电子与物质的相互作用
- 格式:ppt
- 大小:706.50 KB
- 文档页数:10
电子与物质的相互作用及其应用电子束与固体样品作用时产生的信号图是电子束与固体样品作用时产生的信号。
它包括:背散射电子、二次电子、吸收电子、透射电子、特征x射线、俄歇电子。
1.背散射电子背散射电子是被固体样品中的原子核反弹回来的一部分入射电子,其中包括弹性背散射电子和非弹性背散射电子。
弹性背散射电子:被样品中原子核反弹回来的,散射角大于90 的那些入射电子,其能量没有损失(或基本上没有损失)。
非弹性背散射电子:入射电子和样品核外电子撞击后产生的非弹性散射,不仅方向改变,能量也有不同程度的损失。
如果有些电子经多次散射后仍能反弹出样品表面,这就形成非弹性背散射电子。
弹性背散射电子和非弹性背散射电子的比较见表。
表弹性背散射电子和非弹性背散射电子的比较2.二次电子在入射电子束作用下被轰击出来并离开样品表面的样品的核外电子叫做二次电子。
3.吸收电子入射电子进入样品后,经多次非弹性散射能量损失殆尽(假定样品有足够的厚度没有透射电子产生),最后被样品吸收而成为吸收电子。
4.透射电子如果被分析的样品很薄,就会有一部分入射电子穿过薄样品而成为透射电子。
5.特征x射线当样品原子的内层电子被入射电子激发或电离时,原子就会处于能量较高的激发状态,此时外层电子将向内层跃迁以填补内层电子的空缺,从而使具有特征能量的X射线释放出来。
6.俄歇电子在入射电子激发样品的特征X射线过程中,如果在原子内层电子能级跃迁过程中释放出来的能量并不以x射线的形式发射出去,而是用这部分能量把空位层内的另一个电子发射出去(或使空位层的外层电子发射出去),这个被电离出来的电子称为俄歇电子。
表电子束与固体样品作用时产生的各种信号的比较。
电子与固体物质的相互作用一、电子散射二、内层电子激发后的弛豫过程三、自由载流子四、电子与固体作用产生的各种信号五、相互作用体积与信号产生的深度和广度一、电子散射¾当一束聚焦电子束沿一定方向射入试样内,在原子库仑电场作用下,入射电子方向改变,称为散射。
¾原子对电子的散射可分为弹性散射和非弹性散射。
¾弹性散射中,电子只改变方向,基本无能量的变化。
¾非弹性散射中,电子不但改变方向,能量也有不同程度的减小,转变为热、光、X射线和二次电子等。
在非弹性散射过程中,¾入射电子把部分能量转移给原子,引起原子内部结构的变化,产生各种激发现象。
因为这些激发现象都是入射电子作用的结果,所以称为电子激发。
电子激发是非电磁辐射激发的一种形式。
1.原子的散射截面¾一个电子被一个试样原子散射后偏转角等于或大于α角的几率可用原子散射截面σ(α)来度量。
¾原子散射截面可定义为电子被散射到等于或者大于α角的几率除以垂直入射电子方向上单位面积的原子数。
量纲为面积。
¾原子散射截面是弹性散射截面与非弹性散射截面之和,即σ(α)= σe(α)+ σi(α)σe(α)----原子的弹性散射截面;σi(α)----原子的非弹性散射截面。
原子对电子的散射又可分为¾原子核对电子的弹性散射,原子核对电子的非弹性散射;¾核外电子对电子的非弹性散射。
入射电子与原子核作用,被散射到大于2θ的角度以外,故可用πr n 2(以原子核为中心、r n 为半径的圆的面积)来衡量一个孤立原子核把入射电子散射到大于2θ角度以外的能力。
由于电子与原子核的作用表现为弹性散射,故将πr n 2叫做弹性散射截面,用σn 表示。
πr n 2: 原子的弹性散射面积。
¾弹性散射电子由于其能量等于或接近于入射电子能量E 0,因此是透射电镜中成像和衍射的基础。
2.原子核对电子的弹性散射试样的原子序数越大,入射电子的能量越小,距核越近,散射角越大。
x射线的原理和应用一、x射线的原理x射线是一种高能电磁辐射,由电子束与物质相互作用产生。
其原理如下:1.电子束:x射线的产生需要一束高速运动的电子。
通常采用电子加速器或x射线管产生电子束。
2.电子束与物质的相互作用:电子束与物质相互作用时会发生电子-原子核相互作用、电子-电子相互作用和电子-原子轨道相互作用。
在这些相互作用下,电子会失去能量并发射出x射线。
3.x射线的产生:电子束与物质相互作用后,部分电子会失去能量并被重新组合,形成x射线。
x射线的能量取决于电子束的能量和物质的成分。
二、x射线的应用x射线在医学、工业和科学研究中有着广泛的应用。
1. 医学应用•诊断:x射线在医学诊断中起到了至关重要的作用。
医生可以利用x 射线影像来观察骨骼和内脏器官,从而发现病变和异常情况。
常见的应用包括X线检查、CT扫描和乳腺X线摄影等。
•放疗:x射线的高能量可以用于治疗肿瘤和其他疾病。
通过照射患者的肿瘤区域,x射线可以破坏癌细胞的DNA,从而达到治疗的目的。
2. 工业应用•材料检测:x射线可以用于材料的非破坏性检测。
通过对材料进行x 射线照射和观察,可以检测材料的结构和缺陷,如金属的裂纹和焊接接头的质量。
