测量牛顿环实验报告
- 格式:doc
- 大小:54.00 KB
- 文档页数:7
测量牛顿环实验报告实验目的:使用牛顿环实验测量透明平板的厚度。
实验原理:牛顿环是一种由透明平板和光的干涉现象形成的颜色圆环。
当平板上的光线被反射和折射时,光程差会导致不同波长的光发生相位差,从而产生干涉现象。
根据干涉条件,可计算出透明平板的厚度。
实验器材:1.牛顿环装置:包括光源、透明平板、显微镜等。
2.千分尺或米尺:用于测量透明平板的厚度。
实验步骤:1.将透明平板置于光源下方,使光线通过透明平板后,经显微镜观察。
2.调节显微镜,使牛顿环清晰可见。
3.记录下目镜的位置,然后旋转平台,使目镜位置再次和之前记录的位置相同,此时平台转过的度数即为牛顿环的总数。
4.用千分尺或米尺测量透明平板的厚度。
数据处理:根据牛顿环的干涉条件,可得到透明平板的厚度公式:2thick = λ(n + 0.5)其中thick为透明平板的厚度,λ为光的波长,n为牛顿环的总数。
实验结果:根据上述公式,根据测得的牛顿环的总数,即可计算得到透明平板的厚度。
讨论与误差分析:实验过程中可能会存在误差,如透明平板厚度测量误差、显微镜调节不准确等。
为了提高实验结果的准确性,可以多次测量透明平板的厚度,并取多次测量结果的平均值作为最终结果。
同时,合理调节显微镜,使牛顿环清晰可见,以减小观测误差。
结论:通过牛顿环实验测量透明平板的厚度,可以得到较为准确的结果。
在实验中,通过调节显微镜,观察并记录牛顿环的总数,再结合公式计算透明平板的厚度。
实验结果对提高测量技巧和观察能力具有一定的帮助。
一、实验目的1. 理解牛顿环的原理及其形成条件。
2. 通过观察牛顿环的干涉条纹,测量平凸透镜的曲率半径。
3. 熟悉光学仪器和实验操作方法。
二、实验原理牛顿环是由平凸透镜与平板玻璃之间形成的空气薄层引起的等厚干涉现象。
当光线垂直照射到平凸透镜和平板玻璃的接触面时,部分光线在接触面发生反射,部分光线穿过空气薄层后再发生反射。
这两束反射光相互干涉,形成明暗相间的干涉条纹。
根据干涉条件,明纹处的光程差为半个波长,即Δl = (m + 1/2)λ,其中m为干涉级数,λ为光的波长。
对于牛顿环,空气薄层的厚度h与干涉级数m之间的关系为:h = (m + 1/2)λR其中R为平凸透镜的曲率半径。
通过测量干涉条纹的级数,可以计算出平凸透镜的曲率半径。
三、实验仪器与设备1. 平凸透镜2. 平板玻璃3. 平行光源4. 凸透镜支架5. 米尺6. 干涉条纹观察仪7. 记录纸8. 镜子9. 光具座四、实验步骤1. 将平板玻璃放在光具座上,将平凸透镜放在平板玻璃上,调整使其与平板玻璃接触良好。
2. 将平行光源照射到平凸透镜和平板玻璃的接触面,调整光源方向,使光线垂直照射。
3. 将干涉条纹观察仪放置在光具座上,调整使其与平行光源和透镜平行。
4. 观察干涉条纹,记录明纹和暗纹的位置,用米尺测量条纹间距。
5. 根据干涉级数m和条纹间距,计算平凸透镜的曲率半径R。
五、实验结果与分析1. 通过观察干涉条纹,记录了10个明纹和暗纹的位置,计算出干涉级数m。
2. 根据干涉级数m和条纹间距,计算平凸透镜的曲率半径R。
实验数据如下:m = 5d = 0.5 mmR = (m + 1/2)λ/d = (5 + 1/2)×600 nm/0.5 mm = 3.6 m六、实验总结1. 通过牛顿环法实验,成功测量了平凸透镜的曲率半径。
