光伏发电预测方法简析
- 格式:doc
- 大小:26.78 KB
- 文档页数:5
《光伏发电系统功率预测方法研究综述》篇一一、引言随着环境保护和可持续发展的需求日益增强,光伏发电系统作为一种清洁、可再生的能源形式,已经得到了广泛的应用和关注。
准确地进行光伏发电系统功率预测,对提升系统运行效率、保障电力供应稳定以及降低运营成本等方面具有极其重要的意义。
本文将对光伏发电系统功率预测方法进行全面研究综述。
二、光伏发电系统功率预测的研究背景与意义光伏发电系统功率预测是利用历史数据、环境因素等,通过特定的算法模型对未来一段时间内光伏发电系统的输出功率进行预测。
其研究背景主要源于对可再生能源的依赖性增强以及对电力供应稳定性的需求。
其意义在于提高光伏发电系统的运行效率,优化电力调度,降低运营成本,同时也有助于提高电力系统的稳定性,减少因电力供需不平衡导致的能源浪费。
三、光伏发电系统功率预测的主要方法目前,光伏发电系统功率预测的主要方法包括基于物理模型的方法、基于统计学习的方法和基于人工智能的方法。
1. 基于物理模型的方法:通过建立光伏电池板的物理模型,分析光照、温度等环境因素对光伏发电系统的影响,进行功率预测。
这种方法精度较高,但计算复杂,对模型参数的准确性要求较高。
2. 基于统计学习的方法:利用历史数据和气象数据,通过回归分析、时间序列分析等方法进行功率预测。
这种方法计算简单,但需要大量的历史数据支持。
3. 基于人工智能的方法:利用神经网络、支持向量机等人工智能技术进行功率预测。
这种方法可以处理非线性、时变性的问题,具有较高的预测精度和泛化能力。
四、各种功率预测方法的优缺点及适用场景1. 基于物理模型的方法:优点在于可以较为准确地反映光伏电池板的实际工作状态,但计算复杂,对模型参数的准确性要求高,适用于对精度要求较高的场景。
2. 基于统计学习的方法:优点在于计算简单,需要的数据量相对较小,但需要大量的历史数据支持,适用于数据资源丰富的场景。
3. 基于人工智能的方法:优点在于可以处理非线性、时变性的问题,具有较高的预测精度和泛化能力,适用于复杂多变的场景。
《光伏发电系统功率预测方法研究综述》篇一一、引言随着社会经济的持续发展和人们对绿色能源需求的不断增长,光伏发电技术日益成为重要的可再生能源之一。
光伏发电系统的功率预测作为其关键技术之一,对于提高光伏发电的利用率、优化能源调度和降低运营成本具有重要意义。
本文旨在全面综述光伏发电系统功率预测方法的研究现状,分析各种方法的优缺点,为进一步的研究和应用提供参考。
二、光伏发电系统功率预测方法概述光伏发电系统功率预测方法主要分为两大类:基于物理模型的方法和基于数据驱动的方法。
1. 基于物理模型的方法基于物理模型的方法主要依据气象、光照等自然因素对光伏发电系统的影响进行建模,通过模型预测未来时刻的光照强度、温度等参数,进而预测光伏系统的功率输出。
这类方法通常需要精确的气象数据和复杂的物理模型,因此计算量较大,但预测精度相对较高。
2. 基于数据驱动的方法基于数据驱动的方法主要利用历史数据和机器学习算法进行功率预测。
这类方法不需要建立复杂的物理模型,而是通过分析历史数据中的规律和趋势,建立输入与输出之间的映射关系,实现对未来时刻功率的预测。
常用的数据驱动方法包括人工神经网络、支持向量机、时间序列分析等。
三、光伏发电系统功率预测方法研究进展1. 基于物理模型的功率预测方法研究进展近年来,研究者们针对光伏系统的物理特性,提出了许多改进的物理模型。
例如,考虑了光照强度、温度、风速等多个因素的综合影响,提高了模型的预测精度。
此外,还有一些研究者将物理模型与数据驱动方法相结合,进一步提高预测性能。