•质量控制:很多工业生产过程中都需要对产品进行质量控制。
x射线可以用于检测产品是否符合规格和标准,例如食品中金属异物的检测和纺织品的密度检测等。
3. 科学研究应用•结构分析:x射线衍射技术可以用于研究材料的结构。
通过将x射线束照射到样本中,研究者可以观察到x射线经过样本后的衍射图案,从而推断样本的结晶结构和晶体学参数。
•谱学分析:x射线也可以用于谱学分析。
通过测量x射线在材料中发生的散射和吸收现象,研究者可以获得材料的元素组成和化学环境等信息。
以上只是x射线应用的一部分,随着科技的发展,对x射线的研究和应用还将不断扩展和深化。
三、结语x射线是一种重要的电磁辐射,其原理和应用广泛而深入。
在医学、工业和科学研究领域,x射线发挥着巨大的作用。
带电粒子与物质的相互作用引言:带电粒子是指具有电荷的微观粒子,例如电子、质子等。
在物质中,带电粒子与其他物质之间会发生相互作用。
这种相互作用是物质世界中一种重要的基本现象,对于我们理解和应用自然界具有重要意义。
本文将从带电粒子与物质的相互作用的基本原理、类型和应用等方面进行阐述。
一、基本原理带电粒子与物质的相互作用遵循电磁相互作用力。
根据库仑定律,带电粒子之间的相互作用力与它们之间的电荷量成正比,与它们之间的距离的平方成反比。
这种相互作用力可以是吸引力,也可以是排斥力,取决于带电粒子之间的电荷性质。
二、类型1. 静电作用:带电粒子与物质之间的相互作用可以表现为静电作用。
当带电粒子靠近物质时,它们之间会发生电荷的转移或者重排,导致电荷的分布发生变化,从而产生静电力。
这种作用在电荷不移动的情况下发生,例如静电吸附、静电排斥等。
2. 磁场作用:带电粒子的运动会产生磁场,而物质对磁场也会产生响应。
当带电粒子通过物质时,物质中的电荷会受到磁场力的作用,并产生相应的运动或变化。
这种作用可以用于磁共振成像、磁性材料的制备等。
3. 电流作用:带电粒子在物质中运动时,会与物质中的电荷发生相互作用。
当带电粒子通过物质时,会产生电流,而电流会产生磁场。
这种作用可以用于电子输运、电磁感应等。
4. 能量转移:带电粒子与物质之间的相互作用还可以导致能量的转移。
当带电粒子与物质发生碰撞或相互作用时,它们之间的能量会发生转移,从而改变物质的性质或状态。
例如带电粒子的辐射与物质的相互作用会导致能量的转移,产生辐射损失。
三、应用带电粒子与物质的相互作用在科学研究和技术应用中具有广泛的应用价值。
1. 粒子加速器:粒子加速器利用带电粒子与物质之间的相互作用,通过电场或磁场加速带电粒子的运动。
这种技术被广泛应用于高能物理实验、核物理研究等领域。
2. 材料表征:带电粒子与物质的相互作用可以用于材料的表征。
例如扫描电子显微镜(SEM)利用电子与物质的相互作用,观察和分析材料的表面形貌和成分。
带电粒子与物质的相互作用在物理学中,带电粒子与物质之间的相互作用是一个重要的研究领域。
带电粒子指的是带有电荷的基本粒子,如电子、质子等,而物质则包括了构成我们周围世界的一切物质实体。
这两者之间的相互作用机制不仅对于理解物质的性质和行为具有重要意义,也为各种应用提供了基础。
一、静电作用最基本的带电粒子与物质的相互作用是静电作用。
当两个物体中的带电粒子之间存在电荷差异时,它们会产生静电力的相互作用。
根据库仑定律,两个电荷之间的静电力与电荷的大小成正比,与它们之间的距离的平方成反比。
这种相互作用可以导致物体的吸附、斥力、电荷传递等现象。
静电作用在日常生活中也经常出现,比如我们身体摩擦后产生的静电电荷可以使身体与物体发生吸引或者排斥的现象。
在工业中,静电作用也是一种重要的物料处理技术,例如静电吸附、静电喷涂等。
二、电磁作用电磁作用是带电粒子与物质之间更加复杂的相互作用方式。
它包括两个方面,一方面是带电粒子在物质中受到的电场力的作用,另一方面是带电粒子的运动状态对物质电磁性质的影响。
对于带电粒子在电场中的相互作用,根据库仑定律和电场叠加原理,可以得到带电粒子在电场中所受到的电场力大小和方向。
这种相互作用广泛应用于电子学和电路中,例如电荷在电场中的偏转、电势差引起的电子流等。
带电粒子对物质电磁性质的影响则涉及到材料的导电性、磁性等方面。
带电粒子的运动会在物质中引起电流,进而改变物质的导电性质。
而当带电粒子的运动速度接近光速时,还会产生磁场效应,即洛伦兹力。
这些现象在电磁学、材料科学等研究中有着广泛的应用。
三、辐射作用带电粒子与物质相互作用的另一种重要方式是辐射作用。
当带电粒子在物质中运动时,会释放出能量并产生辐射,例如电子在物质中的电离和俄歇效应。
辐射作用在核物理、粒子物理等领域中具有重要意义。
例如,在医学上,正电子发射断层成像(PET)技术利用正电子与物质相互作用产生的辐射进行人体成像;在核反应中,粒子与原子核的相互作用可以产生高能粒子和辐射。