《信号与系统》复习题及答案解读
- 格式:doc
- 大小:3.52 MB
- 文档页数:12
《信号与系统》作业参考解答第一章(P16-17)1-3 设)(1t f 和)(2t f 是基本周期分别为1T 和2T 的周期信号。
证明)()()(21t f t f t f +=是周期为T 的周期信号的条件为T nT mT ==21 (m ,n 为正整数) 解:由题知)()(111t f mT t f =+ )()(222t f mT t f =+要使)()()()()(2121t f t f T t f T t f T t f +=+++=+则必须有21nT mT T == (m ,n 为正整数) 1-5 试判断下列信号是否是周期信号。
若是,确定其周期。
(1)t t t f πsin 62sin 3)(+= (2)2)sin ()(t a t f =(8)⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=2cos 28sin 4cos )(k k k k f πππ解:(1)因为t 2sin 的周期为π,而t πsin 的周期为2。
显然,使方程n m 2=π (m ,n 为正整数)成立的正整数m ,n 是不存在的,所以信号t t t f πsin 62sin 3)(+=是非周期信号。
(2)因为)2cos 1()sin ()(22t a t a t f -==所以信号2)sin ()(t a t f =是周期π=T 的周期信号。
(8)由于)4/cos(k π的周期为8)4//(21==ππN ,)8/sin(k π的周期为16)8//(22==ππN ,)2/cos(k π的周期为4)2//(23==ππN ,且有16412321=⨯=⨯=⨯N N N所以,该信号是周期16=N 的周期信号。
1-10 判断下列系统是否为线性时不变系统,为什么?其中)(t f 、][k f 为输入信号,)(t y 、][k y 为零状态响应。
(1))()()(t f t g t y = (2))()()(2t f t Kf t y += 解:(1)显然,该系统为线性系统。
信号与系统复习题答案1. 信号的分类有哪些?信号可以分为连续时间信号和离散时间信号。
连续时间信号是指在时间上连续变化的信号,而离散时间信号是指在时间上以离散点变化的信号。
2. 什么是线性时不变系统?线性时不变系统是指满足叠加性和时间不变性的系统。
叠加性意味着系统对多个输入信号的响应等于对各个输入信号单独响应的和;时间不变性意味着系统对输入信号的响应不随时间变化。
3. 傅里叶变换的性质有哪些?傅里叶变换的性质包括线性、时移、频移、尺度、对称性、卷积定理等。
线性性质表明,信号的线性组合的傅里叶变换等于各个信号傅里叶变换的线性组合;时移性质表明,信号的时间平移会导致其傅里叶变换的相位变化;频移性质表明,信号的频率平移会导致其傅里叶变换的幅度变化;尺度性质表明,信号的尺度变化会导致其傅里叶变换的频率变化;对称性性质表明,实信号的傅里叶变换是共轭对称的;卷积定理表明,时域的卷积对应于频域的乘积。
4. 拉普拉斯变换与傅里叶变换的关系是什么?拉普拉斯变换是傅里叶变换的推广,它通过引入复频率变量s来扩展傅里叶变换的应用范围。
当s的虚部趋于无穷大时,拉普拉斯变换退化为傅里叶变换。
5. 什么是采样定理?采样定理指出,如果一个连续时间信号的频谱只包含在一定频率范围内,那么可以通过在一定采样率下对该信号进行采样来完全恢复原信号。
采样率必须大于信号最高频率的两倍,即奈奎斯特率。
6. 什么是系统的频率响应?系统的频率响应是指系统对不同频率的输入信号的响应。
它可以通过系统的传递函数在频域内进行分析,反映了系统对不同频率成分的放大或衰减情况。
7. 什么是系统的稳定性?系统的稳定性是指当输入信号为有界信号时,系统输出信号也保持有界的性质。
线性时不变系统可以通过其传递函数的极点位置来判断其稳定性。
8. 什么是系统的因果性?系统的因果性是指系统的输出在任何时刻只取决于当前和过去的输入,而不依赖于未来的输入。
因果系统的传递函数在频域内表现为左半平面的极点。
试题一一. 选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 .A 。
非周期序列B 。
周期3=N C.周期8/3=N D 。
周期24=N2、一连续时间系统y(t)= x (sint),该系统是 .A.因果时不变 B 。
因果时变 C 。
非因果时不变 D 。
非因果时变 3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u e t h t ,该系统是 .A 。
因果稳定B 。
因果不稳定 C.非因果稳定 D 。
非因果不稳定4、若周期信号x[n ]是实信号和奇信号,则其傅立叶级数系数a k 是 .A 。
实且偶 B.实且为奇 C.纯虚且偶 D 。
纯虚且奇 5、一信号x (t )的傅立叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x(t)为 。
A. t t 22sinB. tt π2sin C 。
t t 44sin D 。
t t π4sin6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为 .A 。