2. 实验过程中,注意了光线的垂直照射和干涉条纹的观察,保证了实验结果的准确性。
3. 通过实验,加深了对牛顿环原理和等厚干涉现象的理解。
中南大学牛顿环实验报告篇一:牛顿环实验报告等厚干涉——牛顿环【实验目的】(1)用牛顿环观察和分析等厚干涉现象;(2)学习利用干涉现象测量透镜的曲率半径;(3)学会使用读数显微镜测距。
【实验原理】在一块平面玻璃上安放上一焦距很大的平凸透镜,使其凸面与平面相接触,在接触点附近就形成一层空气膜。
当用一平行的准单色光垂直照射时,在空气膜上表面反射的光束和下表面反射的光束在膜上表面相遇相干,形成以接触点为圆心的明暗相间的环状干涉图样,称为牛顿环,其光路示意图如图。
如果已知入射光波长,并测得第k级暗环的半径rk,则可求得透镜的曲率半径R。
但实际测量时,由于透镜和平面玻璃接触时,接触点有压力产生形变或有微尘产生附加光程差,使得干涉条纹的圆心和环级确定困难。
用直径Dm、Dn,有22Dm?DnR?4(m?n)?此为计算R用的公式,它与附加厚光程差、圆心位置、绝对级次无DD关,克服了由这些因素带来的系统误差,并且m、n可以是弦长。
【实验仪器】JCD3型读数显微镜,牛顿环,钠光灯,凸透镜(包括三爪式透镜夹和固定滑座)。
【实验内容】1、调整测量装置按光学实验常用仪器的读数显微镜使用说明进行调整。
调整时注意:(1)调节45玻片,使显微镜视场中亮度最大,这时,基本上满足入射光垂直于透镜的要求(下部反光镜不要让反射光到上面去)。
(2)因反射光干涉条纹产生在空气薄膜的上表面,显微镜应对上表面调焦才能找到清晰的干涉图像。
(3)调焦时,显微镜筒应自下而上缓慢地上升,直到看清楚干涉条纹时为止,往下移动显微镜筒时,眼睛一定要离开目镜侧视,防止镜筒压坏牛顿环。
(4)牛顿环三个压紧螺丝不能压得很紧,两个表面要用擦镜纸擦拭干净。
2、观察牛顿环的干涉图样(1)调整牛顿环仪的三个调节螺丝,在自然光照射下能观察到牛顿环的干涉图样,并将干涉条纹的中心移到牛顿环仪的中心附近。
调节螺丝不能太紧,以免中心暗斑太大,甚至损坏牛顿环仪。
(2)把牛顿环仪置于显微镜的正下方,使单色光源与读数显微镜上45?角的反射透明玻璃片等高,旋转反射透明玻璃,直至从目镜中能看到明亮均匀的光照。
牛顿环的测定实验报告一、实验目的
1.测定牛顿环半径的大小。
2.验证良好的光学元素能够产生牛顿环的原理。
3.检测实验仪器的精度和磨损情况。
二、实验仪器
1.高精度匀厚度玻璃板
2.激光器或白光源
3.平顶透镜
4.显微镜
5.调焦架
6.标尺
三、实验步骤
1.将高精度匀厚度玻璃板平放在一张白纸上,用调焦架将平顶透镜的平面紧贴玻璃板表面,激光或白光源照射到平顶透镜上,使光从透镜中心垂直入射。
2.将显微镜调整到合适位置,并调节显微镜的焦距,使得能够观察到牛顿环的形状。
3.用标尺测定各个同心环的半径。
四、实验结果
根据实验测得的数据得到牛顿环半径大小如下表所示:
同心环数1 2 3 4 5 6
半径(mm)0.22 0.44 0.65 0.87 1.07 1.29
五、实验分析
1.实验结果表明牛顿环的半径随着同心环数的增加而增加。
2.牛顿环半径的大小与透明介质的折射率有关,该实验测量得到的结果可以用于计算透明介质的折射率。
六、实验结论
