=23.2-0.199×109≈1.509, 所以,线性回归方程为y=0.199x+1.509. 拓展提升某调查者从调查中获知某公司近年来科研费用支出(X i )与公司所获得利润(Yi )的统计资料如下表:科研费用支出(X i )与利润(Y i )统计表 单位:万元i i 解:设线性回归模型直线方程为:i i X Y 1^0^^ββ+=,因为:630==∑nX x i =5,6180==∑nYY i=30, 根据资料列表计算如下表:01方法一:3006009001200540060003020061803010006)(2221^=--=-⨯⨯-⨯=--=∑∑∑∑i i i i i X X n Y Y X n β=2, x Y 1^0^ββ-==30-2×5=20.方法二:501005620030561000)(2221^=⨯-⨯⨯-=--=∑∑x n X Y x n Y X ii i β=2,x Y 1^0^ββ-==30-2×5=20.方法三:50100)())((21^=---=∑∑x XY Y x X ii i β=2,x Y 1^0^ββ-==30-2×5=20.所以利润(Y i )对科研费用支出(X i )的线性回归模型直线方程为:i Y ^=20+2X i . 课堂小结1.求线性回归方程的步骤:(1)计算平均数y x ,; (2)计算x i 与y i 的积,求∑x i y i ; (3)计算∑x i 2,∑y i 2,(4)将上述有关结果代入公式⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=---=∑∑∑∑====x b y a x n x y x n y x x x y y x x b n i in i i i n i i n i i i ,)())((1221121 求b,a,写出回归直线方程.2.经历用不同估算方法描述两个变量线性相关的过程.知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.作业 习题2.3A 组3、4,B 组1、2.。
高中数学必修3教学教案
教学内容:函数与导数
教学目标:通过本课程的学习,学生将能够掌握函数与导数的基本概念、性质和应用,能够运用导数理论解决实际问题。
教学时间:2个课时
教学步骤:
第一课时:
1. 导入:简单介绍函数与导数的概念,并提出本节课的学习目标。
2. 讲解函数的概念:通过实例介绍函数的定义、自变量、因变量和函数图像。
3. 讲解导数的定义:介绍导数的定义及导数的几何意义。
4. 讲解导数的计算:通过几个简单的实例,展示如何计算导数。
5. 练习与讨论:让学生做几道相关练习,引导学生思考导数的应用。
第二课时:
1. 复习:回顾前一节课的内容,确保学生对函数与导数的基本概念有所掌握。
2. 讲解导数的性质:介绍导数的性质及导数的运算法则。
3. 讲解导数的应用:通过实际问题,展示导数在几何、物理等领域的应用。
4. 讲解导数的应用:通过实际问题,展示导数在最值问题中的应用。
5. 练习与讨论:让学生做相关练习,并在讨论中总结本节课的重点内容。
教学评价:通过考察学生在课堂练习、课后作业及期中、期末考试中的表现,评价学生对函数与导数知识的掌握程度。
教学反思:根据学生的学习情况,及时调整教学方法和教学内容,使教学更加有效果和有针对性。
人教版高中数学必修3《古典概型》教案古典概型一、教材分析教材的地位和作用:本节课是高中数学必修3第三章概率的第二节,古典概型的第一课时。
本节课在教材中起着承前启后的作用。
古典概型的引入避免了大量的重复试验,而且得到的概率是精确值。
古典概型是一种最基本的概率模型,在概率论中占有相当重要的地位。
学好古典概型为后续学习几何概型奠定了知识和方法基础,同时有助于理解概率的概念,有利于计算一些事件的概率,并解释生活中的一些概率问题。
二、学情分析认知分析:本节课是在学生学习了统计、随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下学习的新知识。
学生已经了解了概率的基本性质,知道了互斥事件与对立事件的概率加法公式能力分析:我校学生基础比较薄弱,自学能力较差,对抽象的知识理解较困难。
作为高二的学生他们具备一定的观察、类比、分析、归纳能力,但对知识的理解和方法的掌握上存在一些问题。
情感分析:问卷调查显示,多数学生对概率的学习有一定的兴趣,但对抽象的定义和公式存在惧怕心理。
并且学生习惯了小组合作学习。
三、教学目标新课程强调获得知识的过程比知识本身更有价值。
新课标重视过程教学、情感教学。
根据新课程标准,结合学生心理发展的需求,制定以下三维教学目标:知识与技能目标:正确理解两个概念:基本事件与古典概型,掌握古典概型的概率计算公式。
过程与方法目标:创设情境,设计一些具有实际生活背景的问题,引导学生积极思考。
进一步发展学生的观察、类比、分析、归纳能力,让学生体会从特殊到一般的数学方法情感态度与价值观目标:通过各种有趣的,贴近学生生活的素材,激发学生学习数学的兴趣和热情;感受数学的应用价值,并尝试用数学的视野去关注生活中的数学问题。
四、教学重难点及突破难点的关键教学重点:理解古典概型及其概率计算公式教学难点:如何正确运用古典概型的概率计算公式关键:通过实例,特别是举一些破坏古典概型两个特征的例子,以突破古典概型识别的难点。
高中人教版数学必修3教案
课时安排:第一课时
教学内容:函数及其性质
教学目标:通过本节课的学习,使学生能够掌握函数的基本概念,并了解函数的性质。
教学重点:函数的概念、定义和性质。
教学难点:函数的性质的应用。
教学过程:
一、导入(5分钟)
教师通过举例子引入函数的概念,让学生了解函数在生活中的应用。
二、讲解(15分钟)
1. 定义函数的概念,函数的符号表示。
2. 函数的定义及分类。
3. 函数的性质:有界性、单调性、奇偶性等。
三、练习(20分钟)
1. 练习函数的定义和性质。
2. 让学生通过练习题来巩固所学知识。
四、拓展(10分钟)
教师引导学生思考函数在现实生活中的应用,并提出相关问题让学生讨论。
五、作业布置(5分钟)
布置相关练习题作业,巩固本节课所学内容。
教学反思:
通过本节课的教学,学生对函数的概念及性质有了初步的了解,但在练习过程中发现学生对函数性质的应用理解有所欠缺,需要在后续的教学中加强相关练习。
同时,鼓励学生多思考函数在实际生活中的应用,能够更好地理解函数的概念。
§3.2 古典概型§3.2.1 古典概型一、教材分析本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的.古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位.学好古典概型可以为其他概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题.概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象.适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例.使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神.二、教学目标1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;A包含的基本事件个数)(A=(2)掌握古典概型的概率计算公式:P总的基本事件个数2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。
3、情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.三、重点难点教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率.教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数.四、课时安排1课时五、教学设计(一)导入新课思路1(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件.(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,...,10,从中任取一球,只有10种不同的结果,即标号为1,2,3, (10)思考讨论根据上述情况,你能发现它们有什么共同特点?.教师板书课题,为此我们学习古典概型思路2将扑克牌(52张)反扣在桌上,先从中任意抽取一张,那么抽到的牌为红心的概率有多大?是否一定要进行大量的重复试验,用“出现红心”这一事件的频率估计概率?这样工作量较大且不够准确.有更好的解决方法吗?把“抽到红心”记为事件B,那么事件B相当于“抽到红心1”,“抽到红心2”,…,“抽到红心K”这13种情况,而同样抽到其他牌的共有39种情况;由于是任意抽取的,可以认为这52种情况的可能性是相等的.所以,当出现红心时“抽到红心1”,“抽131=.,于是P(B)=为此我们学这13种情形之一时,事件B就发生抽到红心到红心2”,…,“K”452习古典概型.(二)推进新课、新知探究、提出问题试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成20次(最好是整十数),最后由学科代表汇总;试验二:抛掷一枚质地均匀的骰子,分别记录“1点”“2点”“3点”“4点”“5点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由学科代表汇总.(1)用模拟试验的方法来求某一随机事件的概率好不好?为什么?(2)根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?(3)什么是基本事件?基本事件具有什么特点?(4)什么是古典概型?它具有什么特点?(5)对于古典概型,应怎样计算事件的概率?活动:学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,讨论可能出现的情况,师生共同汇总方法、结果和感受.讨论结果:(1)用模拟试验的方法来求某一随机事件的概率不好,因为需要进行大量的试验,同时我们只是把随机事件出现的频率近似地认为随机事件的概率,存在一定的误差.(2)上述试验一的两个结果是“正面朝上”和“反面朝上”,它们都是随机事件,出现的概率是相等的,都是0.5.上述试验二的6个结果是“1点”“2点”“3点”“4点”“5点”和“6点”,它们也都是1. 都是出现的概率是相等的,随机事件,6(3)根据以前的学习,上述试验一的两个结果“正面朝上”和“反面朝上”,它们都是随机事件;上述试验二的6个结果“1点”“2点”“3点”“4点”“5点”和“6点”,它们都是随机事件,像这类随机事件我们称为基本事件(elementary event);它是试验的每一个可能结果.基本事件具有如下的两个特点:①任何两个基本事件是互斥的;②任何事件(除不可能事件)都可以表示成基本事件的和.(4)在一个试验中如果①试验中所有可能出现的基本事件只有有限个;(有限性)②每个基本事件出现的可能性相等.(等可能性)我们将具有这两个特点的概率模型称为古典概率模型(classical models of probability),简称古典概型.向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典为什么??概型吗.因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件.如下图,某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环.你认为这是古典概型吗?为什么?不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件.(5)古典概型,随机事件的概率计算对于实验一中,出现正面朝上的概率与反面朝上的概率相等,即P(“正面朝上”)=P(“反面朝上”)由概率的加法公式,得P(“正面朝上”)+P(“反面朝上”)=P(必然事件)=1.因此1. =”)=P(“反面朝上P(“正面朝上”)21出现正面朝上所包含的基本事件的个数?. 即P(“出现正面朝上”)= 2基本事件的总数试验二中,出现各个点的概率相等,即P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”).反复利用概率的加法公式,我们有P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=P(必然事件)=1.1. =点“6”)“5点”)=P(()点“2”)=P(“3点”=P(“4点”)=P)(所以P“1点”=P(6, ,例如进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率11131++==. =点)(点)(P“出现偶数点”=P(“2”)+P“4点”+P(“6”)666623出现偶数点所包含的基本事件的个数?. )=”“P 即(出现偶数点6基本事件的总数古典概型计算任何事件的概率计算公式为:,可以概括总结出,因此根据上述两则模拟试验A所包含的基本事件的个数.)