∑∞-∞=-k k )52(52πωδπ B 。
∑∞-∞=-k k )52(25πωδπC. ∑∞-∞=-k k )10(10πωδπD. ∑∞-∞=-k k )10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n ]奇部的傅立叶变换为 。
A.)}(Re{ωj e X j B 。
)}(Re{ωj e XC. )}(Im{ωj e X jD. )}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x (nT )能唯一表示出原信号的最大采样周期为 。
A. 500 B 。
1000 C 。
0。
05 D. 0。
001 9、一信号x (t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t=,其傅立叶变换)(ωj G 收敛,则x(t)是 .A. 左边B. 右边C. 双边D. 不确定10、一系统函数1}Re{1)(->+=s s e s H s,,该系统是 。
信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。
(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。
3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。
4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。
5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。
6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。
7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。
8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。
9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。
10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。
二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。
( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。
信科0801《信号与系统》复习参考练习题一、单项选择题 (2分1题,只有一个正确选项,共20题,40分)1、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。
200 rad /s C 。
100 rad /s D 。
50 rad /s2、已知信号)(t f 如下图(a )所示,其反转右移的信号f 1(t) 是( )3、已知信号)(1t f 如下图所示,其表达式是( )A 、ε(t )+2ε(t -2)-ε(t -3)B 、ε(t -1)+ε(t -2)-2ε(t -3)C 、ε(t)+ε(t -2)-ε(t -3)D 、ε(t -1)+ε(t -2)-ε(t -3)4、如图所示:f (t )为原始信号,f 1(t)为变换信号,则f 1(t)的表达式是( )A 、f(-t+1)B 、f(t+1)C 、f(-2t+1)D 、f(-t/2+1)5、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( )6。
信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ7线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数D 、实数+复数8、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号9. 积分⎰∞∞-dt t t f )()(δ的结果为( )A )0(fB )(t f C.)()(t t f δ D.)()0(t f δ10卷积)()()(t t f t δδ**的结果为( )A.)(t δB.)2(t δC. )(t fD.)2(t f11零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差12号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在13知连续系统二阶微分方程的零输入响应)(t y zi 的形式为t t Be Ae 2--+,则其2个特征根为() A 。
《信号与系统》复习题1. 已知f(t)如图所示,求f(-3t-2)。
2. 已知f(t),为求f(t0-at),应按下列哪种运算求得正确结果?(t0和a 都为正值)3.已知f(5-2t)的波形如图,试画出f(t)的波形。
解题思路:f(5-2t)−−−−−→−=倍展宽乘22/1a f(5-2×2t)= f(5-t) −−→−反转f(5+t)−−→−5右移f(5+t-5)= f(t)4.计算下列函数值。