根据实验测得的结果,牛顿环半径随着同心环数的增加而增加,该实验结果可用于计算透明介质的折射率。
第1篇一、实验背景牛顿环实验是光学中的一个经典实验,通过观察和分析牛顿环现象,可以深入了解光的干涉原理,并应用于测量透镜的曲率半径等实际应用中。
牛顿环实验的核心原理是等厚干涉现象,即在薄膜层厚度相同的位置,光波发生干涉,形成明暗相间的条纹。
二、实验原理1. 牛顿环的形成牛顿环实验装置主要由一块曲率半径较大的平凸透镜和一块光学玻璃平板组成。
当平凸透镜的凸面与平板接触时,在接触点附近形成一层空气膜。
当平行单色光垂直照射到牛顿环装置上时,光在空气膜的上、下表面反射,形成两束光波。
这两束光波在空气膜上表面相遇,产生干涉现象。
2. 等厚干涉现象在牛顿环装置中,空气膜的厚度从中心到边缘逐渐增加。
由于空气膜厚度相同的位置对应于同一干涉条纹,因此这种现象称为等厚干涉。
根据等厚干涉原理,厚度相同的位置,光程差也相同,从而形成明暗相间的干涉条纹。
3. 牛顿环的干涉条件在牛顿环装置中,光在空气膜上、下表面反射的两束光波发生干涉,干涉条件为:Δ = mλ其中,Δ为光程差,m为干涉级次,λ为光波长。
4. 牛顿环的半径与透镜曲率半径的关系设牛顿环装置中第m级暗环的半径为rk,透镜的曲率半径为R,空气膜厚度为e,则有:rk^2 = R^2 - e^2由上式可知,通过测量牛顿环的半径rk,可以计算出透镜的曲率半径R。
三、实验步骤1. 准备实验装置,包括牛顿环仪、钠光灯、凸透镜、平板玻璃等。
2. 将牛顿环仪放置在实验台上,调整透镜与平板玻璃之间的距离,使牛顿环清晰可见。
3. 打开钠光灯,调整显微镜的焦距,使牛顿环图像清晰。
4. 测量第m级暗环的半径rk,重复多次测量,求平均值。
5. 根据测量结果,利用上述公式计算透镜的曲率半径R。
四、实验结果与分析通过实验测量,可以得到一系列牛顿环的半径rk。
根据实验原理,可以计算出透镜的曲率半径R。
通过对比实际值与测量值,可以分析实验误差,并探讨提高实验精度的方法。
五、实验结论牛顿环实验是一种经典的干涉实验,通过观察和分析牛顿环现象,可以深入了解光的干涉原理,并应用于测量透镜的曲率半径等实际应用中。
牛顿环5到20环实验报告实验目的:本实验旨在通过测量牛顿环的直径来验证光的干涉现象,并进一步研究牛顿环的特性与规律。
实验原理:牛顿环实验是利用光的干涉原理来研究透明薄片的光学性质的一种方法。
当透明物体与平行光垂直放置时,透明物体与平面形成一组同心圆环,这些圆环被称为牛顿环。
牛顿环的形成是因为光在透明物体和平面之间发生了干涉。
实验步骤:1. 准备实验所需的材料,包括透明平板、单色激光和测量仪器。
2. 将透明平板放置在光源上方,并确保平板与光源垂直。
3. 调整激光的入射角度,使其能够通过透明平板。
4. 使用测量仪器,如显微镜或分光仪,测量不同环的直径。
5. 记录每个环的直径,并计算其相应的半径。
6. 根据牛顿环的理论公式,绘制环号与半径的关系曲线,并进行数据分析。
实验结果和讨论:根据实验测量的数据,我们可以发现牛顿环的半径与环号成正比关系。
当环号增加时,半径也随之增加。
这一结果符合牛顿环的理论预测,即牛顿环是由光的干涉造成的。
根据牛顿环的理论公式,我们可以推导出透明物体的厚度与牛顿环半径之间的关系。
通过实验测量的牛顿环半径数据,我们可以计算出透明物体的厚度。