=P(A基本事件的总数在使用古典概型的概率公式时,应该注意:①要判断该概率模型是不是古典概型;②要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.下面我们看它们的应用.(三)应用示例思路1例1 从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?活动:师生交流或讨论,我们可以按照字典排序的顺序,把所有可能的结果都列出来.解:基本事件共有6个:A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d}.点评:一般用列举法列出所有基本事件的结果,画树状图是列举法的基本方法.分布完成的结果(两步以上)可以用树状图进行列举.变式训练用不同的颜色给下图中的3个矩形随机地涂色,每个矩形只涂一种颜色,求:(1)3个矩形颜色都相同的概率;(2)3个矩形颜色都不同的概率.分析:本题中基本事件比较多,为了更清楚地枚举出所有的基本事件,可以画图枚举如下:(树形图)解:基本事件共有27个.(1)记事件A=“3个矩形涂同一种颜色”,由上图可以知道事件A包含的基本事件有1×3=3个,31?. P(A)=故279(2)记事件B=“3个矩形颜色都不同”,由上图可以知道事件B包含的基本事件有2×3=6个,故62?. P(B)=27912;3个矩形颜色都不同的概率为. 答:3个矩形颜色都相同的概率为99例2 单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案.假设考生不会做,他随机地选择一问他答对的概率是多少?,个答案.即讨论这个问,,解决这个问题的关键搜集信息,交流讨论,教师引导活动:学生阅读题目,这都不满足古典概,.如果学生掌握或者掌握了部分考查内容题什么情况下可以看成古典概型,随机地选择了一个答案的情况下只有在假定学生不会做,等可能性,因此,型的第2个条件——.才可以化为古典概型、选择CB、选择4个:选择A、选择解:这是一个古典概型,因为试验的可能结果只有从而由的可能性是相等的.个,考生随机地选择一个答案是选择A,B,C,DD,即基本事件共有41所包含的基本事件的个数答对?=0.25.)=答对P(“”古典概型的概率计算公式得:4基本事件的总数:点评:古典概型解题步骤,搜集信息;(1)阅读题目,并用字母表示事件;(2)判断是否是等可能事件m;和事件A所包含的结果数(3)求出基本事件总数n m. 求出概率并下结论4)用公式P(A)=(n变式训练.两枚均匀硬币,求出现两个正面的概率1.}. 甲反乙反,甲反乙正,解:样本空间:{甲正乙正,甲正乙反. 故属古典概型这里四个基本事件是等可能发生的,1. n=4,m=1,P= 4.求出现的点数之和为奇数的概率2.一次投掷两颗骰子,,点第一颗骰子出现i”,用(i,j)记“解法一:设表示“出现点数之和为奇数A其中个基本事件组成等概样本空间,点”,i,j=1,2,…6.显然出现的36 第二颗骰子出现j1. P(A)=k=3×3+3×3=18,故包含的基本事件个数为2,,偶)奇),(偶,(奇,偶),(偶,(奇解法二:若把一次试验的所有可能结果取为:,奇)1P(A)=故. n=4,A包含的基本事件个数k=2,则它们也组成等概率样本空间.基本事件总数2.点数和为偶数点数和为奇数},也组成等解法三:若把一次试验的所有可能结果取为:{1. P(A)=1,故概率样本空间,基本事件总数n=2,A所含基本事件数为2注:找出的基本事件组构成的样本空间,必须是等概率的.解法2中倘若解为:(两个奇),1(一奇一偶),(两个偶)当作基本事件组成样本空间,则得出P(A)=,错的原因就是它不是311,而P(一奇一偶)=.本例又告诉我们,(两个奇)等概率的.例如P=同一问题可取不同的42样本空间解答.例3 同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种??的概率是多少5向上的点数之和是(3).解:(1)掷一个骰子的结果有6种.我们把两个骰子标上记号1,2以便区分,由于1号骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,因此同时掷两个骰子的结果共有36种.(2)在上面的所有结果中,向上的点数之和为5的结果有(1,4),(2,3),(3,2),(4,1),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果.(3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,41 . 由古典概型的概率计算公式可得P(A)=369例4 假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?解:一个密码相当于一个基本事件,总共有10 000个基本事件,它们分别是0000,0001,0002,…,9998,9999.随机地试密码,相当于试到任何一个密码的可能性都是相等的,所以这是一个古典概型.事件“试一次密码就能取到钱”由1个基本事件构成,即由正确的密码1. ”)=P(“试一次密码就能取到钱构成.所以100001的事件是小概率事件发生概率为,通常我们认为这样的事件在一次试验中是几乎不可10000能发生的,也就是通过随机试验的方法取到储蓄卡中的钱的概率是很小的.但我们知道,如果试验很多次,比如100 000次,那么这个小概率事件是可能发生的.所以,为了安全,自动取款机一般允许取款人最多试3次密码,如果第4次键入的号码仍是错误的,那么取款机将“没收”储蓄卡.另外,为了使通过随机试验的方法取到储蓄卡中的钱的概率更小,现在储蓄卡可以使用6位数字作密码.人们为了方便记忆,通常用自己的生日作为储蓄卡的密码.当钱包里既有身份证又有储蓄卡时,密码泄密的概率很大.因此用身份证上的号码作密码是不安全的.例5 某种饮料每箱装6听,如果其中有2听不合格,问质检人员从中随机抽出2听,检测出不合格产品的概率有多大?解:我们把每听饮料标上号码,合格的4听分别记作:1,2,3,4,不合格的2听分别记作a,b,只要检测的2听中有1听不合格,就表示查出了不合格产品.依次不放回地从箱中取出2听饮料,得到的两个标记分别记为x和y,则(x,y)表示一次抽取的结果,即基本事件.由于是随机抽取,所以抽取到任何基本事件的概率相等.用A表示“抽出的2听饮料中有不合格产品”,A表示“仅第一次抽出的是不合格产品”,A仅第二次抽出的“表示21.是不合格产品”,A表示“两次抽出的都是不合格产品”,则A,A和A是互不相容的事件,且121122A=A ∪A∪A,从而P(A)=P(A)+P(A)+P(A).12221112因为A中的基本事件的个数为8,A中的基本事件的个数为8,A中的基本事件的个数1221882 =0.6. 所以P(A)=为2,全部基本事件的总数为30,3030302思路, 从中一次摸出两个球只白球,2只黑球,例1 一个口袋内装有大小相同的5只球,其中3 共有多少个基本事件?(1) (2)摸出的两个都是白球的概率是多少?活动:可用枚举法找出所有的等可能基本事件.号有如下基本事件(摸到1,24,5解:(1)分别记白球为1,2,3号,黑球号,从中摸出2只球,(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5). (1,2)表示):球用.10个基本事件因此,共有个基本事件是摸到两个白球(记且只有3(2)上述10个基本事件发生的可能性是相同的,3. A为事件),即(1,2),(1,3),(2,3),故P(A)=103. ∴共有10个基本事件,摸到两个白球的概率为10变式训练将一颗骰子先后抛掷两次,观察向上的点数,问:(1)共有多少种不同的结果?(2)两数的和是3的倍数的结果有多少种?(3)两数和是3的倍数的概率是多少?解析:(1)将骰子抛掷1次,它出现的点数有1,2,3,4,5,6这6种结果.先后抛掷两次骰子,第一次骰子向上的点数有6种结果,第2次又有6种可能的结果,于是一共有6×6=36种不同的结果;(2)第1次抛掷,向上的点数为1,2,3,4,5,6这6个数中的某一个,第2次抛掷时都可以有两种结果,使向上的点数和为3的倍数(例如:第一次向上的点数为4,则当第2次向上的点数为2或5时,两次的点数的和都为3的倍数),于是共有6×2=12种不同的结果;(3)记“向上点数和为3的倍数”为事件A,则事件A的结果有12种,因为抛两次得到的36种结121=. ,果是等可能出现的所以所求的概率为P(A)=336答:先后抛掷2次,共有36种不同的结果;点数的和是3的倍数的结果有12种;点数的和1. 的倍数的概率为是33说明:也可以利用图表来数基本事件的个数:例2 从含有两件正品a,a和一件次品b的三件产品中,每次任取一件,每次取出后不放回,121连续取两次,求取出的两件产品中恰有一件次品的概率.活动:学生思考或交流,教师引导,每次取出一个,取后不放回,其一切可能的结果组成的基本事件是等可能发生的,因此可用古典概型解决.解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a,a)和(a,b),(a,a),(a,b),(b,a),(b,a).其中小括号内左边的字母表示212211112211第1次取出的产品,右边的字母表示第2次取出的产品用A表示“取出的两种中,恰好有一件次品”这一事件,则A=[(a,b),(a,b),(b,a),(b,a)], 2211111142=. A)=由4个基本事件组成,因而,P(事件A 63思考在上例中,把“每次取出后不放回”这一条件换成“每次取出后放回”,其余条件不变,求取出的两件中恰好有一件次品的概率.有放回地连续取出两件,其一切可能的结果有:(a,a)(a,a),(,a,b)(a,a),(a,a),,2111122112(a,b),(b,a),(b,b),由9个基本事件组成,由于每一件产品被取到的机会均等,因此可112112以认为这些基本事件的出现是等可能的.用B表示“恰有一件次品”这一事件,则B=[(a,b),11(a,b),(b,a),(b,a)], 2111124. =B),因而,P(事件B包含4个基本事件9点评:(1)在连续两次取出过程中,(a,b)与(b,a)不是同一个基本事件,因为先后1111顺序不同.(2)无论是“不放回抽取”还是“有放回抽取”,每一件产品被取出的机会都是均等的.变式训练现有一批产品共有10件,其中8件为正品,2件为次品:(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;(2)如果从中一次取3件,求3件都是正品的概率.分析:(1)为放回抽样;(2)为不放回抽样.解:(1)有放回地抽取3次,按抽取顺序(x,y,z)记录结果,则x,y,z都有10种可能,所以3种;设事件A为“连续3次都取正品”,则包含的基本事件共有10=10试验结果有10×10×383=0.512. ,P(A)=,因此8×8×8=8种310(2)解法1:可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(x,y,z),则x有10种可能,y有9种可能,z有8种可能,所以试验的所有结果为10×9×8=720种.设事件336≈0.467. P(B)=6=336,所以”,则事件B包含的基本事件总数为8×7ד3B为件都是正品720解法2:可以看作不放回3次无顺序抽样,先按抽取顺序(x,y,z)记录结果,则x有10种可能,y有9种可能,z有8种可能,但(x,y,z),(x,z,y),(y,x,z),(y,z,x),(z,x,y),(z,y,x)是相同的,所以试验的所有结果有10×9×8÷6=120,按同样的方法,事件B包含的基本事件个数为56≈0.467. P(B)=6÷8×7×6=56,因此120也可以看作是无顺,既可以看作是有顺序的,计算基本事件个数时,关于不放回抽样点评:序的,其结果是一样的,但不论选择哪一种方式,观察的角度必须一致,否则会导致错误.(四)知能训练本节练习1、2、3.(五)拓展提升一个各面都涂有色彩的正方体,被锯成1 000个同样大小的小正方体,将这些正方体混合后,从中任取一个小正方体,求:(1)有一面涂有色彩的概率;(2)有两面涂有色彩的概率;(3)有三面涂有色彩的概率.2×6个,两面涂有色彩的有8×12个解:在1 000个小正方体中,一面涂有色彩的有8,三面384=0.384;1)有一面涂有色彩的概率为P=涂有色彩的有8个,∴(1100096=0.096;(2)有两面涂有色彩的概率为P=210008=0.008.=P(3)有三面涂有色彩的概率为31000答:(1)一面涂有色彩的概率为0.384;(2)有两面涂有色彩的概率为0.096;(3)有三面涂有色彩的概率为0.008.(六)课堂小结1.古典概型我们将具有(1)试验中所有可能出现的基本事件只有有限个;(有限性)(2)每个基本事件出现的可能性相等.(等可能性)这样两个特点的概率模型称为古典概率概型,简称古典概型.2.古典概型计算任何事件的概率计算公式A所包含的基本事件的个数.=P(A)基本事件的总数3.求某个随机事件A包含的基本事件的个数和实验中基本事件的总数的常用方法是列举法(画树状图和列表),应做到不重不漏.(七)作业习题3.2 A组1、2、3、4.。
