小学科技课九连环PPT课件
- 格式:ppt
- 大小:4.28 MB
- 文档页数:8
九连环解法九连环是一种流传于山西民间的智力玩具。
它用九个圆环相连成串,以解开为胜。
明《丹铅总录》记载:“九连环,两者互相贯为一,得其关捩,解之为二,又合而为一。
”其制作,用金属丝制成圆形小环九枚,九环相连,套在条形横板或各式框架上,其框柄有剑形、如意形、蝴蝶形、梅花形等,各环均以铜杆与之相接。
玩时,依法使九环全部联贯子铜圈上,或经过穿套全部解下。
解开九连环共需要三百四十一步,只要上或下一个环,就算一步,不是在框架上滑动。
希望大家能够通过独立思考,解决这个问题。
九连环的解下和套上是一对逆过程。
九连环的每个环互相制约,只有第一环能够自由上下。
要想下/上第n个环,就必须满足两个条件,第一个环除外。
一、第n-1个环在架上;二、第n-1个环前面的环全部不在架上。
玩九连环就是要努力满足上面的两个条件。
解下九连环本质上要从后面的环开始下,而先下前面的环,是为了下后面的环,前面的环还要装上,不算是真正地取下来。
要想下第九环,必须满足以下两个条件:第八环在架上;而第一~七环全部不在架上。
在初始状态,前者是满足的,现在要满足后者。
照这样推理,就要下第七环,一直推出要下第一环,而不是下第二环。
先下第二环是偶数连环的解法。
上下第二环后就要上下第一环,所以在实际操作中就同时上下第一、二环,这是两步。
九连环在任何正常状态时,都只有两条路可走:上某环和下某环,别的环动不了。
其中一条路是刚才走过来的,不能重复走,否则就弄回去了。
这样,就会迫使连环者去走正确的道路。
而很多人由于不熟悉,常走回头路,解不了九连环。
首次解九连环要多思考,三个环上下的动作要练熟,记住上中有下,下中有上。
熟练后会有更深刻的理解,不需要推理了。
解九连环有一个二十字的口诀:“上俩下一个,再动后一个;上一个下俩,再动后一个”。
下面是解下九连环的具体步骤:拆法:第001步第1环下第002步第3环下第003步第1环上第004、005步第1、2环下第006步第5环下第007、008步第1、2环上第009步第1环下第010步第3环上第011步第1环上第012、013步第1、2环下第014步第4环下第015、016步第1、2环上第017步第1环下第018步第3环下第019步第1环上第020、021步第1、2环下第022步第7环下第023、024步第1、2环上第025步第1环下第026步第3环上第027步第1环上第028、029步第1、2环下第030步第4环上第031、032步第1、2环上第033步第1环下第034步第3环下第035步第1环上第036、037步第1、2环下第039、040步第1、2环上第041步第1环下第042步第3环上第043步第1环上第044、045步第1、2环下第046步第4环下第047、048步第1、2环上第049步第1环下第050步第3环下第051步第1环上第052、053步第1、2环下第054步第6环下第055、056步第1、2环上第057步第1环下第058步第3环上第059步第1环上第060、061步第1、2环下第062步第4环上第063、064步第1、2环上第065步第1环下第066步第3环下第067步第1环上第068、069步第1、2环下第070步第5环下第071、072步第1、2环上第073步第1环下第074步第3环上第075步第1环上第076、077步第1、2环下第079、080步第1、2环上第081步第1环下第082步第3环下第083步第1环上第084、085步第1、2环下第086步第9环下第087、088步第1、2环上第089步第1环下第090步第3环上第091步第1环上第092、093步第1、2环下第094步第4环上第095、096步第1、2环上第097步第1环下第098步第3环下第099步第1环上第100、101步第1、2环下第102步第5环上第103、104步第1、2环上第105步第1环下第106步第3环上第107步第1环上第108、109步第1、2环下第110步第4环下第111、112步第1、2环上第113步第1环下第114步第3环下第115步第1环上第116