Maple变量管理的简单操作介绍
- 格式:doc
- 大小:34.00 KB
- 文档页数:1
怎样用Maple给数学式赋值怎样用Maple给数学式赋值利用Maple解决数学问题时,中间会涉及到很多计算过程。
对于比较简单的计算过程时可以直接用Maple计算,但多数情况下问题会比较复杂,需要对变量进行赋值计算。
在Maple 使用的过程中,如何进行赋值计算呢?更多Maple入门操作及使用技巧请访问Maple 2015中文版官网。
赋值当输入表达式或完成计算后,用户可以将结果赋值(分配)给一个变量名。
示例:1.输入表达式(x+2y)3,输完后鼠标右击,从右键菜单中选择“Expand”。
2.鼠标右击输出x3+6x2y+12xy2+8y3从右键菜单中选择“Assign to a Name”,输入“Answer1”。
在接下来的操作中,用户可以使用这个命名引用结果,使用它完成进一步的计算。
先输入要赋值的语句,再输入“:”、“=”(冒号,等于号),再输入数值就将右边部分赋值给左边的变量名了。
示例:赋值给“value1”和“value2”,然后相加它们。
显示和隐藏结果某些情况下,我们不希望显示赋值语句的结果。
为了隐藏Maple 操作的结果,在输入语句的后面加上一个冒号(:)。
示例:赋值给a1,不显示结果。
按照上面操作进行输入,最后记得要输入“:”,然后计算a12。
清除变量赋值,使用unassign命令。
注意必须使用单引号('')封装变量名。
以上内容向大家介绍了Maple计算数学赋值时的一些常见用法,Maple初级用法是比较简单的,只有掌握了这些简单的用法才能一步步地熟练掌握。
如果需要了解更多Maple使用教程,可以参考Maple 中文官网教程:强大的数学计算——Maple内置函数包简介。
数学软件Maple使⽤教程数学实验数学软件Maple使⽤教程序⾔⼀.什么是数学实验?我们都熟悉物理实验和化学实验,就是利⽤仪器设备,通过实验来了解物理现象、化学物质等的特性。
同样,数学实验也是要通过实验来了解数学问题的特性并解决对应的数学问题。
过去,因为实验设备和实验⼿段的问题,⽆法解决数学上的实验问题,所以,⼀直没有听说过数学实验这个词。
随着计算机的飞速发展,计算速度越来越快,软件功能也越来越强,许多数学问题都可以由计算机代替完成,也为我们⽤实验解决数学问题提供了可能。
数学实验就是以计算机为仪器,以软件为载体,通过实验解决实际中的数学问题。
⼆.常⽤的数学软件⽬前较流⾏的数学软件主要有四种:1.MathACD其优点是许多数学符号键盘化,通过键盘可以直接输⼊数学符号,在教学⽅⾯使⽤起来⾮常⽅便。
缺点是⽬前仅能作数值运算,符号运算功能较弱,输出界⾯不好。
2.Matlab优点是⼤型矩阵运算功能⾮常强,构造个⼈适⽤函数⽅便很⽅便,因此,⾮常适合⼤型⼯程技术中使⽤。
缺点是输出界⾯稍差,符号运算功能也显得弱⼀些。
不过,在这个公司购买了Maple公司的内核以后,符号运算功能已经得到了⼤⼤的加强。
再⼀个缺点就是这个软件太⼤,按现在流⾏的版本5.2,⾃⾝有400多兆,占硬盘空间近1个G,⼀般稍早些的计算机都安装部下。
我们这次没⽤它主要就是这个原因。
3.Mathematica其优点是结构严谨,输出界⾯好,计算功能强,是专业科学技术⼈员所喜爱的数学软件。
缺点是软件本⾝较⼤,⽬前流⾏的3.0版本有200兆;另⼀个缺点就是命令太长,每⼀个命令都要输⼊英⽂全名,因此,需要英语⽔平较⾼。
4.Maple优点是输出界⾯很好,与我们平常书写⼏乎⼀致;还有⼀个最⼤的优点就是它的符号运算功能特别强,这对于既要作数值运算,⼜要作符号运算时就显得⾮常⽅便了。
除此之外,其软件只有30兆,安装也很⽅便(直接拷贝就可以⽤)。
所以,我们把它放到学校⽹上直接调⽤。