教学过程第1课时案例1 辗转相除法与更相减损术导入新课思路1(情境导入)大家喜欢打乒乓球吧,由于东、西方文化及身体条件的不同,西方人喜欢横握拍打球,东方人喜欢直握拍打球,对于同一个问题,东、西方人处理问题方式是有所不同的.在小学,我们学过求两个正整数的最大公约数的方法:先用两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来. 当两个数公有的质因数较大时(如8 251与6 105),使用上述方法求最大公约数就比较困难.下面我们介绍两种不同的算法——辗转相除法与更相减损术,由此可以体会东、西方文化的差异.思路2(直接导入)前面我们学习了算法步骤、程序框图和算法语句.今天我们将通过辗转相除法与更相减损术来进一步体会算法的思想.推进新课新知探究提出问题(1)怎样用短除法求最大公约数?(2)怎样用穷举法(也叫枚举法)求最大公约数?(3)怎样用辗转相除法求最大公约数?(4)怎样用更相减损术求最大公约数?讨论结果:(1)短除法求两个正整数的最大公约数的步骤:先用两个数公有的质因数连续去除,一直除到所得的商是两个互质数为止,然后把所有的除数连乘起来.(2)穷举法(也叫枚举法)穷举法求两个正整数的最大公约数的解题步骤:从两个数中较小数开始由大到小列举,直到找到公约数立即中断列举,得到的公约数便是最大公约数.(3)辗转相除法辗转相除法求两个数的最大公约数,其算法步骤可以描述如下:第一步,给定两个正整数m,n.第二步,求余数r:计算m除以n,将所得余数存放到变量r中.第三步,更新被除数和余数:m=n,n=r.第四步,判断余数r是否为0.若余数为0,则输出结果;否则转向第二步继续循环执行.如此循环,直到得到结果为止. 这种算法是由欧几里得在公元前300年左右首先提出的,因而又叫欧几里得算法.(4)更相减损术我国早期也有解决求最大公约数问题的算法,就是更相减损术. 《九章算术》是中国古代的数学专著,其中的“更相减损术”也可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之.”翻译为现代语言如下:第一步,任意给定两个正整数,判断它们是否都是偶数,若是,用2约简;若不是,执行第二步.第二步,以较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数(等数)或这个数与约简的数的乘积就是所求的最大公约数.应用示例例1 用辗转相除法求8 251与6 105的最大公约数,写出算法分析,画出程序框图,写出算法程序.解:用两数中较大的数除以较小的数,求得商和余数:8 251=6 105×1+2 146.由此可得,6 105与2 146的公约数也是8 251与6 105的公约数,反过来,8 251与6 105的公约数也是6 105与2 146的公约数,所以它们的最大公约数相等.对6 105与2 146重复上述步骤:6 105=2 146×2+1 813.同理,2 146与1 813的最大公约数也是6 105与2 146的最大公约数.继续重复上述步骤:2 146=1 813×1+333,1 813=333×5+148,333=148×2+37,148=37×4.最后的除数37是148和37的最大公约数,也就是8 251与6 105的最大公约数.这就是辗转相除法.由除法的性质可以知道,对于任意两个正整数,上述除法步骤总可以在有限步之后完成,从而总可以用辗转相除法求出两个正整数的最大公约数.算法分析:从上面的例子可以看出,辗转相除法中包含重复操作的步骤,因此可以用循环结构来构造算法.算法步骤如下:第一步,给定两个正整数m,n.第二步,计算m除以n所得的余数为r.第三步,m=n,n=r.第四步,若r=0,则m,n的最大公约数等于m;否则,返回第二步.程序框图如下图:程序:INPUT m,nDOr=m MOD nm=nn=rLOOP UNTIL r=0PRINT mEND点评:从教学实践看,有些学生不能理解算法中的转化过程,例如:求8 251与6 105的最大公约数,为什么可以转化为求6 105与2 146的公约数.因为8 251=6 105×1+2 146,可以化为8 251-6 105×1=2 164,所以公约数能够整除等式两边的数,即6 105与2 146的公约数也是8 251与6 105的公约数.变式训练你能用当型循环结构构造算法,求两个正整数的最大公约数吗?试画出程序框图和程序.解:当型循环结构的程序框图如下图:程序:INPUT m,nr=1WHILE r>0r=m MOD nm=nn=rWENDPRINT mEND例2 用更相减损术求98与63的最大公约数.解:由于63不是偶数,把98和63以大数减小数,并辗转相减,如下图所示.98-63=3563-35=2835-28=728-7=2121-7=1414-7=763的最大公约数等于7.点评:更相减损术与辗转相除法的比较:尽管两种算法分别来源于东、西方古代数学名著,但是二者的算理却是相似的,有异曲同工之妙.主要区别在于辗转相除法进行的是除法运算,即辗转相除;而更相减损术进行的是减法运算,即辗转相减,但是实质都是一个不断的递归过程.变式训练用辗转相除法或者更相减损术求三个数324,243,135的最大公约数.解:324=243×1+81,243=81×3+0,则324与243的最大公约数为81.又135=81×1+54,81=54×1+27,54=27×2+0,则81 与135的最大公约数为27.所以,三个数324、243、135的最大公约数为27.另法:324-243=81,243-81=162,162-81=81,则324与243的最大公约数为81.135-81=54,81-54=27,54-27=27,则81与135的最大公约数为27.所以,三个数324、243.135的最大公约数为27.例3 (1)用辗转相除法求123和48的最大公约数.(2)用更相减损术求80和36的最大公约数.解:(1)辗转相除法求最大公约数的过程如下:123=2×48+27,48=1×27+21,27=1×21+6,21=3×6+3,6=2×3+0,最后6能被3整除,得123和48的最大公约数为3.(2)我们将80作为大数,36作为小数,因为80和36都是偶数,要除公因数2.80÷2=40,36÷2=18.40和18都是偶数,要除公因数2.40÷2=20,18÷2=9.下面来求20与9的最大公约数,20-9=11,11-9=2,9-2=7,7-2=5,5-2=3,3-2=1,2-1=1,可得80和36的最大公约数为22×1=4.点评:对比两种方法控制好算法的结束,辗转相除法是到达余数为0,更相减损术是到达减数和差相等.变式训练分别用辗转相除法和更相减损术求1 734,816的最大公约数.解:辗转相除法:1 734=816×2+102,816=102×8(余0),∴1 734与816的最大公约数是102.更相减损术:因为两数皆为偶数,首先除以2得到867,408,再求867与408的最大公约数.867-408=459,459-408=51,408-51=357,357-51=306,306-51=255,255-51=204,204-51=153,153-51=102,102-51=51.∴1 734与816的最大公约数是51×2=102.利用更相减损术可另解:1 734-816=918,918-816=102,816-102=714,714-102=612,612-102=510,510-102=408,408-102=306,306-102=204,204-102=102.∴1 734与816的最大公约数是102.知能训练求319,377,116的最大公约数.解:377=319×1+58,319=58×5+29,58=29×2.∴377与319的最大公约数为29,再求29与116的最大公约数.116=29×4.∴29与116的最大公约数为29.∴377,319,116的最大公约数为29.拓展提升试写出利用更相减损术求两个正整数的最大公约数的程序.解:更相减损术程序:INPUT “m,n=”;m,nWHILE m<>nIF m>n THENm=m-nELSEm=n-mEND IFWENDPRINT mEND课堂小结(1)用辗转相除法求最大公约数.(2)用更相减损术求最大公约数.思想方法:递归思想.作业分别用辗转相除法和更相减损术求261,319的最大公约数.分析:本题主要考查辗转相除法和更相减损术及其应用.使用辗转相除法可依据m=nq+r,反复执行,直到r=0为止;用更相减损术就是根据m-n=r,反复执行,直到n=r为止.解:辗转相除法:319=261×1+58,261=58×4+29,58=29×2.∴319与261的最大公约数是29.更相减损术:319-261=58,261-58=203,203-58=145,145-58=87,87-58=29,58-29=29,∴319与261的最大公约数是29.设计感想数学不仅是一门科学,也是一种文化,本节的引入从东、西方文化的不同开始,逐步向学生渗透数学文化.从知识方面主要学习用两种方法求两个正整数的最大公约数,从思想方法方面,主要学习递归思想.本节设置精彩例题,不仅让学生学到知识,而且让学生进一步体会算法的思想,培养学生的爱国主义情操.第2课时案例2 秦九韶算法导入新课思路1(情境导入)大家都喜欢吃苹果吧,我们吃苹果都是从外到里一口一口的吃,而虫子却是先钻到苹果里面从里到外一口一口的吃,由此看来处理同一个问题的方法多种多样.怎样求多项式f(x)=x5+x4+x3+x2+x+1当x=5时的值呢?方法也是多种多样的,今天我们开始学习秦九韶算法.思路2(直接导入)前面我们学习了辗转相除法与更相减损术,今天我们开始学习秦九韶算法.推进新课新知探究提出问题(1)求多项式f(x)=x5+x4+x3+x2+x+1当x=5时的值有哪些方法?比较它们的特点.(2)什么是秦九韶算法?(3)怎样评价一个算法的好坏?讨论结果:(1)怎样求多项式f(x)=x5+x4+x3+x2+x+1当x=5时的值呢?一个自然的做法就是把5代入多项式f(x),计算各项的值,然后把它们加起来,这时,我们一共做了1+2+3+4=10次乘法运算,5次加法运算.另一种做法是先计算x2的值,然后依次计算x2·x,(x2·x)·x,((x2·x)·x)·x的值,这样每次都可以利用上一次计算的结果,这时,我们一共做了4次乘法运算,5次加法运算.第二种做法与第一种做法相比,乘法的运算次数减少了,因而能够提高运算效率,对于计算机来说,做一次乘法运算所用的时间比做一次加法运算要长得多,所以采用第二种做法,计算机能更快地得到结果.(2)上面问题有没有更有效的算法呢?我国南宋时期的数学家秦九韶(约1202~1261)在他的著作《数书九章》中提出了下面的算法:把一个n次多项式f(x)=a n x n+a n-1x n-1+…+a1x+a0改写成如下形式:f(x)=a n x n+a n-1x n-1+…+a1x+a0=(a n x n-1+a n-1x n-2+…+a1)x+ a0=((a n x n-2+a n-1x n-3+…+a2)x+a1)x+a0=…=(…((a n x+a n-1)x+a n-2)x+…+a1)x+a0.求多项式的值时,首先计算最内层括号内一次多项式的值,即v1=a n x+a n-1,然后由内向外逐层计算一次多项式的值,即v2=v1x+a n-2,v3=v2x+a n-3,…v n=v n-1x+a0,这样,求n次多项式f(x)的值就转化为求n个一次多项式的值.上述方法称为秦九韶算法.直到今天,这种算法仍是多项式求值比较先进的算法.(3)计算机的一个很重要的特点就是运算速度快,但即便如此,算法好坏的一个重要标志仍然是运算的次数.如果一个算法从理论上需要超出计算机允许范围内的运算次数,那么这样的算法就只能是一个理论的算法.应用示例例1 已知一个5次多项式为f (x )=5x 5+2x 4+3.5x 3-2.6x 2+1.7x-0.8,用秦九韶算法求这个多项式当x=5时的值.解:根据秦九韶算法,把多项式改写成如下形式:f(x)=((((5x+2)x+3.5)x-2.6)x+1.7)x-0.8,按照从内到外的顺序,依次计算一次多项式当x=5时的值:v 0=5;v 1=5×5+2=27;v 2=27×5+3.5=138.5;v 3=138.5×5-2.6=689.9;v 4=689.9×5+1.7=3 451.2;v 5=3 415.2×5-0.8=17 255.2;所以,当x=5时,多项式的值等于17 255.2.