、117步第1、2环下第119、120步第1、2环上第121步第1环下第122步第3环上第123步第1环上第124、125步第1、2环下第126步第4环上第127、128步第1、2环上第129步第1环下第130步第3环下第131步第1环上第132、133步第1、2环下第134步第5环下第135、136步第1、2环上第137步第1环下第138步第3环上第139步第1环上第140、141步第1、2环下第142步第4环下第143、144步第1、2环上第145步第1环下第146步第3环下第147步第1环上第148、149步第1、2环下第150步第7环上第151、152步第1、2环上第153步第1环下第154步第3环上第155步第1环上第156、157步第1、2环下第159、160步第1、2环上第161步第1环下第162步第3环下第163步第1环上第164、165步第1、2环下第166步第5环上第167、168步第1、2环上第169步第1环下第170步第3环上第171步第1环上第172、173步第1、2环下第174步第4环下第175、176步第1、2环上第177步第1环下第178步第3环下第179步第1环上第180、181步第1、2环下第182步第6环下第183、184步第1、2环上第185步第1环下第186步第3环上第187步第1环上第188、189步第1、2环下第190步第4环上第191、192步第1、2环上第193步第1环下第194步第3环下第195步第1环上第196、197步第1、2环下第199、200步第1、2环上第201步第1环下第202步第3环上第203步第1环上第204、205步第1、2环下第206步第4环下第207、208步第1、2环上第209步第1环下第210步第3环下第211步第1环上第212、213步第1、2环下第214步第8环下第215、216步第1、2环上第217步第1环下第218步第3环上第219步第1环上第220、221步第1、2环下第222步第4环上第223、224步第1、2环上第225步第1环下第226步第3环下第227步第1环上第228、229步第1、2环下第230步第5环上第231、232步第1、2环上第233步第1环下第234步第3环上第235步第1环上第236、237步第1、2环下第239、240步第1、2环上第241步第1环下第242步第3环下第243步第1环上第244、245步第1、2环下第246步第6环上第247、248步第1、2环上第249步第1环下第250步第3环上第251步第1环上第252、253步第1、2环下第254步第4环上第255、256步第1、2环上第257步第1环下第258步第3环下第259步第1环上第260、261步第1、2环下第262步第5环下第263、264步第1、2环上第265步第1环下第266步第3环上第267步第1环上第268、269步第1、2环下第270步第4环下第271、272步第1、2环上第273步第1环下第274步第3环下第275步第1环上第276、277步第1、2环下第279、280步第1、2环上第281步第1环下第282步第3环上第283步第1环上第284、285步第1、2环下第286步第4环上第287、288步第1、2环上第289步第1环下第290步第3环下第291步第1环上第292、293步第1、2环下第294步第5环上第295、296步第1、2环上第297步第1环下第298步第3环上第299步第1环上第300、301步第1、2环下第302步第4环下第303、304步第1、2环上第305步第1环下第306步第1环上第308、309步第1、2环下第310步第6环下第311、312步第1、2环上第313步第1环下第314步第3环上第315步第1环上第316、317步第1、2环下第318步第4环上第319、320步第1、2环上第321步第1环下第322步第3环下第323步第1环上第324、325步第1、2环下第326步第5环下第327、328步第1、2环上第329步第1环下第330步第3环上第331步第1环上第332、333步第1、2环下第334步第4环下第335、336步第1、2环上第337步第1环下第338步第3环下第339步第1环上第340、341步第1、2环下装法:就是把以上的步骤反过来,上改成下,下改成上。