Maple简介一、Maple操作界面介绍1、编辑功能:编辑功能中查找模块,可以帮助查找你所需要的关键字节.具体操作如图所示:按上述操作完成后,出现下图所示的对话框:在文本框中输入你要查找的字符或者符号,可以通过findprevious上下翻看,也可以通过replacewith操作替代你所查找的字符或者符号.cancle表示取消操作.其他编辑操作包括分割或连接(splitorjoin)分为一个执行过程(快截键为f3、f4)和选定块(shift+f3、shift+f4)过程四个操作块运行操作(Execute):运行选定或者当前的maple中的语句;删除运行结果操作(Removeoutput):将选定或者当前的maple中运行结果从工作爷中删除或者不显示;2、示图操作( VIEW)文档在屏幕上的显示模式称为“示图”,maple示图菜单主要设置工作爷文档的一些视图属性,所包括菜单如上图所示。
工具条(toolbar)的功能和其他系统一样,主要包括打开文件、创建新文档、存盘、打印当前页面、复制、剪切、粘贴、撤消操作等。
内容工具条:“枫叶”表示设置工作页和标准公式和maple语言之间的转换“X”表示设置工作页和标准公式在活动和非活动方式之间的转换“(对号)”表示标准公式有效时自动检查输入表达式的正确性“!”表示运行当前表达式3、插入操作(INSERT)插入操作比较简单这里就不做详细介绍,主要功能分为:文本插入(textinput);标准maple数学表达式插入;运行单元executegroup插入其中包括在光标前插入和光标后插入图形插入plot,其中包括两维和三维图象的插入电子表格插入spreadsheet段落插入parigraph,其中包括光标前插入和光标后插入数学输入对象(image)插入插入超级连接hyperlink4、其他操作窗口的功能和其他软件基本相同,这里就不做详细介绍了。
二、基本语法规则MaPle的科学计算功能主要是以命令输入的方式来实现的。
Maple函数用法一、基本命令重新开始:restart 命名:名字:= 引用前值:% 字符连接:|| 保护命名:protect 解除保护命名:unprotrct 变量类型:whattype 检验命名:assigned 别名:alias 宏:macro 帮助:?函数名map把命令作用到每一个元素,seq生成序列,add生成和,mul生成积二、基本运算1. 近似计算:evalf(表达式,小数位数),用Digits命令提前设定小数位数2. 取整运算:round四舍五入,trunc向0取整, ceil向-∝取整, floor向∝取整3. 范围限定:assume(限定变量范围)frac小数部分4. 绝对值(模):abs(表达式),复数求其模5. 同余:mod(数1,数2),或者:数1 mod 数26. 平方根:sqrt(表达式),平方根最接近整数:isqrt(表达式)7. 阶乘:factorial(数),双阶乘:doublefactorial(数)8. 分解质因数:ifactor(数),分解质因数成组ifactors(数)9. 商与余数:商iquo(除数,被除数),余数irem(除数,被除数)10.最大公约数:igcd(数1,数2),最小公倍数:ilcm(数1,数2)11.形如as+bt=(a,b)分解:igcdex(a,b,’s’,’t’)12.数组最大最小值:max(数1,数2,…),min(数1,数2,…)13.实部、虚部与幅角:实部Re(复数),虚部Im(复数),幅角argument14.共轭复数:conjugate(复数)15.形如a+bi整理:evalc(表达式)16.并集:集合1 union 集合2,交集:intersect,差集:minus17.元素个数:nops(集合),用op可把集合转化成表达式三、多项式1. 降幂排列:sort(多项式),字典排序plex(第三个参数)2. 次数:degree(多项式),系数:coeff(多项式,项),首项系数:lcoeff尾项系数:tcoeff,所有系数:coeffs(多项式,变量,‘power‘)3. 合并同类项:collect(多项式,合并参数)4. 商式:quo(除式,被除式,变量),余式:rem,整除检验:divide5. 最大公因式:gcd(多项式1,多项式2),最小公倍式lcm6. 因式分解:factor(多项式),可用第二个参数限定数域缺省代表有理数域7. 分母有理化:rationalize(多项式),有理分式化简:normal或者factor8. 化简表达式:simplify,带假设化简:simplify(表达式,assume=范围)附加关系化简:simplify(表达式,{条件})代换:subs(条件,表达式)9. 