算法分析:观察上述秦九韶算法中的n 个一次式,可见v k 的计算要用到v k-1的值,若令v 0=a n ,我们可以得到下面的公式:⎩⎨⎧=+==--).,,2,1(,10n k a x v v a v k n k kn Λ 这是一个在秦九韶算法中反复执行的步骤,因此可用循环结构来实现.算法步骤如下:第一步,输入多项式次数n 、最高次的系数a n 和x 的值.第二步,将v 的值初始化为a n ,将i 的值初始化为n-1.第三步,输入i 次项的系数a i .第四步,v=vx+a i ,i=i-1.第五步,判断i 是否大于或等于0.若是,则返回第三步;否则,输出多项式的值v.程序框图如下图:程序:INPUT “n=”;nINPUT “an=”;aINPUT “x=”;xv=ai=n-1WHILE i>=0PRINT “i=”;iINPUT “ai=”;av=v*x+ai=i-1WENDPRINT vEND点评:本题是古老算法与现代计算机语言的完美结合,详尽介绍了思想方法、算法步骤、程序框图和算法语句,是一个典型的算法案例.变式训练请以5次多项式函数为例说明秦九韶算法,并画出程序框图.解:设f(x)=a5x5+a4x4+a3x3+a2x2+a1x+a0首先,让我们以5次多项式一步步地进行改写:f(x)=(a5x4+a4x3+a3x2+a2x+a1)x+a0=((a5x3+a4x2+ a3x+a2)x+a1)x+a0=(((a5x2+a4x+ a3)x+a2)x+a1)x+a0=((((a5x+a4)x+ a3)x+a2)x+a1)x+a0.上面的分层计算,只用了小括号,计算时,首先计算最内层的括号,然后由里向外逐层计算,直到最外层的括号,然后加上常数项即可.程序框图如下图:例2 已知n次多项式P n(x)=a0x n+a1x n-1+…+a n-1x+a n,如果在一种算法中,计算k x(k=2,3,4,…,n)的值需要k-1次乘法,计算P3(x0)的值共需要9次运算(6次乘法,3次加法),那么计算P10(x0)的值共需要__________次运算.下面给出一种减少运算次数的算法:P0(x)=a0,P k+1(x)=xP k(x)+a k+1(k=0,1,2,…,n -1).利用该算法,计算P3(x0)的值共需要6次运算,计算P10(x0)的值共需要___________次运算.答案:65 20点评:秦九韶算法适用一般的多项式f(x)=a n x n+a n-1x n-1+…+a1x+a0的求值问题.直接法乘法运算的次数最多可到达2)1(nn,加法最多n次.秦九韶算法通过转化把乘法运算的次数减少到最多n次,加法最多n次.例3 已知多项式函数f(x)=2x5-5x4-4x3+3x2-6x+7,求当x=5时的函数的值.解析:把多项式变形为:f(x)=2x5-5x4-4x3+3x2-6x+7=((((2x-5)x-4)x+3)x-6)x+7.计算的过程可以列表表示为:最后的系数2 677即为所求的值.算法过程:v0=2;v1=2×5-5=5;v2=5×5-4=21;v3=21×5+3=108;v4=108×5-6=534;v5=534×5+7=2 677.点评:如果多项式函数中有缺项的话,要以系数为0的项补齐后再计算.知能训练当x=2时,用秦九韶算法求多项式f(x)=3x5+8x4-3x3+5x2+12x-6的值.解法一:根据秦九韶算法,把多项式改写成如下形式:f(x)=((((3x+8)x-3)x+5)x+12)x-6.按照从内到外的顺序,依次计算一次多项式当x=2时的值.v0=3;v1=v0×2+8=3×2+8=14;v2=v1×2-3=14×2-3=25;v3=v2×2+5=25×2+5=55;v4=v3×2+12=55×2+12=122;v5=v4×2-6=122×2-6=238.∴当x=2时,多项式的值为238.解法二:f(x)=((((3x+8)x-3)x+5)x+12)x-6,则f(2)=((((3×2+8)×2-3)×2+5)×2+12)×2-6=238.拓展提升用秦九韶算法求多项式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x当x=3时的值.解:f(x)=((((((7x+6)+5)x+4)x+3)x+2)x+1)xv0=7;v1=7×3+6=27;v2=27×3+5=86;v3=86×3+4=262;v4=262×3+3=789;v5=789×3+2=2 369;v6=2 369×3+1=7 108;v7=7 108×3+0=21 324.∴f(3)=21 324.课堂小结1.秦九韶算法的方法和步骤.2.秦九韶算法的计算机程序框图.作业已知函数f(x)=x3-2x2-5x+8,求f(9)的值.解:f(x)=x3-2x2-5x+8=(x2-2x-5)x+8=((x-2)x-5)x+8∴f(9)=((9-2)×9-5)×9+8=530.设计感想古老的算法散发浓郁的现代气息,这是一节充满智慧的课.本节主要介绍了秦九韶算法.通过对秦九韶算法的学习,对算法本身有哪些进一步的认识?教师引导学生思考、讨论、概括,小结时要关注如下几点:(1)算法具有通用的特点,可以解决一类问题;(2)解决同一类问题,可以有不同的算法,但计算的效率是不同的,应该选择高效的算法;(3)算法的种类虽多,但三种逻辑结构可以有效地表达各种算法等等.第3课时案例3 进位制导入新课情境导入在日常生活中,我们最熟悉、最常用的是十进制,据说这与古人曾以手指计数有关,爱好天文学的古人也曾经采用七进制、十二进制、六十进制,至今我们仍然使用一周七天、一年十二个月、一小时六十分的历法.今天我们来学习一下进位制.推进新课新知探究提出问题(1)你都了解哪些进位制?(2)举出常见的进位制.(3)思考非十进制数转换为十进制数的转化方法.(4)思考十进制数转换成非十进制数及非十进制之间的转换方法.活动:先让学生思考或讨论后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:(1)进位制是人们为了计数和运算方便而约定的计数系统,约定满二进一,就是二进制;满十进一,就是十进制;满十二进一,就是十二进制;满六十进一,就是六十进制等等.也就是说:“满几进一”就是几进制,几进制的基数(都是大于1的整数)就是几.(2)在日常生活中,我们最熟悉、最常用的是十进制,据说这与古人曾以手指计数有关,爱好天文学的古人也曾经采用七进制、十二进制、六十进制,至今我们仍然使用一周七天、一年十二个月、一小时六十分的历法.(3)十进制使用0~9十个数字.计数时,几个数字排成一行,从右起,第一位是个位,个位上的数字是几,就表示几个一;第二位是十位,十位上的数字是几,就表示几个十;接着依次是百位、千位、万位……例如:十进制数3 721中的3表示3个千,7表示7个百,2表示2个十,1表示1个一.于是,我们得到下面的式子:3 721=3×103+7×102+2×101+1×100.与十进制类似,其他的进位制也可以按照位置原则计数.由于每一种进位制的基数不同,所用的数字个数也不同.如二进制用0和1两个数字,七进制用0~6七个数字.一般地,若k是一个大于1的整数,那么以k为基数的k进制数可以表示为一串数字连写在一起的形式a n a n-1…a1a0(k)(0<a n<k,0≤a n-1,…,a1,a0<k).其他进位制的数也可以表示成不同位上数字与基数的幂的乘积之和的形式,如110 011(2)=1×25+1×24+0×23+0×22+1×21+1×20,7 342(8)=7×83+3×82+4×81+2×80.非十进制数转换为十进制数比较简单,只要计算下面的式子值即可:a n a n-1…a1a0(k)=a n×k n+a n-1×k n-1+…+a1×k+a0.第一步:从左到右依次取出k进制数a n a n-1…a1a0(k)各位上的数字,乘以相应的k的幂,k的幂从n开始取值,每次递减1,递减到0,即a n×k n,a n-1×k n-1,…,a1×k,a0×k0;第二步:把所得到的乘积加起来,所得的结果就是相应的十进制数.(4)关于进位制的转换,教科书上以十进制和二进制之间的转换为例讲解,并推广到十进制和其他进制之间的转换.这样做的原因是,计算机是以二进制的形式进行存储和计算数据的,而一般我们传输给计算机的数据是十进制数据,因此计算机必须先将十进制数转换为二进制数,再处理,显然运算后首次得到的结果为二进制数,同时计算机又把运算结果由二进制数转换成十进制数输出.1°十进制数转换成非十进制数把十进制数转换为二进制数,教科书上提供了“除2取余法”,我们可以类比得到十进制数转换成k进制数的算法“除k取余法”.2°非十进制之间的转换一个自然的想法是利用十进制作为桥梁.教科书上提供了一个二进制数据与16进制数据之间的互化的方法,也就是先由二进制数转化为十进制数,再由十进制数转化成为16进制数.应用示例思路1例1 把二进制数110 011(2)化为十进制数.解:110 011(2)=1×25+1×24+0×23+0×22+1×21+1×20=1×32+1×16+1×2+1=51.点评:先把二进制数写成不同位上数字与2的幂的乘积之和的形式,再按照十进制的运算规则计算出结果.变式训练设计一个算法,把k进制数a(共有n位)化为十进制数b.算法分析:从例1的计算过程可以看出,计算k进制数a的右数第i位数字a i与k i-1的乘积a i·k i-1,再将其累加,这是一个重复操作的步骤.所以,可以用循环结构来构造算法.算法步骤如下:第一步,输入a,k和n的值.第二步,将b的值初始化为0,i的值初始化为1.第三步,b=b+a i·k i-1,i=i+1.第四步,判断i>n是否成立.若是,则执行第五步;否则,返回第三步.第五步,输出b的值.程序框图如下图:程序:INPUT “a,k,n=”;a,k,nb=0i=1t=a MOD 10DOb=b+t*k^(i-1)a=a\\10t=a MOD 10i=i+1LOOP UNTIL i>nPRINT bEND例2 把89化为二进制数.解:根据二进制数“满二进一”的原则,可以用2连续去除89或所得商,然后取余数.具体计算方法如下:因为89=2×44+1,44=2×22+0,22=2×11+0,11=2×5+1,5=2×2+1,2=2×1+0,1=2×0+1,所以89=2×(2×(2×(2×(2×2+1)+1)+0)+0)+1=2×(2×(2×(2×(22+1)+1)+0)+0)+1=…=1×26+0×25+1×24+1×23+0×22+0×21+1×20=1 011 001(2).这种算法叫做除2取余法,还可以用下面的除法算式表示:把上式中各步所得的余数从下到上排列,得到89=1 011 001(2).上述方法也可以推广为把十进制数化为k进制数的算法,称为除k取余法.变式训练设计一个程序,实现“除k取余法”.算法分析:从例2的计算过程可以看出如下的规律:若十制数a除以k所得商是q0,余数是r0,即a=k·q0+r0,则r0是a的k进制数的右数第1位数.若q0除以k所得的商是q1,余数是r1,即q0=k·q1+r1,则r1是a的k进制数的左数第2位数.……若q n-1除以k所得的商是0,余数是r n,即q n-1=r n,则r n是a的k进制数的左数第1位数.这样,我们可以得到算法步骤如下:第一步,给定十进制正整数a和转化后的数的基数k.第二步,求出a除以k所得的商q,余数r.第三步,把得到的余数依次从右到左排列.第四步,若q≠0,则a=q,返回第二步;否则,输出全部余数r排列得到的k进制数.程序框图如下图:程序:INPUT “a,k=”;a,kb=0i=0DOq=a\\kr=a MOD kb=b+r*10^ii=i+1a=qLOOP UNTIL q=0PRINT bEND思路2例1 将8进制数314 706(8)化为十进制数,并编写出一个实现算法的程序.解:314 706(8)=3×85+1×84+4×83+7×82+0×81+6×80=104 902.所以,化为十进制数是104 902.点评:利用把k进制数转化为十进制数的一般方法就可以把8进制数314 706(8)化为十进制数.例2 把十进制数89化为三进制数,并写出程序语句.解:具体的计算方法如下:89=3×29+2,29=3×9+2,9=3×3+0,3=3×1+0,1=3×0+1,所以:89(10)=10 022(3).点评:根据三进制数满三进一的原则,可以用3连续去除89及其所得的商,然后按倒序的顺序取出余数组成数据即可.知能训练将十进制数34转化为二进制数.分析:把一个十进制数转换成二进制数,用2反复去除这个十进制数,直到商为0,所得余数(从下往上读)就是所求.解:即34(10)=100 010(2)拓展提升把1 234(5)分别转化为十进制数和八进制数.解:1 234(5)=1×53+2×52+3×5+4=194.则1 234(5)=302(8)所以,1 234(5)=194=302(8)点评:本题主要考查进位制以及不同进位制数的互化.五进制数直接利用公式就可以转化为十进制数;五进制数和八进制数之间需要借助于十进制数来转化.