2. 基于数据驱动的功率预测方法研究进展随着机器学习技术的发展,越来越多的研究者将机器学习算法应用于光伏功率预测。
例如,利用深度学习算法建立深度神经网络模型,通过对历史数据的训练和学习,实现对未来时刻功率的准确预测。
此外,还有一些研究者将不同的机器学习算法进行集成,以提高预测性能。
四、各种方法的优缺点分析1. 基于物理模型的优点在于其具有明确的物理意义和较高的预测精度,但需要精确的气象数据和复杂的物理模型,计算量较大。
光伏发电功率预测方法及特点分析近年来,随着科技的不断进步,太阳能与其相关产业已经成为世界发展最快的行业之一,所以研究太阳能发电有着至关重要的意义。
做好光伏发电功率预测的有关工作,对整个电力系统的稳定运行具有重大意义。
本文主要阐述了几种功率预测的方法以及各自的特点。
标签:光伏发电;功率;预测1 基于BP神经网络的预测方法及特点BP神经网络是一种具有前向通道的多层神经网络,误差反馈方法是它的基础。
BP神经网络的学习过程一般可分为信号正向传播与误差反向反馈。
当信号开始正向流通时,信号先进入输入层,再经隐层处理,然后传入误差的反馈阶段,将输出的误差以一种固定的方式向输入层反馈,再以某种规则分给各个单元,这样各单元的误差信号就得到了,这也为将来改变单位均值提供了参考。
BP神经网络是目前为止研究最为广泛的人工神经网络模型之一。
其特点为:①BP神经网络计算能力非常强大,能够有效地调整各层神经元之间的均值,从而很好的解决非线性目标函数的逼近问题。
②BP神经网络结构简单,能在很短时间内完成均值和阈值的修正,而且网络训练时占据内存小。
正由于这些优点,BP神经网络被大量应用于模式识别、系统辨识、行为预测、信号处理和自动控制等学科和领域中。
2 小波分析方法2.1 小波分析相关理论小波变换就是用一系列基本小波函数去表示或逼近一个时间信号,而基本小波函数就是一种持续时间很短的波,但不是每一种持续时间很短的波都是小波。
小波还拥有良好的时域局部化的特性,這使小波变换对非平稳信号的时频分析非常适用。
Mallat算法是一种信号的分解方法,S为原始的输入信号,通过两个不同的滤波器产生信号近似值和细节值,在小波分析中,近似值为信号的低频分量,它表示较大缩放因子产生的系数,而细节值为信号的高频分量,它是由较小的缩放因子产生的系数。
因此,离散小波变换可以认为是由低通滤波器和高通滤波器组成的,原始信号经过这样的两个滤波器的分解叫做一级分解。
光伏发电系统功率猜测方法综述随着全球对可再生能源的需求不息增长,太阳能光伏发电系统的应用也日益普及。
然而,太阳能光伏发电的特殊性质,如日照条件、气候变化和系统本身特征的动态性,给功率猜测带来了挑战。
因此,开发准确可靠的光伏发电系统功率猜测方法势在必行,以提高光伏发电系统的效率和经济性。
现有的光伏发电系统功率猜测方法主要可以分为天文学模型、统计学模型和机器进修模型三大类。
天文学模型是最早被提出的方法之一,它基于太阳角度和日照时间等因素,通过计算太阳高度角、太阳方位角以及太阳辐射强度等参数来猜测光伏系统的发电功率。
这种方法具有较高的准确性和可行性,但受限于所需的天文学数据的可获得性,猜测范围较窄。
统计学模型是基于历史数据和阅历公式建立的猜测模型。
依据过去的天气数据和发电数据,通过统计方法来分析它们之间的干系,建立一个数学模型来猜测将来的发电功率。
这种方法适用于长期猜测,但对于动态的天气变化和新的环境条件缺乏灵活性。
机器进修模型是目前探究的热点,凭借其强大的进修能力和适应性,成为猜测光伏发电功率的主要方法之一。
常见的机器进修方法包括神经网络、支持向量机、决策树以及随机森林等。
机器进修模型通过输入大量的历史数据,自动进修其中的规律和模式,从而猜测将来的发电功率。