展开与合并:展开expand(表达式),合并combine(表达式)10.等价转换:convert(函数,转化成的函数)四、解方程1. 方程(组):solve({方程(组)},{未知量(缺省对所有变量求解})2. 数值解:fsolve(方程,变量范围(可缺省),数域(可缺省))3. 三角方程:添加_EnvAllSolutions:=ture以求得所有解4. 多项式方程解的区间:realroot(多项式)5. 不等式(组):solve({不等式(组)},{变量})6. 整数解:isolve(方程,变量)7. 模m的解:msolve(方程,模m)8. 递推关系的通项:rsolve({递推关系,初值},{通项})9. 函数方程:solve(函数方程,函数)10.系数匹配:match(式子1=式子2,变量,’s’)11.Grobner基原理:先调用with(grobner),此命令将方程的解等价化简Gsolve({式子1,式子2,…},[变量1,变量2,…]12.微分方程:dsolve({方程,初值(可缺)},函数,’explicit’(可缺))13.微分方程组:dsolve({方程1、2,…,初值},{函数1,函数2,…})14.拉普拉斯变换法:dsolve({微分方程},函数,method=laplace)15.微分方程级数解:dsolve({微分方程},函数,type=series)16.微分方程数值解:dsolve({微分方程},函数,type=numeric)17.微分方程图形解:DEplot图形表示微分方程,dfielplot箭头表示向量场,phaseportrait向量场及积分曲线,DEplot3d三维空间图形表示微分方程18.偏微分方程:pdsolve(偏微分方程,求解函数)19.分离变量解偏微分方程:pdsolve(方程,函数,HINT=’*’,’build’)20.偏微分方程图形解:PDEplot(方程,函数,ini边界s,s范围)五、数据处理1. 统计软件包:先调用程序包with(stats) ,有7个子包:anova方差分析,describe描述数据分析,fit拟合回归分析,transform数据形式变换,random分布产生随机数,statevalf分布的数值计算,statplots统计绘图2. 基本命令:平均值mean,方差variance,标准差standarddeviation,中位数median,众数mode,数据求和sumdata,协方差covariance,相对标准差(标准差/平均值)coefficientofvariation,计数(非缺失)count,计缺失数countmissing,范围range,几何平均值geometricmean,线性相关数linearcorrelation3. 统计图形:直方图histogram,散点图scatter2d、quantile2(先从小到大排序再作图),箱式图boxplot4. 统计分布函数值:正态分布随机分布命令normald[期望,方差]先调用程序包with(statevalf)用法statevalf(分布函数,求解函数)连续分布:cdf累积密度函数,icdf逆累积密度函数,pdf概率密度函数离散分布:dcdf离散累积概率函数,idcdf逆离散累积函数,pf概率函数5. 插值:整体插值命令f:=interp(数据1,数据2,变量)分段插值命令f:=spline(数据1,数据2,变量,次数)6. 回归:leastsquare[[x,y],y=多项式,{多项式系数}]([数据1,数据2]) f:=fit(数据1,数据2,拟合函数,变量)六、微积分1. 函数定义:函数名:=->表达式,复合函数:f(g(x)):=f@g2. 表达式转换成函数:unapply(表达式,函数变量)3. 极值:极大值maximize(函数,变量,范围,location=true(极值点))极小值 minimize(函数,变量,范围,location=true(极值点))条件极值:extreme(函数,约束条件,{变量},’s’(极值点))4. 极限:limit(函数,x=趋值,方向(省缺,left,right,complex))5. 