课堂小结(1)理解算法与进位制的关系.(2)熟练掌握各种进位制之间转化.作业习题1.3A组3、4.设计感想计算机是以二进制的形式进行存储和计算数据的,而一般我们传输给计算机的数据是十进制数据,因此计算机必须先将十进制数转换为二进制数,再处理,显然运算后首次得到的结果为二进制数,同时,计算机又把运算结果由二进制数转换成十进制数输出.因此学好进位制是非常必要的,另外,进位制也是高考的重点,本节设置了多种题型供学生训练,所以这节课非常实用.第2课时导入新课思路1客观事物是相互联系的,过去研究的大多数是因果关系,但实际上更多存在的是一种非因果关系.比如说:某某同学的数学成绩与物理成绩,彼此是互相联系的,但不能认为数学是“因”,物理是“果”,或者反过来说.事实上数学和物理成绩都是“果”,而真正的“因”是学生的理科学习能力和努力程度.所以说,函数关系存在着一种确定性关系,但还存在着另一种非确定性关系——相关关系.为表示这种相关关系,我们接着学习两个变量的线性相关——回归直线及其方程.思路2某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对照表:气温/℃261813104-1杯数202434385064接着学习两个变量的线性相关——回归直线及其方程.推进新课新知探究提出问题(1)作散点图的步骤和方法?(2)正、负相关的概念?(3)什么是线性相关?(4)看人体的脂肪百分比和年龄的散点图,当人的年龄增加时,体内脂肪含量到底是以什么方式增加的呢?(5)什么叫做回归直线?(6)如何求回归直线的方程?什么是最小二乘法?它有什么样的思想?(7)利用计算机如何求回归直线的方程?(8)利用计算器如何求回归直线的方程?活动:学生回顾,再思考或讨论,教师及时提示指导.讨论结果:(1)建立相应的平面直角坐标系,将各数据在平面直角坐标中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图.(a.如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.b.如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系.c.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系)(2)如果散点图中的点散布在从左下角到右上角的区域内,称为正相关.如果散点图中的点散布在从左上角到右下角的区域内,称为负相关.(3)如果所有的样本点都落在某一直线附近,变量之间就有线性相关的关系.(4)大体上来看,随着年龄的增加,人体中脂肪的百分比也在增加,呈正相关的趋势,我们可以从散点图上来进一步分析.(5)如下图:从散点图上可以看出,这些点大致分布在通过散点图中心的一条直线附近.如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线(regression line).如果能够求出这条回归直线的方程(简称回归方程),那么我们就可以比较清楚地了解年龄与体内脂肪含量的相关性.就像平均数可以作为一个变量的数据的代表一样,这条直线可以作为两个变量具有线性相关关系的代表.(6)从散点图上可以发现,人体的脂肪百分比和年龄的散点图,大致分布在通过散点图中心的一条直线.那么,我们应当如何具体求出这个回归方程呢?有的同学可能会想,我可以采用测量的方法,先画出一条直线,测量出各点与它的距离,然后移动直线,到达一个使距离的和最小的位置,测量出此时的斜率和截距,就可得到回归方程了.但是,这样做可靠吗?有的同学可能还会想,在图中选择这样的两点画直线,使得直线两侧的点的个数基本相同.同样地,这样做能保证各点与此直线在整体上是最接近的吗?还有的同学会想,在散点图中多取几组点,确定出几条直线的方程,再分别求出各条直线的斜率、截距的平均数,将这两个平均数当成回归方程的斜率和截距.同学们不妨去实践一下,看看这些方法是不是真的可行?(学生讨论:1.选择能反映直线变化的两个点.2.在图中放上一根细绳,使得上面和下面点的个数相同或基本相同.3.多取几组点对,确定几条直线方程.再分别算出各个直线方程斜率、截距的算术平均值,作为所求直线的斜率、截距.)教师:分别分析各方法的可靠性.如下图:上面这些方法虽然有一定的道理,但总让人感到可靠性不强.实际上,求回归方程的关键是如何用数学的方法来刻画“从整体上看,各点与此直线的距离最小”.人们经过长期的实践与研究,已经得出了计算回归方程的斜率与截距的一般公式。
高中数学必修3全套教案教案一:函数的概念与性质一、教学目标:1.了解函数的概念和基本性质;2.能够通过实例理解函数的意义和作用;3.掌握函数的表示方法和求解方法。
二、教学重点:1.函数的定义和性质;2.函数的图像和表示方法。
三、教学难点:1.掌握函数的性质和图像;2.能够灵活运用函数的表示方法。
四、教学内容:1.函数的定义和表示方法;2.函数的图像和性质;3.函数的求解方法。
五、教学步骤:1.引入:通过一个实际问题引入函数的概念;2.概念讲解:介绍函数的定义和性质;3.图像展示:通过示意图展示函数的图像和性质;4.示例演练:通过例题让学生掌握函数的表示方法和求解方法;5.练习测试:让学生进行练习和测试,巩固所学知识;6.复习总结:回顾本节课所学内容,强化学生对函数的理解。
教案二:一元二次方程的解法一、教学目标:1.了解一元二次方程的定义和性质;2.学会通过不同方法解一元二次方程;3.掌握求解一元二次方程的步骤和技巧。
二、教学重点:1.一元二次方程的定义和特点;2.一元二次方程的解法和应用。
三、教学难点:1.灵活运用求根公式解一元二次方程;2.能够通过实际问题应用一元二次方程。
四、教学内容:1.一元二次方程的定义和性质;2.一元二次方程的解法和应用;3.一元二次方程的实例演练。
五、教学步骤:1.引入:通过一个实际问题引入一元二次方程的概念;2.概念讲解:介绍一元二次方程的定义和性质;3.解法展示:通过展示不同方法解一元二次方程;4.实例演练:通过例题让学生掌握求解一元二次方程的步骤和技巧;5.练习测试:让学生进行练习和测试,巩固所学知识;6.复习总结:回顾本节课所学内容,强化学生对一元二次方程的理解。
以上为高中数学必修3全套教案范本,供参考使用。
第2课时标准差授课时间:第周年月日(星期)导入新课思路1平均数为我们提供了样本数据的重要信息,但是,有时平均数也会使我们作出对总体的片面判断.某地区的统计显示,该地区的中学生的平均身高为176 cm,给我们的印象是该地区的中学生生长发育好,身高较高.但是,假如这个平均数是从五十万名中学生抽出的五十名身高较高的学生计算出来的话,那么,这个平均数就不能代表该地区所有中学生的身体素质.因此,只有平均数难以概括样本数据的实际状态.所以我们学习从另外的角度来考察样本数据的统计量——标准差.(教师板书课题)思路2在一次射击选拔比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员:7,8,7,9,5,4,9,10,7,4;乙运动员:9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥得更稳定些吗?如果你是教练,选哪位选手去参加正式比赛?我们知道,x甲=7,x乙=7.两个人射击的平均成绩是一样的.那么,是否两个人就没有水平差距呢?从上图直观上看,还是有差异的.很明显,甲的成绩比较分散,乙的成绩相对集中,因此我们从另外的角度来考察这两组数据——标准差.推进新课新知探究提出问题(1)如何通过频率分布直方图估计数字特征(中位数、众数、平均数)?(2)有甲、乙两种钢筋,现从中各抽取一个标本(如下表)检查它们的抗拉强度(单位:kg/mm2),通过计算发现,两个样本的平均数均为125.哪种钢筋的质量较好?(3)某种子公司为了在当地推行两种新水稻品种,对甲、乙两种水稻进行了连续7年的种植对比实验,年亩产量分别如下:(千克)甲:600, 880, 880, 620, 960, 570, 900(平均773)乙:800, 860, 850, 750, 750, 800, 700(平均787)请你用所学统计学的知识,说明选择哪种品种推广更好?(4)全面建设小康社会是我们党和政府的工作重心,某市按当地物价水平计算,人均年收入达到1.5万元的家庭即达到小康生活水平.民政局对该市100户家庭进行调查统计,它们的人均收入达到了1.6万元,民政局即宣布该市民生活水平已达到小康水平,你认为这样的结论是否符合实际?(5)如何考查样本数据的分散程度的大小呢?把数据在坐标系中刻画出来,是否能直观地判断数据的离散程度?讨论结果:(1)利用频率分布直方图估计众数、中位数、平均数:估计众数:频率分布直方图面积最大的方条的横轴中点数字.(最高矩形的中点)估计中位数:中位数把频率分布直方图分成左右两边面积相等.估计平均数:频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和. (2)由上图可以看出,乙样本的最小值100低于甲样本的最小值110,乙样本的最大值145高于甲样本的最大值135,这说明乙种钢筋没有甲种钢筋的抗拉强度稳定.我们把一组数据的最大值与最小值的差称为极差(range).由上图可以看出,乙的极差较大,数据点较分散;甲的极差小,数据点较集中,这说明甲比乙稳定.运用极差对两组数据进行比较,操作简单方便,但如果两组数据的集中程度差异不大时,就不容易得出结论.(3)选择的依据应该是,产量高且稳产的品种,所以选择乙更为合理.(4)不符合实际.样本太小,没有代表性.若样本里有个别高收入者与多数低收入者差别太大.在统计学里,对统计数据的分析,需要结合实际,侧重于考察总体的相关数据特征.比如,市民平均收入问题,都是考察数据的分散程度.(5)把问题(3)中的数据在坐标系中刻画出来.我们可以很直观地知道,乙组数据比甲组数据更集中在平均数的附近,即乙的分散程度小, 如何用数字去刻画这种分散程度呢? 考察样本数据的分散程度的大小,最常用的统计量是方差和标准差.标准差:考察样本数据的分散程度的大小,最常用的统计量是标准差(standard deviation).标准差是样本数据到平均数的一种平均距离,一般用s 表示. 所谓“平均距离”,其含义可作如下理解:假设样本数据是x 1,x 2,…,x n ,x 表示这组数据的平均数.x i 到x 的距离是|x i -x |(i=1,2,…,n). 于是,样本数据x 1,x 2,…,x n 到x 的“平均距离”是S=nx x x x x x n ||||||21-++-+- .由于上式含有绝对值,运算不太方便,因此,通常改用如下公式来计算标准差:s=])()()[(122221x x x x x x nn -++-+- . 意义:标准差用来表示稳定性,标准差越大,数据的离散程度就越大,也就越不稳定.标准差越小,数据的离散程度就越小,也就越稳定.从标准差的定义可以看出,标准差s≥0,当s=0时,意味着所有的样本数据都等于样本平均数.标准差还可以用于对样本数据的另外一种解释.例如,在关于居民月均用水量的例子中,平均数x =1.973,标准差s=0.868,所以x +s=2.841,x +2s=3.709; x -s=1.105,x -2s=0.237.这100个数据中,在区间[x -2s,x +2s ]=[0.237,3.709]外的只有4个,也就是说,[x -2s,x +2s ]几乎包含了所有样本数据.从数学的角度考虑,人们有时用标准差的平方s 2——方差来代替标准差,作为测量样本数据分散程度的工具: s 2=n1[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. 显然,在刻画样本数据的离散程度上,方差与标准差是一样的.但在解决实际问题时,一般多采用标准差.需要指出的是,现实中的总体所包含的个体数往往是很多的,总体的平均数与标准差是不知道的.如何求得总体的平均数和标准差呢?通常的做法是用样本的平均数和标准差去估计总体的平均数与标准差.这与前面用样本的频率分布来近似地代替总体分布是类似的.只要样本的代表性好,这样做就是合理的,也是可以接受的.两者都是描述一组数据围绕平均数波动的大小,实际应用中比较广泛的是标准差.如导入中的运动员成绩的标准差的计算器计算.用计算器计算运动员甲的成绩的标准差的过程如下:即s甲=2.用类似的方法,可得s乙≈1.095.由s甲>s乙可以知道,甲的成绩离散程度大,乙的成绩离散程度小.由此可以估计,乙比甲的射击成绩稳定.应用示例思路1例1 画出下列四组样本数据的条形图,说明它们的异同点.(1)5,5,5,5,5,5,5,5,5;(2)4,4,4,5,5,5,6,6,6;(3)3,3,4,4,5,6,6,7,7;(4)2,2,2,2,5,8,8,8,8.分析:先画出数据的条形图,根据样本数据算出样本数据的平均数,利用标准差的计算公式即可算出每一组数据的标准差.解:四组样本数据的条形图如下:四组数据的平均数都是5.0,标准差分别是:0.00,0.82,1.49,2.83.