(1)dt t t u t t )2(00--⎰+∞∞-)(δ (2)dt t t u t t )2(0--⎰+∞∞-)(δ(3)dt t t e t ⎰+∞∞--++)(2)(δ 5.已知离散系统框图,写出差分方程。
解:2个延迟单元为二阶系统,设左边延迟单元输入为x(k) 左○∑:x(k)=f(k)-a 0*x(k-2)- a 1*x(k-1)→ x(k)+ a 1*x(k-1)+ a 0*x(k-2)=f(k) (1)右○∑: y(k)= b 2*x(k)- b 0*x(k-2) (2) 为消去x(k),将y(k)按(1)式移位。
a 1*y(k-1)= b 2* a 1*x(k-1)+ b 0* a 1*x(k-3) (3) a 0*y(k-2)= b 2* a 0*x(k-2)-b 0* a 0*x(k-4) (4) (2)、(3)、(4)三式相加:y(k)+ a 1*y(k-1)+ a 0*y(k-2)=b 2*[x(k)+ a 1*x(k-1)+a 0*x(k-2)]- b 0*[x(k-2)+a 1*x(k-3)+a 0*x(k-4)] ∴ y(k)+ a 1*y(k-1)+ a 0*y(k-2)= b 2*f(k)- b 0*f(k-2)═>差分方程6.绘出下列系统的仿真框图。
)()()()()(100122t e dt d b t e b t r a t r dt d a t r dtd +=++ 7.判断下列系统是否为线性系统。
信号与系统复习题含答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】(C ))(t δ+(-6e -t +8e -2t)u(t) (D )3)(t δ +(-9e -t +12e -2t)u(t)6、 连续周期信号的频谱具有(A ) 连续性、周期性 (B )连续性、收敛性 (C )离散性、周期性 (D )离散性、收敛性7、 周期序列2)455.1(0+k COS π的 周期N 等于(A) 1 (B )2 (C )3 (D ) 48、序列和()∑∞-∞=-k k 1δ等于(A )1 (B) ∞ (C) ()1-k u (D) ()1-k ku9、单边拉普拉斯变换()se s s s F 2212-+=的愿函数等于10、信号()()23-=-t u te t f t的单边拉氏变换()s F 等于二、填空题(共9小题,每空3分,共30分) 1、 卷积和[()k+1u(k+1)]*)1(k -δ=________________________2、 单边z 变换F(z)= 12-z z的原序列f(k)=______________________ 3、 已知函数f(t)的单边拉普拉斯变换F(s)=1+s s,则函数y(t)=3e -2t·f(3t)的单边拉普拉斯变换Y(s)=_________________________4、 频谱函数F(j ω)=2u(1-ω)的傅里叶逆变换f(t)=__________________5、 单边拉普拉斯变换s s s s s F +++=2213)(的原函数 f(t)=__________________________6、 已知某离散系统的差分方程为)1(2)()2()1()(2-+=----kf k f k y k y k y ,则系统的单位序列响应h(k)=_______________________7、 已知信号f(t)的单边拉氏变换是F(s),则信号⎰-=2)()(t dxx f t y 的单边拉氏变换Y(s)=______________________________ 8、描述某连续系统方程为 该系统的冲激响应h(t)=9、写出拉氏变换的结果()=t u 66 ,=k t 22三(8分)已知信号()()()⎪⎩⎪⎨⎧><==↔./1,0,/1,1s rad s rad jw F j F t f ωωω设有函数()(),dtt df t s =求⎪⎭⎫ ⎝⎛2ωs 的傅里叶逆变换。
1.系统的激励是,响应为,若满足,则该系统为 线性、时不变、因果。
(是否线性、时不变、因果?)2.求积分的值为 5 。
3.当信号是脉冲信号时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。
4.若信号的最高频率是2kHz ,则的乃奎斯特抽样频率为 8kHz 。
5.信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。
6.系统阶跃响应的上升时间和系统的 截止频率 成反比。
7.若信号的,求该信号的。
8.为使LTI 连续系统是稳定的,其系统函数的极点必须在S 平面的 左半平面 。
9.已知信号的频谱函数是,则其时间信号为。
10.若信号的,则其初始值 1 。
二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题2分,共10分)1.单位冲激函数总是满足 ( √ )2.满足绝对可积条件的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