连续性:判断iscont(函数,x=范围)第三个参数closed表示闭区间求解discont(函数,变量)6. 微分:显函数diff(函数,变量)对x多次求导用x$n 微分算子D隐函数implicitdiff(函数,依赖关系y(x),对象y,变量x)7. 切线作图:showtangent(函数,x=点,view=[x范围,y范围])8. 不定积分:int(函数,积分变量),定积分:int(函数,x=下限..上限)9. 复函数积分:先求奇点solve(denom(函数)),再用留数规则求解2*Pi*I(residue(f,z=奇点1)+ residue(f,z=奇点2)+…)10.定积分矩形:下矩形:作图leftbox(f,x=范围,块数)面积leftsum(f,x=范围,块数)。
O O O O (1.7)(1.3)(1.2)O (1.13)(1.9)(1.14)(1.15)(1.1)O O O (1.8)(1.5)(1.12)(1.10)O O O O O O (1.6)(1.11)(1.4)O 第1章 Maple的基本量1.1数值类型whattype 0integerwhattype12fractionwhattype 0.floatconstants;false ,γ,N ,true ,Catalan ,FAIL ,πwhattype falsesymbolwhattype infinityextended_numericwhattype πsymbolwhattype undefinedextended_numericwhattype arcsin 1`*`whattype sqrt 2`^`whattype ln 2functionwhattype Icomplex extended_numericwhattype "ustc"stringwhattype 'ustc 'symbolwhattype ustcsymbolO (2.1)O (1.16)O (2.3)O (1.19)O O (2.2)O O O (1.21)O (1.20)O O (1.18)O O O (1.22)(1.17)类型转化convert 65535,hexFFFFconvert FFFF ,decimal ,1665535convert FFFF ,decimal ,88775Why?evalf π3.141592654evalf 20π3.1415926535897932385floor π,round π,ceil π3,3,4convert evalf π,string"3.141592654"1.2赋值x d 1x :=1y ,z d 2,3y ,z :=2,3z3y ,z d 2,3Error, illegal use of an object as a namey ,z d 2,3清除unassign xError, (in unassign) cannot unassign `1' (argument must be assignable)unassign "x"Error, (in unassign) cannot unassign `x' (argument must be assignable)unassign 'x 'x d 1; x d 'x ';x(2.8)(2.11)O O(2.9)(2.12)O O O (2.13)O (2.4)(2.7)(2.6)O O (2.10)O O (2.5)x :=1x :=x x替换x ,y d sqrt 2,sqrt 3x ,y :=2,3subs x =a ,y =b ,x y13a b Why?subs x =y ,y =x ,x y1Why?unassign 'x ','y 'subs x =a ,y =b ,x ya bsubs x =y 2,y =x 2,x yx 2subs y =x 2,x =y 2,x y1y2algsubs x C x 2=y ,1C x4x C 14algsubs x C x 2=y ,1C 2 x C x 221C 2 x C x 22algsubs x C x 2=y ,1C 4 x C 6 x 2C 4 x 3C x 41C 3 y C y 2C 1C 2 y x1.3定义O OO O O (3.5)(4.2)O O (4.3)(3.2)O O (3.1)(3.4)(4.4)O (3.7)(4.1)(3.3)O O (4.5)(3.6)O (3.8)a ,b ,cd 1,2,3a ,b ,c :=1,2,3f d x /a x 2C b x C c f :=x /a x 2C b x C cg d x ,y /x yg :=x ,y /x y注意:此处(x,y)的括号不可省。