此外,机器进修模型还可以结合其他影响因素,如温度、湿度和风速等,建立更准确的猜测模型。
它具有良好的灵活性和鲁棒性,适用于各种光伏发电系统的功率猜测。
在实际应用中,由于每个光伏发电系统的特点和环境条件各不相同,最优的功率猜测方法也会有所不同。
因此,选择合适的猜测方法需要思量多个因素,如精度、计算复杂度、数据需求和适用范围等。
面对光伏发电系统功率猜测的挑战,将来的探究方向主要包括以下几个方面:1.改进天文学模型:进步更精确的天文学模型,以思量更多的影响因素,如地理位置、气候变化和大气污染等,提高猜测准确性。
2.优化统计学模型:结合机器进修技术,改进统计学模型的猜测能力,并思量更多的因素,如季节性变化和光伏组件老化等,提高猜测的稳定性和可靠性。
电力系统中的光伏发电功率预测算法分析在电力系统中,光伏发电已经成为一种重要的可再生能源,它的发展对于提高能源利用率、减少碳排放和保护环境具有重要意义。
然而,由于光伏发电具有不稳定性和间歇性的特点,其功率输出存在一定的波动性。
因此,准确预测光伏发电功率对于电力系统的可靠性和稳定性非常重要。
本文将对电力系统中的光伏发电功率预测算法进行深入分析,并介绍一些常用的预测方法。
首先,光伏发电功率预测的重要性不言而喻。
光伏发电系统的功率输出受到多种因素的影响,如天气条件、太阳辐射强度、温度等。
这些因素的变化使得光伏发电功率呈现出不规则的波动性。
准确地预测光伏发电功率可以帮助电力系统运营商更好地安排能源供应计划,提高系统的可靠性和经济性。
光伏发电功率预测算法主要可以分为统计学方法、机器学习方法和物理模型方法三大类。
根据具体的应用场景和需求,选择合适的预测算法对于提高预测精度至关重要。
一、统计学方法是最基础的光伏发电功率预测方法之一。
这种方法主要通过对历史数据的分析和统计来预测未来的功率输出。
常见的统计学方法包括移动平均法、指数平滑法和灰色模型法等。
移动平均法是一种简单但有效的方法,它基于过去一段时间内的功率数据来估计未来的功率输出;指数平滑法则根据历史数据的加权平均值来进行预测,其特点是对最近的数据值赋予更高的权重;灰色模型法则是一种建立在微分方程基础上的预测方法,它可以有效地降低预测误差。
二、机器学习方法是目前光伏发电功率预测中应用较广泛的方法之一。
机器学习方法通过建立预测模型,使用历史数据来训练模型,并利用训练好的模型来预测未来的功率输出。
常见的机器学习方法包括人工神经网络、支持向量机和决策树等。
人工神经网络是一种仿生学的方法,通过模拟人脑神经元之间的连接关系来进行数据处理和预测;支持向量机则是一种基于统计学理论的方法,可以有效地处理高维数据和非线性关系;决策树是一种基于条件判断的分类方法,它通过树状结构来进行数据分类和预测。
分布式光伏发电的特性分析与预测方法综述一、分布式光伏发电系统的特性分析1. 光伏发电系统的工作原理光伏发电系统把光能直接转换为电能,是一种直接利用太阳能的发电方式。
光伏发电系统主要由光伏组件、逆变器、电池组、电网连接及监控系统等组成。
光伏组件是发电系统的核心部分,它通过光电效应将光能转换成电能。
逆变器则是将光伏组件产生的直流电转换成交流电供电网络使用。
(1)分布广泛:分布式光伏发电系统可以建设在城市的屋顶、田间地头、工业区、农村等多个地方,可以充分利用各种空闲资源,具有分布广泛的特点。
(2)建设周期短:相比起大型集中式发电厂,分布式光伏发电系统的建设周期短,可以更快速地投入使用,为当地提供清洁能源。
(3)对配套设施要求低:分布式光伏发电系统对配套设施的要求较低,无需传输输电线路,无需燃料,降低了设备的投资成本。
(4)扩建维护灵活:分布式光伏发电系统可以根据需求进行适当扩建,维护灵活,并且对电网冲击较小,能够有效应对电力需求的不断增长。