( × )得分)t (e )t (r dt)t (de )t (r =dt )t ()t (212-+⎰∞∞-δf(t)f(t)t)f(23s F(s)=(s+4)(s+2)=)j (F ωj 3(j +4)(j +2)ωωω)s (H ))00(()j (F ωωδωωδω--+=f(t)01sin()t j ωπf(t)211)s (s )s (F +-==+)(f 0)()(t t -=δδ∞<⎰∞∞-dt t f )(3.非周期信号的脉冲宽度越小,其频带宽度越宽。
( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
( × )三、计算分析题(1、3、4、5题每题10分,2题5分,6题15分,共60分)1.信号,信号,试求。
函数t t cos e2-的单边拉氏变换为(1)2(2j 21j 21212+++=⎪⎪⎭⎫ ⎝⎛+++-+=s s s s )。
象函数2e 1)(+-=-s s F s的拉氏反变换为()1(e )(e )()1(22--=---t t t f t t εε)。
序列)3()3()(--=n n n f ε的z 变换为( )。
电信号系统分连续系统、(离散系统)、(混合系统)、串联系统、并联系统、反馈系统 按响应的不同起因响应分为(储能响应)和(受激响应); 卷积交换律是(f 1( t ) * f 2( t ) = f 2( t ) * f 1( t ))卷积结合律是(f 1( t ) * [ f 2( t ) * f 3( t ) ] = [ f 1( t ) * f 2( t ) ] * f 3( t ) ) 卷积分配律是([f 1( t ) + f 2( t ) ] * f 3( t ) = f 1( t ) * f 3( t ) +f 2( t )* f 3( t )) 信号的带宽与信号的持续时间(脉冲宽度)成(反比)。
f ( t )为实偶函数,F ( ω )为(实偶函数); f ( t )为奇函数,F ( ω )为(纯虚函数); f ( t )为非奇非偶函数,F ( ω )为(复函数);H ( s )的零点只影响h ( t )的(幅度)和相位, H ( s )的极点才决定(时域特性的变化模式)。
H (s )分子多项式N (s )=0的根叫零点。
H (s )分母多项式D (s )=0的根叫极点。
极点位于S 平面原点,h ( t )对应为(阶跃)函数;极点位于S 平面负实轴上, h ( t )对应为(衰减指数)函数; 共轭极点位于虚轴上, h ( t )对应为(正弦振荡);共轭极点位于S 的左半平面, h ( t )对应为(衰减的正弦振荡);在零状态条件下,由单位序列δ(n)引起的响应称为(单位)响应,记为(h( n ))。
仅在离散时刻有定义的信号叫(离散时间)信号:。
H(s)在虚轴上有单极点,其余极点均在S 的左半平面时,系统处于(临界稳定) H(s)只要有一个极点位于S 的右半平面,系统处于(不稳定)。
H (s )为系统(冲激响应)的拉氏变换。
H (s )是一个实系数有理分式,它决定了系统的(特征根)(固有频率);具有新内容、新知识的消息叫(信息)。
时不变系统是系统的(元件参数)不随时间变化,或系统的方程为(常系数)。
因果系统是在(激励信号)作用之前系统不产生(响应)。
解调是(从已被调制的信号中恢复原信号)的过程系统函数H (s )是零状态(响应的象函数)与(输入信号的象函数)之比信号(signal ):物质的运动形式或状态的变化。
(声、光、电、力、振动、流量、温度… … ) 系统(system ):由若干相互联系、相互作用的单元组成的具有一定功能的整体。
零输入响应(储能响应 ):从观察的初始时刻起不再施加输入信号,仅由该时刻系统本身的起始储能状态引起的响应称为零输入响应(ZIR )。
零状态响应(受迫响应 ):当系统的储能状态为零时,由外加激励信号(输入)产生的响应称为零状态响应(ZSR ) 。
阶跃响应:LTI 系统在零状态下,由单位阶跃信号引起的响应称为单位阶跃响应,简称阶跃响应,记为s ( t )。
冲激响应:储能状态为零的系统,在单位冲激信号作用下产生的零状态响应称为冲激响应,记为h ( t )。
8-5 试用卷和定理证明以下关系:(a))()()(m n f m n n f -=-*δ(b) )()1()()(n n n n εεε+=*证明 (a) 因由卷和定理m z z F m n n f -⋅↔-*)()()(δ而)()(z F z m n f m -↔-故得)()()(m n f m n n f -=-*δ2232)1(1)1()(-=⋅-=-z z z z z z F(b) 因为22)1(11)()(-=-⋅-↔*z z z z z z n n εε而222)1(1)1()()()()1(-=-+-↔+=+z z z z z z n n n n n εεε所以)()1()()(n n n n εεε+=*1-4、1-8、2-1、2-2、2-15、3-1、3-2、3-4、3-7、4-1、4-3、4-4、4-7、5-6、5-7、5-8、7-6、7-7、7-81-4 如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。
题1-4图解 系统为反馈联接形式。
设加法器的输出为x ( t ),由于)()()()(t y a t f t x -+=且)()(,d )()(t y t x t t x t y '==⎰故有)()()(t ay t f t y -='即)()()(t f t ay t y =+'1-8 若有线性时不变系统的方程为)()()(t f t ay t y =+'若在非零f ( t )作用下其响应t t y --=e 1)(,试求方程)()(2)()(t f t f t ay t y '+=+'的响应。