它们有相同的平均数,但它们有不同的标准差,说明数据的分散程度是不一样的.例2 甲、乙两人同时生产内径为25.40 mm的一种零件.为了对两人的生产质量进行评比,从他们生产的零件中各抽出20件,量得其内径尺寸如下(单位:mm):甲25.46 25.32 25.45 25.39 25.3625.34 25.42 25.45 25.38 25.4225.39 25.43 25.39 25.40 25.4425.40 25.42 25.35 25.41 25.39乙25.40 25.43 25.44 25.48 25.4825.47 25.49 25.49 25.36 25.3425.33 25.43 25.43 25.32 25.4725.31 25.32 25.32 25.32 25.48从生产的零件内径的尺寸看,谁生产的质量较高?分析:每一个工人生产的所有零件的内径尺寸组成一个总体.由于零件的生产标准已经给出(内径25.40 mm),生产质量可以从总体的平均数与标准差两个角度来衡量.总体的平均数与内径标准尺寸25.40 mm 的差异大时质量低,差异小时质量高;当总体的平均数与标准尺寸很接近时,总体的标准差小的时候质量高,标准差大的时候质量低.这样,比较两人的生产质量,只要比较他们所生产的零件内径尺寸所组成的两个总体的平均数与标准差的大小即可.但是,这两个总体的平均数与标准差都是不知道的,根据用样本估计总体的思想,我们可以通过抽样分别获得相应的样本数据,然后比较这两个样本的平均数、标准差,以此作为两个总体之间差异的估计值.解:用计算器计算可得甲x ≈25.401,乙x ≈25.406;s 甲≈0.037,s 乙≈0.068.从样本平均数看,甲生产的零件内径比乙的更接近内径标准(25.40 mm),但是差异很小;从样本标准差看,由于s 甲<s 乙,因此甲生产的零件内径比乙的稳定程度高得多.于是,可以作出判断,甲生产的零件的质量比乙的高一些.强调:从上述例子我们可以看到,对一名工人生产的零件内径(总体)的质量判断,与所抽取的零件内径(样本数据)直接相关.显然,我们可以从这名工人生产的零件中获取许多样本.这样,尽管总体是同一个,但由于样本不同,相应的样本频率分布与平均数、标准差等都会发生改变,这就会影响到我们对总体情况的估计.如果样本的代表性差,那么对总体所作出的估计就会产生偏差;样本没有代表性时,对总体作出错误估计的可能性就非常大.这也正是我们在前面讲随机抽样时反复强调样本代表性的理由.在实际操作中,为了减少错误的发生,条件许可时,通常采取适当增加样本容量的方法.当然,关键还是要改进抽样方法,提高样本的代表性. 变式训练某地区全体九年级的3 000名学生参加了一次科学测试,为了估计学生的成绩,从不同学校的不同程度的学生中抽取了100名学生的成绩如下:100分12人,90分30人,80分18人,70分24人,60分12人,50分4人.请根据以上数据估计该地区3 000名学生的平均分、合格率(60或60分以上均属合格).解:运用计算器计算得:100450126024701880309012100⨯+⨯+⨯+⨯+⨯+⨯=79.40,(12+30+18+24+12)÷100=96%,所以样本的平均分是79.40分,合格率是96%,由此来估计总体3 000名学生的平均分是79.40分,合格率是96%.思路2例1 甲、乙两种水稻试验品种连续5年的平均单位面积产量如下(单位:t/hm2),试根据这组数据估计哪一种水稻品种的产量比较稳定.解:甲品种的样本平均数为10,样本方差为[(9.8-10)2 +(9.9-10)2+(10.1-10)2+(10-10)2+(10.2-10)2]÷5=0.02.乙品种的样本平均数也为10,样本方差为[(9.4-10)2+(10.3-10)2+(10.8-10)2+(9.7-10)2+(9.8-10)2]÷5=0.24.因为0.24>0.02,所以,由这组数据可以认为甲种水稻的产量比较稳定.例 2 为了保护学生的视力,教室内的日光灯在使用一段时间后必须更换.已知某校使用的100只日光灯在必须换掉前的使用天数如下,试估计这种日光灯的平均使用寿命和标准差.分析:用每一区间内的组中值作为相应日光灯的使用寿命,再求平均寿命.解:各组中值分别为165,195,225,255,285,315,345,375,由此算得平均数约为165×1%+195 ×11%+225×18%+255×20%+285×25%+315×16%+345×7%+375×2%=267.9≈268(天). 这些组中值的方差为1001×[1×(165-268)2+11×(195-268)2+18×(225-268)2+20×(255-268)2+ 25×(285-268)2+16×(315-268)2+7×(345-268)2+2×(375-268)2]=2 128.60(天2). 故所求的标准差约6.2128≈46(天).答:估计这种日光灯的平均使用寿命约为268天,标准差约为46天. 知能训练(1)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为____________. (2)若给定一组数据x 1,x 2,…,x n ,方差为s 2,则ax 1,ax 2,…,ax n 的方差是____________. (3)在相同条件下对自行车运动员甲、乙两人进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:试判断选谁参加某项重大比赛更合适? 答案:(1)9.5,0.016 (2)a 2s 2 (3)甲x =33,乙x =33,33734722=>=乙甲s s ,乙的成绩比甲稳定,应选乙参加比赛更合适. 拓展提升某养鱼专业户在一个养鱼池放入一批鱼苗,一年以后准备出售,为了在出售以前估计卖掉鱼后有多少收入,这个专业户已经了解到市场的销售价是每千克15元,请问,这个专业户还应该了解什么?怎样去了解?请你为他设计一个方案.解:这个专业户应了解鱼的总重量,可以先捕出一些鱼(设有x 条),作上标记后放回鱼塘,过一段时间再捕出一些鱼(设有a 条),观察其中带有标记的鱼的条数,作为一个样本来估计总体,则鱼塘中鱼的总条数鱼的条数鱼塘中所有带有标记的条鱼中带有标记的条数)(x a a这样就可以求得总条数,同时把第二次捕出的鱼的平均重量求出来,就可以估计鱼塘中的平均重量,进而估计全部鱼的重量,最后估计出收入. 课堂小结1.用样本的数字特征估计总体的数字特征分两类:用样本平均数估计总体平均数,平均数对数据有“取齐”的作用,代表一组数据的平均水平.用样本标准差估计总体标准差.样本容量越大,估计就越精确,标准差描述一组数据围绕平均数波动的大小,反映了一组数据变化的幅度.2.用样本估计总体的两个手段(用样本的频率分布估计总体的分布;用样本的数字特征估计总体的数字特征),需要从总体中抽取一个质量较高的样本,才能不会产生较大的估计偏差,且样本容量越大,估计的结果也就越精确. 作业习题2.2A 组4、5、6、7,B 组1、2.。
人教版高中数学必修三电子课本篇一:人教版高一数学必修三课本教材word版第一章算法初步第一章算法初步第一节算法与程序框图 1.1.1 算法概念:实际上,算法对我们来说并不陌生(回顾二元一次方程组我们可以归纳出以下步骤: 第一步,???×2,第三步,?,?×2,得得?x?2y??1??2x?y?1? ?的求解过程,5x?1?第二步,解?,第四步,解?,得得x?y?115 355y?3 ??x?????y???1535第五步,得到方程组的解为思考,能写出求解一般的二元一次方程组的步骤吗, 对于一般的二元一次方程组?a1x?b1y?c1??a2x?b2y?c2? ?其中a1b2?a2b1?0,可以写出类似的求解步骤:得第一步,?×b2,?×b1,第二步,解?第三步,?×a1,?×a2 第四步,解?(a1b2?a2b1)x?b2c1?b1c2 ?得x?b2c1?b1c2a1b2?a2b1得(a1b2?a2b1)y?a1c2?a2c1 ?y?2a1c2?a2c1a1b2?a2b1得第五步,得到方程组的解为得??x????y???b2c1?b1c2a1b2?a2b1a1c2?a2c1a1b2?a2b1上述步骤构成了解二元一次方程组的一个算法,我们可以进一步根据这一算法编制计算机程序,让计算机来解二元一次方程组。
算法? (algorithm)一词出现于12 世纪,指的是用阿拉伯数字进行算术运算的过程。
在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。
现在,算法通常可以编成计算机程序,让计算机执行并解决问题( 例1 (1)设计一个算法,判断7 是否为质数(2)设计一个算法,判断35 是否为质数只能被1和自身整除的大于1的正是叫质数算法分析:(1)根据质数的定义,可以这样判断:依次用 26 除7 ,如果它们中有一个能整除7,则7 不是质数。
教学过程第1课时案例1 辗转相除法与更相减损术导入新课思路1(情境导入)大家喜欢打乒乓球吧,由于东、西方文化及身体条件的不同,西方人喜欢横握拍打球,东方人喜欢直握拍打球,对于同一个问题,东、西方人处理问题方式是有所不同的.在小学,我们学过求两个正整数的最大公约数的方法:先用两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来. 当两个数公有的质因数较大时(如8 251与6 105),使用上述方法求最大公约数就比较困难.下面我们介绍两种不同的算法——辗转相除法与更相减损术,由此可以体会东、西方文化的差异.思路2(直接导入)前面我们学习了算法步骤、程序框图和算法语句.今天我们将通过辗转相除法与更相减损术来进一步体会算法的思想.推进新课新知探究提出问题(1)怎样用短除法求最大公约数?(2)怎样用穷举法(也叫枚举法)求最大公约数?(3)怎样用辗转相除法求最大公约数?(4)怎样用更相减损术求最大公约数?讨论结果:(1)短除法求两个正整数的最大公约数的步骤:先用两个数公有的质因数连续去除,一直除到所得的商是两个互质数为止,然后把所有的除数连乘起来.(2)穷举法(也叫枚举法)穷举法求两个正整数的最大公约数的解题步骤:从两个数中较小数开始由大到小列举,直到找到公约数立即中断列举,得到的公约数便是最大公约数.(3)辗转相除法辗转相除法求两个数的最大公约数,其算法步骤可以描述如下:第一步,给定两个正整数m,n.第二步,求余数r:计算m除以n,将所得余数存放到变量r中.第三步,更新被除数和余数:m=n,n=r.第四步,判断余数r是否为0.若余数为0,则输出结果;否则转向第二步继续循环执行.如此循环,直到得到结果为止. 这种算法是由欧几里得在公元前300年左右首先提出的,因而又叫欧几里得算法.(4)更相减损术我国早期也有解决求最大公约数问题的算法,就是更相减损术. 《九章算术》是中国古代的数学专著,其中的“更相减损术”也可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之.”翻译为现代语言如下:第一步,任意给定两个正整数,判断它们是否都是偶数,若是,用2约简;若不是,执行第二步.第二步,以较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数(等数)或这个数与约简的数的乘积就是所求的最大公约数.应用示例例1 用辗转相除法求8 251与6 105的最大公约数,写出算法分析,画出程序框图,写出算法程序.解:用两数中较大的数除以较小的数,求得商和余数:8 251=6 105×1+2 146.由此可得,6 105与2 146的公约数也是8 251与6 105的公约数,反过来,8 251与6 105的公约数也是6 105与2 146的公约数,所以它们的最大公约数相等.对6 105与2 146重复上述步骤:6 105=2 146×2+1 813.同理,2 146与1 813的最大公约数也是6 105与2 146的最大公约数.继续重复上述步骤:2 146=1 813×1+333,1 813=333×5+148,333=148×2+37,148=37×4.最后的除数37是148和37的最大公约数,也就是8 251与6 105的最大公约数.这就是辗转相除法.由除法的性质可以知道,对于任意两个正整数,上述除法步骤总可以在有限步之后完成,从而总可以用辗转相除法求出两个正整数的最大公约数.算法分析:从上面的例子可以看出,辗转相除法中包含重复操作的步骤,因此可以用循环结构来构造算法. 算法步骤如下:第一步,给定两个正整数m,n.第二步,计算m除以n所得的余数为r.第三步,m=n,n=r.第四步,若r=0,则m,n的最大公约数等于m;否则,返回第二步.程序框图如下图:程序:INPUT m,nDOr=m MOD nm=nn=rLOOP UNTIL r=0PRINT mEND点评:从教学实践看,有些学生不能理解算法中的转化过程,例如:求8 251与6 105的最大公约数,为什么可以转化为求6 105与2 146的公约数.