我们还可以通过比较不同环的亮度来研究透明物体的光学性质。
根据光的干涉理论,当两束光发生干涉时,亮度较高的地方表示光强较大,而亮度较低的地方表示光强较小。
通过观察不同环的亮度变化,我们可以了解透明物体内部的光学特性。
实验结论:通过牛顿环实验,我们验证了光的干涉现象,并研究了牛顿环的特性与规律。
实验结果表明,牛顿环的半径与环号成正比关系,透明物体的厚度可以通过牛顿环的半径计算得出。
此外,通过观察不同环的亮度变化,我们可以进一步了解透明物体的光学性质。
这些结果对于深入研究光的干涉现象以及透明物体的光学性质具有重要的理论和实际意义。
大学物理实验牛顿环实验报告(含数据)牛顿环实验报告引言:牛顿环实验是物理实验中经典的干涉实验之一,通过测量光的干涉色条纹来研究光的波动性质。
本实验旨在探究牛顿环的特点及其与透明介质的厚度之间的关系。
通过对实验数据的收集和分析,我们得到了关于牛顿环的一些有趣的结论。
实验装置与方法:1. 实验装置:我们使用了一台平行板构成的牛顿环实验装置。
装置包括一个透明玻璃平板、一束白光源、一台显微镜及光屏等。
2. 实验方法:(1) 首先,我们在实验室中搭建牛顿环实验装置。
(2) 将光源打开,使其照射在透明玻璃平板上。
(3) 调节显微镜位置,使其焦距与透明玻璃平板接近,并将显微镜对准光源的光斑。
(4) 通过调节透明玻璃平板的厚度,观察和记录不同厚度下的牛顿环干涉色条纹。
(5) 使用光屏记录实验数据,包括透明玻璃平板的厚度和对应的干涉色条纹。
实验数据与结果分析:实验中,我们记录了不同透明玻璃平板厚度下的牛顿环干涉色条纹的数据。
根据我们的观察和记录,我们进行了以下主要分析:1. 牛顿环的特点:我们观察到牛顿环是由一系列同心圆环组成的,且颜色从中心向外渐变。
颜色的变化是由于光的干涉效应引起的。
2. 牛顿环与透明介质厚度:通过分析我们记录的实验数据,我们得出了结论:透明介质的厚度与牛顿环的直径成正比关系,即厚度越大,牛顿环的直径越大。
3. 干涉色的原因:牛顿环的干涉色是由于光的干涉效应引起的。
当光线通过透明玻璃平板和空气之间的边界时,光线会发生折射和反射。
不同波长的光在折射和反射过程中会产生不同的相位差,从而导致干涉色的形成。
结论:通过本实验,我们验证了牛顿环实验的重要性,并获得了有关牛顿环的实验数据,并分析了数据的结果。
我们得出的结论是:牛顿环的直径与透明介质的厚度成正比关系。
这一实验结果对于进一步理解光的干涉效应和光的波动性质具有重要意义。
致谢:在此,我们要特别感谢实验中的指导老师及实验室助理们的帮助和支持。
没有他们的指导和帮助,我们无法顺利完成这一实验报告。
牛顿环的实验报告篇一:实验八用牛顿环测透镜的曲率半径(实验报告)实验八用牛顿环测透镜曲率半径[实验目的]1.观察光的等厚干涉现象,了解干涉条纹特点。
2.利用干涉原理测透镜曲率半径。
3.学习用逐差法处理实验数据的方法。
[实验原理]牛顿环条纹是等厚干涉条纹。
由图中几何关系可得rk2?R2?(R?dk)2?2Rdk?dk2因为R dk所以rk2?2Rdk (1)由干涉条件可知,当光程差????2d??k?(k?1,2,?) 明条纹k??2? (2) ???2d???(2k?1)?(k?0,1,2?) 暗条纹k?22?其干涉条纹仅与空气层厚度有关,因此为等厚干涉。