解 因为f ( t ) →t t y --=e 1)(,由线性关系,则)e 1(2)(2)(2t t y t f --=→由线性系统的微分特性,有t t y t f -='→'e )()(故响应t t t t y t f t f ----=+-=→'+e 2e )e 1(2)()()(22-1 如图2-1所示系统,试以u C ( t )为输出列出其微分方程。
题2-1图解 由图示,有tu C R u i d d C C L +=又⎰-=tt u u L i 0C S L d )(1 故CC C S )(1u C Ru u u L ''+'=- 从而得)(1)(1)(1)(S C C Ct u LCt u LC t u RC t u =+'+''2-2 设有二阶系统方程0)(4)(4)(=+'+''t y t y t y在某起始状态下的0+起始值为2)0(,1)0(='=++y y试求零输入响应。
解 由特征方程λ2 + 4λ + 4 =0得 λ1 = λ2 = -2则零输入响应形式为t e t A A t y 221zi )()(-+=由于y zi ( 0+ ) = A 1 = 1-2A 1 + A 2 = 2所以A 2 = 4故有0,)41()(2zi ≥+=-t e t t y t2-15 一线性时不变系统,在某起始状态下,已知当输入f ( t ) = ε( t )时,全响应y 1( t ) = 3e -3t⋅ε( t );当输入f ( t ) = -ε( t )时,全响应y 2( t ) = e -3t⋅ε( t ),试求该系统的冲激响应h ( t )。
解 因为零状态响应ε( t ) → s ( t ),-ε( t ) → -s ( t )故有y 1( t ) = y zi ( t ) + s ( t ) = 3e -3t ⋅ε( t ) y 2( t ) = y zi ( t ) - s ( t ) = e -3t ⋅ε( t )从而有y 1( t ) - y 2( t ) = 2s ( t ) = 2e -3t ⋅ε( t )即s ( t ) = e -3t ⋅ε( t )故冲激响应h ( t ) = s ' ( t ) = δ( t ) - 3e -3t ⋅ε( t )3-1 求题3-1图所示周期信号的三角形式的傅里叶级数表示式。
题3-1图解 对于周期锯齿波信号,在周期( 0,T )内可表示为t TA t f =)( 系数2d 1d )(1000At T At T t t f T a T T ===⎰⎰ ⎰⎰⋅==TT t t n t T A t t n t f T a 01201n d cos 2d cos )(2ωω0sin 20112=⎥⎥⎦⎤⎢⎢⎣⎡=Tn t n t T A ωω ⎰⎰⋅==TT t t n t TA t t n t f T A b 01201n d sin 2d sin )(2ωω πcos 20112n An t n t T A T-=⎥⎥⎦⎤⎢⎢⎣⎡=ωω 所以三角级数为∑∞=-=11sin π2)(n t n n AA t f ω3-2 如图所示周期矩形波信号,试求其复指数形式的傅里叶级数。
图中2=T。
题3-2图解:该信号周期2=T,故ππω==T21,在一个周期内可得:⎰⎰----+-=+-=1001)(22121ππππππjn jn t jn tjn n e e n j A jn A dt Ae dt Ae F⎪⎩⎪⎨⎧±±=±±==-=-=,4,20,3,12)cos 1(cos n n jn An jn A n jn A jn A ππππππ因为)(t f 为奇函数,故00=F ,从而有指数形式:3-4 求题3-4图示信号的傅里叶变换。
,3,1,2)(±±==∑∞-∞=n e jn A t f tjn n ππ题3-4图解 (a)因为τ<tτ为奇函数,故t t tF d sin 2j )(0ωτωτ⎰-=]cos [sin 2j2ωτωτωττω--=)](Sa [cos 2j ωτωτω-=或用微分定理求解亦可。
(b) f ( t )为奇函数,故t t F d sin )1(2j )(0ωωτ⎰--=)2(sin 4j ]1[cos j 22ωτωωτω=-=若用微分-积分定理求解,可先求出f ' ( t ),即f ' ( t ) = δ( t + τ ) + δ( t - τ ) - 2δ( t )所以2cos 22e e )j ()(j j 1-=-+=↔'-ωτωωτωτF t f又因为F 1( 0 ) = 0,故)1(cos j 2)(j 1)(1-==ωτωωωωF F3-7 试求信号f ( t ) = 1 + 2cos t + 3cos3t 的傅里叶变换。
解 因为1 ↔ 2πδ(ω)2cos t ↔ 2π[δ(ω - 1) + δ(ω + 1) ] 3cos3t ↔ 3π[δ(ω - 3) + δ(ω + 3) ]故有F (ω ) = 2π[δ(ω) + δ(ω - 1) + δ(ω + 1) ] + 3π[δ(ω - 3) + δ(ω + 3) ]4-3 设系统的频率特性为2j 2)(+=ωωH试用频域法求系统的冲激响应和阶跃响应。