因为8 251=6 105×1+2 146,可以化为8 251-6 105×1=2 164,所以公约数能够整除等式两边的数,即6 105与2 146的公约数也是8 251与6 105的公约数.变式训练你能用当型循环结构构造算法,求两个正整数的最大公约数吗?试画出程序框图和程序.解:当型循环结构的程序框图如下图:程序:INPUT m,nr=1WHILE r>0r=m MOD nm=nn=rWENDPRINT mEND例2 用更相减损术求98与63的最大公约数.解:由于63不是偶数,把98和63以大数减小数,并辗转相减,如下图所示.98-63=3563-35=2835-28=728-7=2121-7=1414-7=7所以,98和63的最大公约数等于7.点评:更相减损术与辗转相除法的比较:尽管两种算法分别来源于东、西方古代数学名著,但是二者的算理却是相似的,有异曲同工之妙.主要区别在于辗转相除法进行的是除法运算,即辗转相除;而更相减损术进行的是减法运算,即辗转相减,但是实质都是一个不断的递归过程.变式训练用辗转相除法或者更相减损术求三个数324,243,135的最大公约数.解:324=243×1+81,243=81×3+0,则324与243的最大公约数为81.又135=81×1+54,81=54×1+27,54=27×2+0,则81 与135的最大公约数为27.所以,三个数324、243、135的最大公约数为27.另法:324-243=81,243-81=162,162-81=81,则324与243的最大公约数为81.135-81=54,81-54=27,54-27=27,则81与135的最大公约数为27.所以,三个数324、243.135的最大公约数为27.例3 (1)用辗转相除法求123和48的最大公约数.(2)用更相减损术求80和36的最大公约数.解:(1)辗转相除法求最大公约数的过程如下:123=2×48+27,48=1×27+21,27=1×21+6,21=3×6+3,6=2×3+0,最后6能被3整除,得123和48的最大公约数为3.(2)我们将80作为大数,36作为小数,因为80和36都是偶数,要除公因数2.80÷2=40,36÷2=18.40和18都是偶数,要除公因数2.40÷2=20,18÷2=9.下面来求20与9的最大公约数,20-9=11,11-9=2,9-2=7,7-2=5,5-2=3,3-2=1,2-1=1,可得80和36的最大公约数为22×1=4.点评:对比两种方法控制好算法的结束,辗转相除法是到达余数为0,更相减损术是到达减数和差相等. 变式训练分别用辗转相除法和更相减损术求1 734,816的最大公约数.解:辗转相除法:1 734=816×2+102,816=102×8(余0),∴1 734与816的最大公约数是102.更相减损术:因为两数皆为偶数,首先除以2得到867,408,再求867与408的最大公约数.867-408=459,459-408=51,408-51=357,357-51=306,306-51=255,255-51=204,204-51=153,153-51=102,102-51=51.∴1 734与816的最大公约数是51×2=102.利用更相减损术可另解:1 734-816=918,918-816=102,816-102=714,714-102=612,612-102=510,510-102=408,408-102=306,306-102=204,204-102=102.∴1 734与816的最大公约数是102.知能训练求319,377,116的最大公约数.解:377=319×1+58,319=58×5+29,58=29×2.∴377与319的最大公约数为29,再求29与116的最大公约数.116=29×4.∴29与116的最大公约数为29.∴377,319,116的最大公约数为29.拓展提升试写出利用更相减损术求两个正整数的最大公约数的程序.解:更相减损术程序:INPUT “m,n=”;m,nWHILE m<>nIF m>n THENm=m-nELSEm=n-mEND IFWENDPRINT mEND课堂小结(1)用辗转相除法求最大公约数.(2)用更相减损术求最大公约数.思想方法:递归思想.作业分别用辗转相除法和更相减损术求261,319的最大公约数.分析:本题主要考查辗转相除法和更相减损术及其应用.使用辗转相除法可依据m=nq+r,反复执行,直到r=0为止;用更相减损术就是根据m-n=r,反复执行,直到n=r为止.解:辗转相除法:319=261×1+58,261=58×4+29,58=29×2.∴319与261的最大公约数是29.更相减损术:319-261=58,261-58=203,203-58=145,145-58=87,87-58=29,58-29=29,∴319与261的最大公约数是29.设计感想数学不仅是一门科学,也是一种文化,本节的引入从东、西方文化的不同开始,逐步向学生渗透数学文化.从知识方面主要学习用两种方法求两个正整数的最大公约数,从思想方法方面,主要学习递归思想.本节设置精彩例题,不仅让学生学到知识,而且让学生进一步体会算法的思想,培养学生的爱国主义情操.第2课时案例2 秦九韶算法导入新课思路1(情境导入)大家都喜欢吃苹果吧,我们吃苹果都是从外到里一口一口的吃,而虫子却是先钻到苹果里面从里到外一口一口的吃,由此看来处理同一个问题的方法多种多样.怎样求多项式f(x)=x5+x4+x3+x2+x+1当x=5时的值呢?方法也是多种多样的,今天我们开始学习秦九韶算法.思路2(直接导入)前面我们学习了辗转相除法与更相减损术,今天我们开始学习秦九韶算法.推进新课新知探究提出问题(1)求多项式f(x)=x5+x4+x3+x2+x+1当x=5时的值有哪些方法?比较它们的特点.(2)什么是秦九韶算法?(3)怎样评价一个算法的好坏?讨论结果:(1)怎样求多项式f(x)=x5+x4+x3+x2+x+1当x=5时的值呢?一个自然的做法就是把5代入多项式f(x),计算各项的值,然后把它们加起来,这时,我们一共做了1+2+3+4=10次乘法运算,5次加法运算.另一种做法是先计算x2的值,然后依次计算x2·x,(x2·x)·x,((x2·x)·x)·x的值,这样每次都可以利用上一次计算的结果,这时,我们一共做了4次乘法运算,5次加法运算.第二种做法与第一种做法相比,乘法的运算次数减少了,因而能够提高运算效率,对于计算机来说,做一次乘法运算所用的时间比做一次加法运算要长得多,所以采用第二种做法,计算机能更快地得到结果. (2)上面问题有没有更有效的算法呢?我国南宋时期的数学家秦九韶(约1202~1261)在他的著作《数书九章》中提出了下面的算法:把一个n次多项式f(x)=a n x n+a n-1x n-1+…+a1x+a0改写成如下形式:f(x)=a n x n+a n-1x n-1+…+a1x+a0=(a n x n-1+a n-1x n-2+…+a1)x+ a0=((a n x n-2+a n-1x n-3+…+a2)x+a1)x+a0=…=(…((a n x+a n-1)x+a n-2)x+…+a1)x+a0.求多项式的值时,首先计算最内层括号内一次多项式的值,即v1=a n x+a n-1,然后由内向外逐层计算一次多项式的值,即v2=v1x+a n-2,v3=v2x+a n-3,…v n=v n-1x+a0,这样,求n次多项式f(x)的值就转化为求n个一次多项式的值.上述方法称为秦九韶算法.直到今天,这种算法仍是多项式求值比较先进的算法.(3)计算机的一个很重要的特点就是运算速度快,但即便如此,算法好坏的一个重要标志仍然是运算的次数.如果一个算法从理论上需要超出计算机允许范围内的运算次数,那么这样的算法就只能是一个理论的算法.应用示例例1 已知一个5次多项式为f (x )=5x 5+2x 4+3.5x 3-2.6x 2+1.7x-0.8,用秦九韶算法求这个多项式当x=5时的值.解:根据秦九韶算法,把多项式改写成如下形式:f(x)=((((5x+2)x+3.5)x-2.6)x+1.7)x-0.8,按照从内到外的顺序,依次计算一次多项式当x=5时的值:v 0=5;v 1=5×5+2=27;v 2=27×5+3.5=138.5;v 3=138.5×5-2.6=689.9;v 4=689.9×5+1.7=3 451.2;v 5=3 415.2×5-0.8=17 255.2;所以,当x=5时,多项式的值等于17 255.2.算法分析:观察上述秦九韶算法中的n 个一次式,可见v k 的计算要用到v k-1的值,若令v 0=a n ,我们可以得到下面的公式:⎩⎨⎧=+==--).,,2,1(,10n k a x v v a v k n k kn 这是一个在秦九韶算法中反复执行的步骤,因此可用循环结构来实现.算法步骤如下:第一步,输入多项式次数n 、最高次的系数a n 和x 的值.第二步,将v 的值初始化为a n ,将i 的值初始化为n-1.第三步,输入i 次项的系数a i .第四步,v=vx+a i ,i=i-1.第五步,判断i 是否大于或等于0.若是,则返回第三步;否则,输出多项式的值v.程序框图如下图:程序:INPUT “n=”;nINPUT “an=”;aINPUT “x=”;xv=ai=n-1WHILE i>=0PRINT “i=”;iINPUT “ai=”;av=v*x+ai=i-1WENDPRINT vEND点评:本题是古老算法与现代计算机语言的完美结合,详尽介绍了思想方法、算法步骤、程序框图和算法语句,是一个典型的算法案例.变式训练请以5次多项式函数为例说明秦九韶算法,并画出程序框图.解:设f(x)=a5x5+a4x4+a3x3+a2x2+a1x+a0首先,让我们以5次多项式一步步地进行改写:f(x)=(a5x4+a4x3+a3x2+a2x+a1)x+a0=((a5x3+a4x2+ a3x+a2)x+a1)x+a0=(((a5x2+a4x+ a3)x+a2)x+a1)x+a0=((((a5x+a4)x+ a3)x+a2)x+a1)x+a0.上面的分层计算,只用了小括号,计算时,首先计算最内层的括号,然后由里向外逐层计算,直到最外层的括号,然后加上常数项即可.程序框图如下图:例2 已知n次多项式P n(x)=a0x n+a1x n-1+…+a n-1x+a n,如果在一种算法中,计算k x0(k=2,3,4,…,n)的值需要k-1次乘法,计算P3(x0)的值共需要9次运算(6次乘法,3次加法),那么计算P10(x0)的值共需要__________次运算.下面给出一种减少运算次数的算法:P0(x)=a0,P k+1(x)=xP k(x)+a k+1(k=0,1,2,…,n -1).利用该算法,计算P3(x0)的值共需要6次运算,计算P10(x0)的值共需要___________次运算.答案:65 20点评:秦九韶算法适用一般的多项式f(x)=a n x n+a n-1x n-1+…+a1x+a0的求值问题.直接法乘法运算的次数最多可到达2)1(nn,加法最多n次.秦九韶算法通过转化把乘法运算的次数减少到最多n次,加法最多n次. 例3 已知多项式函数f(x)=2x5-5x4-4x3+3x2-6x+7,求当x=5时的函数的值.解析:把多项式变形为:f(x)=2x5-5x4-4x3+3x2-6x+7=((((2x-5)x-4)x+3)x-6)x+7.计算的过程可以列表表示为:最后的系数2 677即为所求的值.算法过程:v0=2;v1=2×5-5=5;v2=5×5-4=21;v3=21×5+3=108;v4=108×5-6=534;v5=534×5+7=2 677.点评:如果多项式函数中有缺项的话,要以系数为0的项补齐后再计算.知能训练当x=2时,用秦九韶算法求多项式f(x)=3x5+8x4-3x3+5x2+12x-6的值.解法一:根据秦九韶算法,把多项式改写成如下形式:f(x)=((((3x+8)x-3)x+5)x+12)x-6.按照从内到外的顺序,依次计算一次多项式当x=2时的值.v0=3;v1=v0×2+8=3×2+8=14;v2=v1×2-3=14×2-3=25;v3=v2×2+5=25×2+5=55;v4=v3×2+12=55×2+12=122;v5=v4×2-6=122×2-6=238.∴当x=2时,多项式的值为238.解法二:f(x)=((((3x+8)x-3)x+5)x+12)x-6,则f(2)=((((3×2+8)×2-3)×2+5)×2+12)×2-6=238.拓展提升用秦九韶算法求多项式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x当x=3时的值.解:f(x)=((((((7x+6)+5)x+4)x+3)x+2)x+1)xv0=7;v1=7×3+6=27;v2=27×3+5=86;v3=86×3+4=262;v4=262×3+3=789;v5=789×3+2=2 369;v6=2 369×3+1=7 108;v7=7 108×3+0=21 324.∴f(3)=21 324.课堂小结1.秦九韶算法的方法和步骤.2.秦九韶算法的计算机程序框图.