由(1)式和(2)式可得暗条纹其环的半径rk2?k?R(3)由式(3)可知,若已知入射光的波长λ,测出k级干涉环的半径rk,就可计算平凸透镜的曲率半径。
22Dk?m?Dk所以 R?4m?(4)只要测出Dk和Dk+m,知道级差m,并已知光的波长λ,便可计算R。
[实验仪器]钠光灯,读数显微镜,牛顿环。
[实验内容]1.将牛顿环置于读数显微镜载物合上,并调节物镜前反射玻璃片的角度,使显微镜的视场中充满亮光。
2.调节升降螺旋,使镜筒处于能使看到清晰干涉条纹的位置,移动牛顿环装置使干涉环中心在视场中央。
并观察牛顿环干涉条纹的特点。
3.测量牛顿环的直径。
由于中心圆环较模糊,不易测准,所以中央几级暗环直径不要测,只须数出其圈数,转动测微鼓轮向右(或左)侧转动18条暗纹以上,再退回到第18条,并使十字叉丝对准第18条暗纹中心,记下读数,再依次测第17条、第16条…至第3条暗纹中心,再移至左(或右)侧从第3条暗纹中心测至第18条暗纹中心,正式测试时测微鼓轮只能向一个方向转动,只途不能进进退退,否则会引起空回测量误差。
4.用逐差法进行数据处理及第18圈对第8圈,第17圈对第7圈…。
其级差m=10,用(4)式计算R。
[实验数据处理]在本实验中,由于在不同的环半径情况下测得的R的值是非等精度的测量,故对各次测量的结果进行数据处理时,要计算总的测量不确定度是个较复杂的问题。
一、实验目的1. 观察和分析等厚干涉现象;2. 学习利用干涉现象测量透镜的曲率半径;3. 学会使用读数显微镜测距。
二、实验原理牛顿环实验是一种经典的干涉实验,通过观察和分析牛顿环,可以学习等厚干涉现象。
实验原理如下:当一块平面玻璃上放置一个焦距很大的平凸透镜时,其凸面与平面相接触,在接触点附近形成一层空气膜。
当用一束平行单色光垂直照射时,空气膜上表面反射的光束和下表面反射的光束在膜上表面相遇相干,形成以接触点为圆心的明暗相间的环状干涉图样,称为牛顿环。
牛顿环的半径与透镜的曲率半径、光波长以及空气膜厚度有关。
三、实验仪器1. 读数显微镜2. 牛顿环仪3. 钠光灯4. 凸透镜(包括三爪式透镜夹和固定滑座)四、实验内容1. 调整测量装置(1)调节450玻片,使显微镜视场中亮度最大,满足入射光垂直于透镜的要求。
(2)因反射光干涉条纹产生在空气薄膜的上表面,显微镜应对上表面调焦才能找到清晰的干涉图像。
(3)调焦时,显微镜筒应自下而上缓慢地上升,直到看清楚干涉条纹时为止。
往下移动显微镜筒时,眼睛一定要离开目镜侧视,防止镜筒压坏牛顿环。
(4)牛顿环三个压紧螺丝不能压得很紧,两个表面要用肥皂水清洗干净。
2. 观察并记录牛顿环(1)打开钠光灯,将牛顿环仪放置在显微镜载物台上,调整显微镜对准牛顿环。
(2)观察牛顿环,记录下清晰的干涉条纹。
(3)利用读数显微镜测量干涉条纹的直径,并计算空气膜厚度。
3. 测量透镜的曲率半径(1)根据牛顿环的直径和光波长,计算空气膜厚度。
(2)利用公式R = (λ d^2) / (2 Δ),计算透镜的曲率半径,其中λ 为光波长,d 为空气膜厚度,Δ 为干涉条纹的直径差。
五、实验结果与分析1. 通过实验,观察到牛顿环的干涉条纹为明暗相间的同心圆环,符合等厚干涉现象。
2. 利用读数显微镜测量干涉条纹的直径,计算空气膜厚度,并根据公式计算透镜的曲率半径。
3. 实验结果与理论值基本吻合,说明实验方法正确,实验结果可靠。