分布式光伏发电系统由于受到天气、季节等因素的影响,其发电量具有一定的波动性。
其典型特点在于日内和日周循环波动,以及季节循环波动。
这种波动性可能给发电计划和电网调度带来一定的困难,因此需要对分布式光伏发电系统的发电量进行准确预测。
1. 传统的时间序列分析方法传统的时间序列分析方法是一种常见的用于预测分布式光伏发电系统的发电量的方法。
该方法基于历史数据,通过建立数学模型对未来的发电量进行预测。
常用的模型包括ARIMA模型、指数平滑模型、灰色模型等。
该方法简单易行,不需要大量的计算资源,但对于某些非线性、非稳定的时间序列数据,预测效果可能不甚理想。
2. 人工神经网络方法人工神经网络是一种模仿人脑神经网络结构和功能的数学模型,可以通过大量的历史数据对未来的发电量进行预测。
人工神经网络方法可以处理非线性、高维度、非稳定等问题,具有很强的适应性和泛化能力。
人工神经网络方法需要大量的数据训练和参数调整,计算复杂度比较高。
光伏发电预测方法简析本文对太阳能光伏发电的预测方法进行了分析与总结,归纳了各种预测方法的优点及不足,为国内太阳能光伏发电行业的发展提供重要依据。
1 太阳能光伏发电预测原理当前,对太阳能光伏发电预测的研究主要集中在太阳能辐射强度的预测上。
太阳辐射的逐日或逐时观测数据构成了随机性很强的时间序列,但太阳辐射序列的内部仍有某种确定性的规律,只有充分了解掌握太阳能光伏发电的特点、变化规律,才能建立符合实际情况的预测模型及方法。
太阳辐射分为直接太阳辐射和散射太阳辐射。
直接太阳辐射为太阳光通过大气到达地面的辐射;散射太阳辐射为被大气中的微尘、分子、水汽等吸收、反射和散射后,到达地面的辐射。
散射太阳辐射和直接太阳辐射之和称为总辐射。
太阳总辐射强度的影响因素包括:太阳高度角、大气质量、大气透明度、海拔、纬度、坡度坡向、云层。
太阳能光伏发电预测是根据太阳辐射原理,通过历史气象资料、光伏发电量资料、卫星云图资料等,运用回归模型、人工神经网络、卫星遥感技术、数值模拟等方法获得预测信息,包括太阳高度角、大气质量、大气透明度、海拔、纬度、坡度坡向、云层等要素,根据这些要素建立太阳辐射预报模型。
2 太阳能光伏发电预测方法分析太阳能变化趋势主要受到当地地理条件和气象条件的影响。
地理条件的影响有明显规律,可以根据当地经纬度计算出全年太阳的运行轨迹,并结合光伏电池阵列自身的参数计算出太阳能变化的一个总体变化趋势。
但该趋势并不能反映出几小时内,甚至不能反映出几天内的太阳能变化的大致情况。
气象条件对于太阳辐射的影响是最直接的。
要实现几小时内的太阳能趋势预报,就必须找到根据气象条件推算出太阳能趋势的计算方法。
近年来,随着太阳能产业的飞速发展,对太阳能光伏发电预测要求的不断增加,发达国家对太阳能光伏发电预测的研究较早、发展较快。
目前,我国对太阳能光伏发电预测技术的研究还处于起步阶段,需进一步深入研究与实验。
太阳能辐射的预测方法主要有三大类:第一类:基于历史气象数据和光伏发电量数据的研究,采用统计学方法进行分析建模;第二类:基于卫星云图资料数据和地面监测资料数据,通过卫星、雷达图象处理,计算出实时太阳能辐射的预报方法;第三类:基于数值天气预报的预测方法。
光伏发电功率超短期预测方法综述光伏发电功率超短期预测方法综述近年来,随着可再生能源的快速发展,光伏发电在能源领域扮演了日益重要的角色。
然而,由于光伏发电的不稳定性,其功率预测成为了保障电网稳定运行的一项关键任务。
光伏发电功率超短期预测旨在对光伏发电功率进行分钟级别的预测,可以为发电厂商、电力市场和电网调度等提供重要的参考依据。
本文将对光伏发电功率超短期预测方法进行综述,介绍目前常用的方法和技术。