小学数学北师版五年级下册第一课九连环(一)一、起源与发展九连环流传千年而不衰,征服了无数中外爱好者,是中华民族传统文化中的一颗璀璨明珠。
与七巧板、华容道、鲁班锁并称为我国古代四大智力玩具。
九连环在英语里的名称是 TheChinese Rings ,或 The Chinese Rings Puzzle 。
其最早可追溯到先秦时代,在《战国策·齐策》中有这样一则故事:秦王曾派使者送给齐国王后一个玉连环,并且问:“齐国有不少聪明人,能否解开这玉连环?” 这当然是在故意刁难齐国君臣,以显示秦国的强大。
王后遍示群臣,竟没有人能解开。
最后齐国的王后只好“引椎椎破之” ,当然,这种以毁坏性的方式只能算是无奈之举,本质上不能算作解开。
因关系到两国外交上的体面,齐国王后虽然不知道解法,也不肯在秦使面前认输,所以才想出了这么一招。
在明清时期,上至士大夫,下至贩夫走卒,大家都很喜欢它。
很多著名文学作品都提到过九连环,《红楼梦》中就有林黛玉巧解九连环的记载。
图 1在国外,数学家卡尔达诺在公元1550年已经提到了九连环。
后来,数学家华利斯对九连环做了精辟的分析。
格罗斯也深入研究了九连环,用二进制数给了它一个十分完美的答案。
19世纪的格罗斯经过运算,证明解开九连环共需要三百四十一步,到目前为止还没有其它更为便捷的答案。
解九连环不但难度大,而且操作相当复杂,即使是熟手,也需 6-8分钟(目前最快纪录可在 3 分钟左右 ) 。
十连环的话,需要 682 步, 20 到 40 分钟才能解开。
假如做成三十三连环,即使你夜以继日,不吃不喝,一步不错,一世也解不开它,因为要走 57 亿步,约需 180 年才能解开。
二、结构与特点九连环主要是由一个框架和九个圆环组成:每个圆环上连有一个直杆,而这个直杆则在后面一个圆环内穿过,九个直杆的另一端用一块木板或圆环相对固定,以解开为胜。
图 2 古代贵族阶层玩的豪华九连环图 3 九连环三、功能与特点九连环可以从小就培养青少年对数学的兴趣,寓教其中,让学生理解数学多么奥妙,多么有趣。
九连环解法将套环从手柄的前端绕出,从手柄的中缝中掉落下来,即为解下套环(图1)。
剑柄与九个套环完全分开就算成功(图2)。
(图1)(图2)要想下/上第n个环,就必须满足两个条件:一、第n-1个环在剑柄上;二、第n-1个环前面的环全部不在剑柄上(比如要想下/上第5环,第4环在剑柄上,1、2、3环必须全部不在剑柄上)。
玩九连环就是要努力满足这两个条件。
这两个条件也决定了解环需按照9、8、7、6、5、4、3、2、1的顺序下环。
而先下前面的环,是为了下后面的环,前面的环还要装上,不算是真正地取下来。
九连环的每个环都是互相制约的,只有1环(图1)和2环2环组合(用⑿表示)能够自由上下(图3)。
九连环的九个环实际是奇数与偶数的问题,1环上下可以解决奇数环(3、5、7、9)的装卸,1环2环组合(⑿)上下可以解决偶数环(4、6、8)的装卸。
(图3)一、下第9环的分析及步骤下第9环的条件:第8环在剑柄上,1-7环不在剑柄上。
在初始状态下,第一个条件是满足的,现在要满足后者。
按照这种推理,就需要下第7环--(下第7环需要满足:第6环在剑柄上,1-5环不在剑柄上)--需要下第5环(下第5环需要满足:第4环在剑柄上,1-3环不在剑柄上)--需要下第3环(下第3环需要满足:第2环在剑柄上,1环不在剑柄上)--需要下第1环。
按照分析,具体步骤如下:下1--下3--上1--下⑿--下5--上⑿--下1--上3--上1--下⑿--下4--上⑿--下1--下3--上1--下⑿--下7--上⑿--下1--上3--上1--下⑿--上4--上⑿--下1--下3--上1--下⑿--上5--上⑿--下1--上3--上1--下⑿--下4--上⑿--下1--下3--上1--下⑿--下6--上⑿--下1--上3--上1--下⑿--上4--上⑿--下1--下3--上1--下⑿--下5--上⑿--下1--上3--上1--下⑿--下4--上⑿--下1--下3--上1--下⑿--下9下完9环的情况是只有8环在剑柄上,其他环都卸下(图4)。