作业已知函数f(x)=x3-2x2-5x+8,求f(9)的值.解:f(x)=x3-2x2-5x+8=(x2-2x-5)x+8=((x-2)x-5)x+8∴f(9)=((9-2)×9-5)×9+8=530.设计感想古老的算法散发浓郁的现代气息,这是一节充满智慧的课.本节主要介绍了秦九韶算法.通过对秦九韶算法的学习,对算法本身有哪些进一步的认识?教师引导学生思考、讨论、概括,小结时要关注如下几点:(1)算法具有通用的特点,可以解决一类问题;(2)解决同一类问题,可以有不同的算法,但计算的效率是不同的,应该选择高效的算法;(3)算法的种类虽多,但三种逻辑结构可以有效地表达各种算法等等.第3课时案例3 进位制导入新课情境导入在日常生活中,我们最熟悉、最常用的是十进制,据说这与古人曾以手指计数有关,爱好天文学的古人也曾经采用七进制、十二进制、六十进制,至今我们仍然使用一周七天、一年十二个月、一小时六十分的历法.今天我们来学习一下进位制.推进新课新知探究提出问题(1)你都了解哪些进位制?(2)举出常见的进位制.(3)思考非十进制数转换为十进制数的转化方法.(4)思考十进制数转换成非十进制数及非十进制之间的转换方法.活动:先让学生思考或讨论后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:(1)进位制是人们为了计数和运算方便而约定的计数系统,约定满二进一,就是二进制;满十进一,就是十进制;满十二进一,就是十二进制;满六十进一,就是六十进制等等.也就是说:“满几进一”就是几进制,几进制的基数(都是大于1的整数)就是几.(2)在日常生活中,我们最熟悉、最常用的是十进制,据说这与古人曾以手指计数有关,爱好天文学的古人也曾经采用七进制、十二进制、六十进制,至今我们仍然使用一周七天、一年十二个月、一小时六十分的历法.(3)十进制使用0~9十个数字.计数时,几个数字排成一行,从右起,第一位是个位,个位上的数字是几,就表示几个一;第二位是十位,十位上的数字是几,就表示几个十;接着依次是百位、千位、万位……例如:十进制数3 721中的3表示3个千,7表示7个百,2表示2个十,1表示1个一.于是,我们得到下面的式子:3 721=3×103+7×102+2×101+1×100.与十进制类似,其他的进位制也可以按照位置原则计数.由于每一种进位制的基数不同,所用的数字个数也不同.如二进制用0和1两个数字,七进制用0~6七个数字.一般地,若k是一个大于1的整数,那么以k为基数的k进制数可以表示为一串数字连写在一起的形式a n a n-1…a1a0(k)(0<a n<k,0≤a n-1,…,a1,a0<k).其他进位制的数也可以表示成不同位上数字与基数的幂的乘积之和的形式,如110 011(2)=1×25+1×24+0×23+0×22+1×21+1×20,7 342(8)=7×83+3×82+4×81+2×80.非十进制数转换为十进制数比较简单,只要计算下面的式子值即可:a n a n-1…a1a0(k)=a n×k n+a n-1×k n-1+…+a1×k+a0.第一步:从左到右依次取出k进制数a n a n-1…a1a0(k)各位上的数字,乘以相应的k的幂,k的幂从n开始取值,每次递减1,递减到0,即a n×k n,a n-1×k n-1,…,a1×k,a0×k0;第二步:把所得到的乘积加起来,所得的结果就是相应的十进制数.(4)关于进位制的转换,教科书上以十进制和二进制之间的转换为例讲解,并推广到十进制和其他进制之间的转换.这样做的原因是,计算机是以二进制的形式进行存储和计算数据的,而一般我们传输给计算机的数据是十进制数据,因此计算机必须先将十进制数转换为二进制数,再处理,显然运算后首次得到的结果为二进制数,同时计算机又把运算结果由二进制数转换成十进制数输出.1°十进制数转换成非十进制数把十进制数转换为二进制数,教科书上提供了“除2取余法”,我们可以类比得到十进制数转换成k进制数的算法“除k取余法”.2°非十进制之间的转换一个自然的想法是利用十进制作为桥梁.教科书上提供了一个二进制数据与16进制数据之间的互化的方法,也就是先由二进制数转化为十进制数,再由十进制数转化成为16进制数.应用示例思路1例1 把二进制数110 011(2)化为十进制数.解:110 011(2)=1×25+1×24+0×23+0×22+1×21+1×20=1×32+1×16+1×2+1=51.点评:先把二进制数写成不同位上数字与2的幂的乘积之和的形式,再按照十进制的运算规则计算出结果. 变式训练设计一个算法,把k进制数a(共有n位)化为十进制数b.算法分析:从例1的计算过程可以看出,计算k进制数a的右数第i位数字a i与k i-1的乘积a i·k i-1,再将其累加,这是一个重复操作的步骤.所以,可以用循环结构来构造算法.算法步骤如下:第一步,输入a,k和n的值.第二步,将b的值初始化为0,i的值初始化为1.第三步,b=b+a i·k i-1,i=i+1.第四步,判断i>n是否成立.若是,则执行第五步;否则,返回第三步.第五步,输出b的值.程序框图如下图:程序:INPUT “a,k,n=”;a,k,nb=0i=1t=a MOD 10DOb=b+t*k^(i-1)a=a\\10t=a MOD 10i=i+1LOOP UNTIL i>nPRINT bEND例2 把89化为二进制数.解:根据二进制数“满二进一”的原则,可以用2连续去除89或所得商,然后取余数.具体计算方法如下:因为89=2×44+1,44=2×22+0,22=2×11+0,11=2×5+1,5=2×2+1,2=2×1+0,1=2×0+1,所以89=2×(2×(2×(2×(2×2+1)+1)+0)+0)+1=2×(2×(2×(2×(22+1)+1)+0)+0)+1=…=1×26+0×25+1×24+1×23+0×22+0×21+1×20=1 011 001(2).这种算法叫做除2取余法,还可以用下面的除法算式表示:把上式中各步所得的余数从下到上排列,得到89=1 011 001(2).上述方法也可以推广为把十进制数化为k进制数的算法,称为除k取余法.变式训练设计一个程序,实现“除k取余法”.算法分析:从例2的计算过程可以看出如下的规律:若十制数a除以k所得商是q0,余数是r0,即a=k·q0+r0,则r0是a的k进制数的右数第1位数.若q0除以k所得的商是q1,余数是r1,即q0=k·q1+r1,则r1是a的k进制数的左数第2位数.……若q n-1除以k所得的商是0,余数是r n,即q n-1=r n,则r n是a的k进制数的左数第1位数.这样,我们可以得到算法步骤如下:第一步,给定十进制正整数a和转化后的数的基数k.第二步,求出a除以k所得的商q,余数r.第三步,把得到的余数依次从右到左排列.第四步,若q≠0,则a=q,返回第二步;否则,输出全部余数r排列得到的k进制数.程序框图如下图:程序:INPUT “a,k=”;a,kb=0i=0DOq=a\\kr=a MOD kb=b+r*10^ii=i+1a=qLOOP UNTIL q=0PRINT bEND思路2例1 将8进制数314 706(8)化为十进制数,并编写出一个实现算法的程序.解:314 706(8)=3×85+1×84+4×83+7×82+0×81+6×80=104 902.所以,化为十进制数是104 902.点评:利用把k进制数转化为十进制数的一般方法就可以把8进制数314 706(8)化为十进制数.例2 把十进制数89化为三进制数,并写出程序语句.解:具体的计算方法如下:89=3×29+2,29=3×9+2,9=3×3+0,3=3×1+0,1=3×0+1,所以:89(10)=10 022(3).点评:根据三进制数满三进一的原则,可以用3连续去除89及其所得的商,然后按倒序的顺序取出余数组成数据即可.知能训练将十进制数34转化为二进制数.分析:把一个十进制数转换成二进制数,用2反复去除这个十进制数,直到商为0,所得余数(从下往上读)就是所求.解:即34(10)=100 010(2)拓展提升把1 234(5)分别转化为十进制数和八进制数.解:1 234(5)=1×53+2×52+3×5+4=194.则1 234(5)=302(8)所以,1 234(5)=194=302(8)点评:本题主要考查进位制以及不同进位制数的互化.五进制数直接利用公式就可以转化为十进制数;五进制数和八进制数之间需要借助于十进制数来转化.课堂小结(1)理解算法与进位制的关系.(2)熟练掌握各种进位制之间转化.作业习题1.3A组3、4.设计感想计算机是以二进制的形式进行存储和计算数据的,而一般我们传输给计算机的数据是十进制数据,因此计算机必须先将十进制数转换为二进制数,再处理,显然运算后首次得到的结果为二进制数,同时,计算机又把运算结果由二进制数转换成十进制数输出.因此学好进位制是非常必要的,另外,进位制也是高考的重点,本节设置了多种题型供学生训练,所以这节课非常实用.第2课时导入新课思路1客观事物是相互联系的,过去研究的大多数是因果关系,但实际上更多存在的是一种非因果关系.比如说:某某同学的数学成绩与物理成绩,彼此是互相联系的,但不能认为数学是“因”,物理是“果”,或者反过来说.事实上数学和物理成绩都是“果”,而真正的“因”是学生的理科学习能力和努力程度.所以说,函数关系存在着一种确定性关系,但还存在着另一种非确定性关系——相关关系.为表示这种相关关系,我们接着学习两个变量的线性相关——回归直线及其方程.思路2某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对照表:气温/℃26 18 13 10 4 -1杯数20 24 34 38 50 64如果某天的气温是-5 ℃,你能根据这些数据预测这天小卖部卖出热茶的杯数吗?为解决这个问题我们接着学习两个变量的线性相关——回归直线及其方程.推进新课新知探究提出问题(1)作散点图的步骤和方法?(2)正、负相关的概念?(3)什么是线性相关?(4)看人体的脂肪百分比和年龄的散点图,当人的年龄增加时,体内脂肪含量到底是以什么方式增加的呢?(5)什么叫做回归直线?(6)如何求回归直线的方程?什么是最小二乘法?它有什么样的思想?(7)利用计算机如何求回归直线的方程?(8)利用计算器如何求回归直线的方程?活动:学生回顾,再思考或讨论,教师及时提示指导.讨论结果:(1)建立相应的平面直角坐标系,将各数据在平面直角坐标中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图.(a.如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.b.如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系.c.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系)(2)如果散点图中的点散布在从左下角到右上角的区域内,称为正相关.如果散点图中的点散布在从左上角到右下角的区域内,称为负相关.(3)如果所有的样本点都落在某一直线附近,变量之间就有线性相关的关系.(4)大体上来看,随着年龄的增加,人体中脂肪的百分比也在增加,呈正相关的趋势,我们可以从散点图上来进一步分析.(5)如下图:从散点图上可以看出,这些点大致分布在通过散点图中心的一条直线附近.如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线(regression line).如果能够求出这条回归直线的方程(简称回归方程),那么我们就可以比较清楚地了解年龄与体内脂肪含量的相关性.就像平均数可以作为一个变量的数据的代表一样,这条直线可以作为两个变量具有线性相关关系的代表.(6)从散点图上可以发现,人体的脂肪百分比和年龄的散点图,大致分布在通过散点图中心的一条直线.那么,我们应当如何具体求出这个回归方程呢?有的同学可能会想,我可以采用测量的方法,先画出一条直线,测量出各点与它的距离,然后移动直线,到达一个使距离的和最小的位置,测量出此时的斜率和截距,就可得到回归方程了.但是,这样做可靠吗?有的同学可能还会想,在图中选择这样的两点画直线,使得直线两侧的点的个数基本相同.同样地,这样做能保证各点与此直线在整体上是最接近的吗?还有的同学会想,在散点图中多取几组点,确定出几条直线的方程,再分别求出各条直线的斜率、截距的平均数,将这两个平均数当成回归方程的斜率和截距.同学们不妨去实践一下,看看这些方法是不是真的可行?(学生讨论:1.选择能反映直线变化的两个点.2.在图中放上一根细绳,使得上面和下面点的个数相同或基本相同.3.多取几组点对,确定几条直线方程.再分别算出各个直线方程斜率、截距的算术平均值,作为所求直线的斜率、截距.)教师:分别分析各方法的可靠性.如下图:上面这些方法虽然有一定的道理,但总让人感到可靠性不强.实际上,求回归方程的关键是如何用数学的方法来刻画“从整体上看,各点与此直线的距离最小”.人们经过长期的实践与研究,已经得出了计算回归方程的斜率与截距的一般公式。