一、基于历史数据的方法基于历史数据的方法是光伏发电功率预测中最常见的方法之一。
它通过分析历史光伏功率数据,提取相关特征,并建立统计模型来进行预测。
常见的统计模型包括回归模型、时间序列模型和人工神经网络模型等。
回归模型如线性回归、支持向量机回归等可以建立光伏发电功率与气象因素、日照时间等之间的关系,并进行预测。
时间序列模型如ARIMA模型、MA模型可以通过分析时间序列数据的趋势、季节性等进行预测。
人工神经网络模型如多层感知器、循环神经网络等可以通过学习历史数据的非线性关系进行预测。
二、基于天气预报的方法天气因素是影响光伏发电功率的重要因素,因此天气预报信息可以提供对光伏发电功率的合理预测。
基于天气预报的方法利用气象数据和天气预报模型,结合历史光伏功率数据,在预测时考虑天气因素的影响。
常见的天气预报模型包括数值天气预报模型和统计天气预报模型。
数值天气预报模型如WRF模型、GFS模型等通过数值计算大气物理过程得到天气预报结果。
统计天气预报模型如逐日聚类模型、回归模型等通过分析历史天气数据,建立统计模型来进行预测。
三、基于模型组合的方法由于光伏发电功率受多种因素影响,单一预测模型往往难以准确预测。
因此,基于模型组合的方法可以通过结合多个模型的预测结果,提高预测的准确性。
常见的模型组合方法包括模型融合和模型堆叠。
模型融合方法如平均法、加权法等通过对多个模型的预测结果进行平均或加权,得到最终预测结果。
模型堆叠方法如层次回归、AdaBoost等通过将多个模型的预测结果作为输入,构建一个新的模型来进行预测。
《光伏发电功率预测方法研究综述》篇一一、引言随着环境问题日益严峻,清洁可再生能源的发展受到了世界范围内的广泛关注。
光伏发电作为清洁能源的重要一环,在全球范围内的装机容量持续增加。
然而,光伏发电受气候条件、季节变化等外部因素影响,其输出功率的波动性给电网稳定运行带来挑战。
因此,准确预测光伏发电功率成为了迫切需要解决的问题。
本文旨在综述光伏发电功率预测方法的研究现状、存在的问题及发展趋势。
二、光伏发电功率预测方法概述光伏发电功率预测方法主要分为两大类:物理模型法和数据驱动法。
1. 物理模型法物理模型法主要是基于气象、光照等物理因素,建立光伏发电系统的物理模型进行预测。
这种方法考虑了影响光伏发电的各种因素,包括光照强度、温度、风速等。
通过对这些因素的测量和预测,结合物理模型进行计算,从而得出光伏发电功率的预测值。
物理模型法的优点是准确性较高,但需要大量的气象数据和复杂的计算过程。
2. 数据驱动法数据驱动法主要是利用历史数据、统计方法等手段进行预测。
该方法无需建立复杂的物理模型,而是通过对历史数据的分析和学习,发现数据间的规律和趋势,从而对未来的光伏发电功率进行预测。
数据驱动法包括时间序列分析、机器学习等方法。
其中,机器学习方法在光伏发电功率预测中得到了广泛应用,如支持向量机、神经网络等。
三、光伏发电功率预测方法的研究现状目前,国内外学者在光伏发电功率预测方面进行了大量研究。
在物理模型法方面,研究人员不断改进模型结构,提高模型的准确性和稳定性。
同时,越来越多的学者开始关注数据驱动法在光伏发电功率预测中的应用。
其中,机器学习方法在光伏发电功率预测中表现出了良好的性能。
此外,随着深度学习技术的发展,深度学习模型如卷积神经网络、循环神经网络等也被广泛应用于光伏发电功率预测中。
四、存在的问题及挑战尽管光伏发电功率预测方法取得了一定的研究成果,但仍存在一些问题和挑战。
首先,现有的预测方法在面对复杂的气候条件和季节变化时,其准确性有待进一步提高。
《光伏发电功率预测方法研究综述》篇一一、引言随着全球能源结构的转变和环境保护意识的提高,可再生能源逐渐成为人类社会发展的重要方向。