九连环教学设计分课时第一课时:九连环的介绍与历史背景(时长:40分钟)教学目标:1. 了解九连环的起源和发展历史;2. 理解九连环的基本概念和组成结构;3. 培养学生对传统文化的兴趣和保护意识。
教学过程:1. 导入:通过展示一些九连环的图片或实物,激发学生对九连环的兴趣;2. 介绍九连环的起源和发展历史,引导学生了解其在中国传统文化中的地位;3. 详细介绍九连环的概念和结构,包括九个金属环和木块之间的关系;4. 引导学生讨论九连环的使用方法和技巧;5. 分组活动:将学生分成小组,每组分配一套九连环,让他们自行探索和拆解。
第二课时:九连环的基本拆解方法和练习(时长:40分钟)教学目标:1. 掌握九连环的基本拆解方法;2. 通过练习提高学生的操作技巧和空间想象能力;3. 培养学生的耐心和细致观察力。
教学过程:1. 导入:回顾上节课的学习内容,询问学生对九连环的理解;2. 介绍九连环的基本拆解方法,包括推环、拉环、旋转等;3. 示范和讲解拆解过程,引导学生一步一步跟随操作;4. 练习:让学生进行简单的九连环拆解练习,鼓励他们尝试不同的方法;5. 对练习中出现的问题和困难进行解答和指导。
第三课时:九连环的高级技巧和拼装方法(时长:40分钟)教学目标:1. 学习九连环的高级技巧,如快速拆解和拼装;2. 掌握复杂的拆解和拼装方法,提高学生的操作技巧和思维能力;3. 培养学生的团队合作和沟通能力。
教学过程:1. 导入:复习前两节课的内容,检查学生对九连环的掌握程度;2. 介绍九连环的高级技巧,如使用策略去解决难题;3. 示范和讲解复杂的拆解和拼装方法,引导学生寻找问题的关键点;4. 分组活动:将学生分成小组,每组给出一道复杂的拆解或拼装任务,要求他们合作解决;5. 推广应用:让学生分享自己的拆解和拼装方法,鼓励他们创造新的操作技巧。
第四课时:九连环的创意设计与表演(时长:40分钟)教学目标:1. 激发学生的创造力和想象力,设计自己的九连环谜题;2. 通过表演展示学生对九连环的掌握和创造能力;3. 培养学生的表达和展示自己作品的能力。
一、课程名称:小学九连环课程二、教学目标:1. 让学生了解九连环的起源、发展及文化内涵。
2. 培养学生的动手操作能力,提高学生的空间想象力和逻辑思维能力。
3. 培养学生的团队协作精神,增强学生的沟通能力。
4. 传承中华民族优秀文化,激发学生的民族自豪感。
三、教学重点与难点:1. 重点:掌握九连环的基本操作方法,了解九连环的文化内涵。
2. 难点:灵活运用九连环的基本操作方法,解决复杂问题。
四、教学准备:1. 教学课件:九连环的起源、发展、基本操作方法、文化内涵等。
2. 实物九连环:用于学生实践操作。
3. 教学用具:剪刀、胶带、彩纸等。
五、教学过程:(一)导入1. 教师展示九连环实物,激发学生的学习兴趣。
2. 简要介绍九连环的起源、发展及文化内涵。
(二)基本操作方法讲解1. 教师详细讲解九连环的基本操作方法,如解环、穿环、组合等。
2. 学生跟随教师一起练习基本操作。
(三)实践操作1. 学生分组进行九连环的实践操作,互相交流学习心得。
2. 教师巡回指导,解答学生在操作过程中遇到的问题。
(四)复杂问题解决1. 教师提出一些复杂问题,让学生运用所学知识进行解决。
2. 学生分组讨论,共同解决复杂问题。
(五)总结与反思1. 教师总结本节课所学内容,强调九连环的文化内涵。
2. 学生分享学习心得,反思自己在操作过程中的收获与不足。
六、作业布置:1. 完成九连环的实践操作,并尝试解决一些复杂问题。
2. 搜集有关九连环的资料,了解其历史渊源。
七、教学反思:1. 教师应关注学生在实践操作中的表现,及时给予指导。
2. 鼓励学生发挥创新精神,探索九连环的更多玩法。
3. 结合学生实际情况,调整教学内容和进度。
八、板书设计:1. 九连环简介2. 九连环基本操作方法3. 九连环文化内涵4. 九连环实践操作5. 九连环复杂问题解决九、教学评价:1. 学生对九连环的兴趣程度。
2. 学生掌握九连环基本操作方法的情况。
3. 学生在解决复杂问题时的表现。