介绍Maple⼊门的⼀些常见操作介绍Maple⼊门的⼀些常见操作在学习使⽤Maple的过程中,对于刚刚接触Maple的⼈们来说,了解Maple计算数学的基本操作是很必要,这也是Maple⼊门基本操作之⼀。
下⾯就介绍Maple的⼀些常见的操作。
更多Maple使⽤教程请访问Maple中⽂版官⽹。
进⼊Maple窗⼝后,可以通过“帮助”菜单了解Maple的操作和使⽤⽅法。
输⼊数学表达式后,如果要进⾏数学运算,需要将光标放在要运算的数学表达式上,按回车键,或单击⼯具栏上的“执⾏所有选中的组”按钮,也可以单击⿏标右键,使⽤弹出的右键菜单求解数学问题。
Maple将每次输⼊纪录在案,输出将另起⼀⾏居中显⽰,后⾯⾃动附加⼀个标签。
提⽰:[>是Maple⾃动显⽰的命令⾏提⽰符,⽆需我们⼿⼯输⼊。
如要输出结果,可在运算表达式后“;”;如不要显⽰输出结果,则在运算表达式后加“:”。
Maple中的运算命令必须在英⽂模式下输⼊,不然Maple不能运算。
如果要删除单个⽂字,可以使⽤“Del”键,如果要删除整⾏,可以使⽤“Ctrl+Del”组合键,Maple的这⼀“超级删除”功能键可⽤于对复杂对象的整⾏删除操作。
当输⼊的数学表达式较长时,为了在窗⼝中看到整个数学表达式,可将光标停在任⼀运算符后⾯并按“Shift+Enter”组合键,便可使数学表达式换⾏。
如要同时计算⼏个数学表达式,实现⽅法有两种。
⼀种是在每个数学表达式后⾯加“;”,然后按回车键或者单击⼯具栏上的执⾏按钮。
例如:第⼆种是分别输⼊数学表达式并单击⼯具栏上的“执⾏整个⼯作表”按钮" alt="执⾏整个⼯,Maple将执⾏⽂件中的所有运算。
例如:Maple中许多操作和菜单与Word是⼀样的。
在以后操作中使⽤较多的打开、关闭、复制、存盘等与Word操作完全⼀致,⼤家⼀样操作就可以了。
以上内容向⼤家介绍了Maple⼊门时的基本操作,在Maple中编辑公式后怎样进⾏计算。
Maple变量管理的简单操作介绍
Maple既然是一款强大的计算软件,那么在计算方面必不可少会处理变量的问题,那么大Maple计算的过程中,对变量怎样管理呢?本教程来对此稍作介绍。
更多Maple基本功能与常用操作命令介绍请访问Maple中文版网站。
在Maple 中,一个变量名可以有值,也可以没有值。
例如:
其中,变量x、a、b就没有任何值。
另一方面,Maple的任一变量名都可以指给另一个Maple对象,如:
我们说“数100已经赋值给名称a”。
从此以后,Maple每当遇到a时都把它作为100看待。
我们说“变量名a就指的是数100”。
例如:
现在我们可以说Maple已经求出了a^2*t-2*a-1的值,术语求值(evaluation)在计算机语言中有不同的含意。
严格地讲,Maple里的求值是求变量的值(即通过对名称所指向的内存的搜寻过程),并不包含任何计算的意义。
在Maple的术语里,计算(calculation)叫做化简(simplication)。
一般地,化简必须由用户提出要求,但某些基本的化简是可以自动执行的,例如像计算100的平方,合并-200与-1。
实际上Maple在上例中是通过以下几步计算求出结果的:
将a的值计为100:
自动化简(autosimplication)所得的表达式。
根据Maple内存的内部序对结果表达式的子式进行分类。
以上内容对Maple计算过程中对变量处理原理作了一些简单的介绍,在明白了这些的基础上自如地计算一些简单变量是没有问题的,如果需要了解更多Maple使用方面的技巧,或者想要下载Maple申请试用等,请访问Maple中文版网站进行查看下载。