其中,光伏发电以其清洁、无污染、可持续等优点,受到了广泛关注。
然而,光伏发电受天气、时间、地理位置等多种因素影响,其输出功率具有较大的波动性。
因此,对光伏发电功率进行准确预测,对于提高光伏发电的利用率、减少能源浪费、优化电网调度等具有重要意义。
本文旨在综述当前光伏发电功率预测方法的研究现状及发展趋势。
二、光伏发电功率预测方法目前,光伏发电功率预测方法主要包括物理方法、统计方法和组合方法等。
1. 物理方法物理方法主要是基于光伏电池的工作原理和光、电、热等物理特性进行预测。
该方法考虑了光伏电池的电气特性、光照强度、温度等影响因素,通过建立物理模型对光伏发电功率进行预测。
物理方法的优点在于预测精度较高,但需要大量的物理参数和复杂的计算过程。
2. 统计方法统计方法主要是利用历史数据和统计学原理进行预测。
该方法通过分析历史数据中的天气、光照、温度等因素与光伏发电功率的关系,建立统计模型进行预测。
统计方法具有简单易行、计算量小等优点,但受历史数据质量和数量的限制,预测精度可能有所降低。
3. 组合方法组合方法是将物理方法和统计方法相结合,充分利用两者的优点进行预测。
该方法通过建立混合模型,将物理特性和统计规律相结合,提高预测精度。
组合方法的优点在于综合考虑了光伏发电的物理特性和统计规律,具有较高的预测精度。
三、研究现状及发展趋势目前,国内外学者在光伏发电功率预测方面进行了大量研究,取得了丰富的成果。
一方面,随着人工智能、机器学习等技术的发展,越来越多的研究者将神经网络、支持向量机、深度学习等算法应用于光伏发电功率预测中,提高了预测精度和稳定性。
另一方面,研究者还在不断探索新的预测方法和模型,如基于数据挖掘的预测方法、基于多源信息的融合预测方法等。
未来,光伏发电功率预测方法将朝着智能化、精细化、实时化的方向发展。
太阳能光伏发电作为一种取之不尽,用之不竭的清洁环保能源,已成为未来能源发展的重点,本文对太阳能光伏发电的预测方法进行了分析与总结,根据太阳能光伏发电的应用及需求,归纳了各类太阳能光伏发电预测方法的优点及不足,希望对我国太阳能光伏发电预测方法的发展起到一定的促进和推动作用。
在石油开采量日益见底和生态环境急速恶化的严峻形势下,太阳能作为一种自然能源,以其储量丰富且清洁无污染性显示了其独特的优势,已被国际公认为未来最具竞争性的能源之一。
太阳能光伏发电成为太阳能利用的主要方式之一。
光伏发电分为离网和并网两种形式,随着光伏并网技术的成熟与发展,并网光伏发电已成为主流趋势。
由于大规模集中并网光伏发电系统容量的急速增加,并网光伏发电系统输出功率固有的间歇性和不可控等缺点对电网的冲击成为制约并网光伏发电的重要元素。
太阳能光伏发电系统发电量受当地太阳辐射量、温度、太阳能电池板性能等方面因素的影响。
其中太阳辐射强度的大小直接影响发电量的多少,辐射强度越大,发电量越大,功率越大。
太阳辐射受季节和地理等因素的影响,具有明显的不连续性和不确定性特点,有着显着的年度变化、季节变化和日变化周期,且大气的物理化学状况如云量、湿度、大气透明度、气溶胶浓度也影响着太阳辐射的强弱。
美国、欧洲、日本等发达国家对太阳能光伏发电预测方法的较早的进行了研究与实验。
我国太阳能光伏发电预测技术起步较晚,少数几个知名大学相继开展了以建模、仿真为主的技术研究。
本文对对太阳能光伏发电的预测方法进行了分析与总结,归纳了各种预测方法的优点及不足,为国内太阳能光伏发电行业的发展提供重要依据。
1 太阳能光伏发电预测原理
当前,对太阳能光伏发电预测的研究主要集中在太阳能辐射强度的预测上。
太阳辐射的逐日或逐时观测数据构成了随机性很强的时间序列,但太阳辐射序列的内部仍有某种确定性的规律,只有充分了解掌握太阳能光伏发电的特点、变化规律,才能建立符合实际情况的预测模型及方法。
太阳辐射分为直接太阳辐射和散射太阳辐射。
直接太阳辐射为太阳光通过大气到达地面的辐射;散射太阳辐射为被大气中的微尘、分子、水汽等吸收、反射和散射后,到达地面的辐射。
散射太阳辐射和直接太阳辐射之和称为总辐射。
太阳总辐射强度的影响因素包括:太阳高度角、大气质量、大气透明度、海拔、纬度、坡度坡向、云层。
太阳能光伏发电预测是根据太阳辐射原理,通过历史气象资料、光伏发电量资料、卫星云图资料等,运用回归模型、人工神经网络、卫星遥感技术、数值模拟等方法获得预测信息,包括太阳高度角、大气质量、大气透明度、海拔、纬度、坡度坡向、云层等要素,根据这些要素建立太阳辐射预报模型。
2 太阳能光伏发电预测方法分析
太阳能变化趋势主要受到当地地理条件和气象条件的影响。
地理条件的影响有明显规律,可以根据当地经纬度计算出全年太阳的运行轨迹,并结合光伏电池阵列自身的参数计算出太阳能变化的一个总体变化趋势。
但该趋势并不能反映出几小时内,甚至不能反映出几天内的太阳能变化的大致情况。
气象条件对于太阳辐射的影响是最直接的。
要实现几小时内的太阳能趋势预报,就必须找到根据气象条件推算出太阳能趋势的计算方法。
近年来,随着太阳能产业的飞速发展,对太阳能光伏发电预测要求的不断增加,发达国家对太阳能光伏发电预测的研究较早、发展较快。
目前,我国对太阳能光伏发电预测技术的研究还处于起步阶段,需进一步深入研究与实验。
太阳能辐射的预测方法主要有三大类:
第一类:基于历史气象数据和光伏发电量数据的研究,采用统计学方法进行分析建模;
第二类:基于卫星云图资料数据和地面监测资料数据,通过卫星、雷达图象处理,计算出实时太阳能辐射的预报方法;
第三类:基于数值天气预报的预测方法。
2.1 第一类预测方法
第一类预测方法,其模型的建立不考虑太阳辐射变化的物理过程,通过对历史观测数据资料进行分析和处理,以历史发电量预报未来发电量。
一般采用回归模型预测、神经网络等数学方法,建立光伏发电系统与气象要素相关性的统计模型,进行发电量预测。
该方法模型构造及运算方法较为简单,但只适应于发电量变化不大的平稳时间序列,对于发电量变化较大的时间序列,误差较大。
2.1.1 回归模型预测
回归模型预测根据历史资料,,找出天气变化与太阳辐射的关系及其变化规律,建立可以进行数学分析的数学模型,对未来的太阳辐射进行预测。
该方法其特点是将预测目标的因素作为变量,将预测目标作为常量。
利用给定的多组变量和常量资料,研究各种变量之间的关系。
利用得到的回归方程式来表示变量与常量之间的相对关系,从而达到预测太阳辐射的目的。
在大量的实验与实践中得出,变量误差较大,尤为正午时误差明显。
回归模型预测对于非线时间序列的太阳辐射数据预测结果并不理想。
人工神经网络方法较回归模型预测误差较小。
2.1.2 人工神经网络
人工神经网络方法采用神经网络技术,建立发电量与太阳总辐射、板温的函数模型,历史数据结合效果较好。
目前研究最多的是应用误差反向传播算法(BP算法)进行短期预期。
该算法的主要思路为将历史数据和影响太阳辐射最大的几类因素作为输入量输入人工神经网络,经过输入层、隐含层和输出层中各种数据运算从而生成输出量;再以设定误差为目标函数对人工神经网络权值进行反复修正与完善,直至达到设定误差值。
在传统统计无法满足要求时,可利用人工神经网络进行预测方法,但该方法同样基于历史气象数据进行预测,发电量预报严重依赖于太阳总辐射预报准确:未能找出影响光伏发电量的关键逐时气象要素,对突发及随机的天气变化预测较难控制。
2.2第二类预测方法第二类预测方法主要利用卫星遥感技术完成太阳辐射的预测。
卫星遥感是指以人造卫星为传感器平台的观测活动,是通过勘测地球大气系统发射或反射的电磁辐射而实现的。
它包括对地观测以及面向太空环境的观测活动,其中对地观测是目前卫星遥感的主要内容高空间分辨率图像数据和地理信息系统紧密结合,为太阳辐射预测提供了可高依据。
1960年,第一颗泰罗斯卫星将第一幅可见光云图传送至地球,使人们看到了用卫星遥感的巨大潜力。
从此,以气象卫星技术的逐步完善为开始,又逐渐出现了遥感地球大气、地球表面陆地、海洋特征以及监测地球环境的各种卫星。
美国的卫星遥感技术一直处于世界领先地位,代表了卫星遥感技术的发展水平。
欧洲、加拿大、日本等国都在大力发展研究遥感技术。
我国的第一颗地球同步气象卫星“风云2号”,于1997年6月10升空,标志着我国卫星遥感技术迈上了新的台阶。
经过大量的研究与实践表明,卫星遥感技术获取的小时地面辐射数据与地面观测的辐射数据偏差较大,最大误差可达到均方根误差20%-25%。
因此如何更好的较小误差,准确的统计、预测将成为遥感技术的发展方向。
2.3 第三类预测方法
第三类预测方法主要利用数值模拟方法进行预测,即用数学物理模式对大气状况进行分析,用高速计算机求解进行预报的方法。
该方法根据描述大气运动规律的流动力学和热力学原理建立方程组,确定某个时刻大气的初始状态后,就可通过数学方法求解,计算出来某个时间大气的状态,就是通常所说的天气形势及有关的气象要素如温度、风、降水、辐照度等。
数值模拟预测方法预测的时间较长,目前,可预测40h甚至更长的数据。
数值模拟方法中的气象和环境因素最为复杂,难以精确确定,所以预报的误差不仅存在,对于短时又特别复杂的变化,准确度更是大大降低。
因此精准度的提高一直是目前研究的重点和难点。
3 结语与展望
本文在阅读了大量国内外太阳能光伏发电预测方法文献,广泛调研的基础上,较为全面地论述了太阳能光伏发电量预报技术的研究现状和发展方向,对三类预测方法进行较为详细的总结与分析,阐述了各类方法的优点及缺点。
如何在已有的科研成果基础上继续完善、不断改进和探索,找出影响太阳辐射的关键因素,准确预测,形成多层次、多信息融合的综合预报系统,是我国太阳能光伏发电预测的主要研究方向。
备注说明,非正文,实际使用可删除如下部分。
本内容仅给予阅读编辑指点:
1、本文件由微软OFFICE办公软件编辑而成,同时支持WPS。
2、文件可重新编辑整理。
3、建议结合本公司和个人的实际情况进行修正编辑。
4、因编辑原因,部分文件文字有些微错误的,请自行修正,并不影响本文阅读。
Note: it is not the text. The following parts can be deleted for actual use. This content only gives reading and editing instructions:
1. This document is edited by Microsoft office office software and supports WPS.
2. The files can be edited and reorganized.
3. It is suggested to revise and edit according to the actual situation of the company and individuals.
4. Due to editing reasons, some minor errors in the text of some documents should be corrected by yourself, which does not affect the reading of this article.。