函数是周期为2的周期函数解读
- 格式:doc
- 大小:104.00 KB
- 文档页数:1
函数周期知识点总结一、函数的周期性函数的周期性是指函数在特定区间内具有重复性的性质。
如果函数在一个区间内满足f(x+T)=f(x),其中T为正数,则称函数f(x)在该区间上有周期T,T称为函数f(x)的周期。
函数的周期性是函数中非常重要的一种性质,对于周期函数而言,其周期性是其定义的本质。
二、周期函数的性质1. 周期函数的定义周期函数是指函数的取值在每个周期内具有重复性。
周期函数的周期是指函数在一个区间内具有重复性。
设f(x)是定义在一定区间上的函数,如果存在正数T,使得任意x∈[a,a+T],都有f(x+T)=f(x),则称函数f(x)为周期函数,T为周期。
周期函数的周期一般是不唯一的。
2. 周期函数的图像特点周期函数的图像表现出在一个周期内具有重复性的特点。
周期函数的图像通常是具有规律的波动,在一定周期内呈现出反复的形状。
3. 周期函数的基本性质周期函数在一个周期内具有相同的性质,包括最大值、最小值、零点等。
周期函数还具有周期平移、镜像对称等性质。
周期函数的和、差、积、商也是周期函数。
4. 周期函数的分类周期函数根据周期的不同可以分为正弦函数、余弦函数、正切函数、余切函数等等。
根据周期的形式还可以分为奇函数和偶函数。
5. 周期函数的应用周期函数在自然界和各种科学领域有着非常广泛的应用,如物理学、工程学、生物学等等。
周期函数的研究对于理解自然规律和解决实际问题具有重要的意义。
三、常见周期函数1. 正弦函数正弦函数是最基本的周期函数之一。
其函数表达式为y=Asin(Bx+C)+D,其中A,B,C,D为常数,A为振幅,B为角频率,C为相位差,D为垂直位移。
正弦函数的图像是一条连续的曲线,具有周期性。
2. 余弦函数余弦函数也是最基本的周期函数之一。
其函数表达式为y=Acos(Bx+C)+D,其中A,B,C,D为常数,A为振幅,B为角频率,C为相位差,D为垂直位移。
3. 正切函数正切函数的函数表达式为y=A tan(Bx+C)+D,其中A,B,C,D为常数,A为振幅,B为角频率,C为相位差,D为垂直位移。
谢谢大家!本课件由王科设计、开发 * 第一节函数及其图形自然界的许多现象都具有周期性,如心脏的跳动、肺的运动、给我们居室提供动力的电流、电子信号技术中常见的方波、锯齿形波和三角波以及由空气的周期性振动产生的声波等等。
内容简介 5.1 周期为的周期函数展开成傅里叶级数一、案例二、概念和公式的引出三、进一步的练习一、案例 [矩形波的叠加] 周期函数可表示为f T+t f t ,T为函数 F t 的周期。
如物理上“正弦振动”或“简谐振动”的运动方程为其中A为振幅,为角频率,为初相。
电子技术中常用的周期T的矩形波可看成若干个正弦波叠加而成,如下图所示:二、概念和公式的引出三角级数由正弦或余弦函数组成的无限多项的和,称为三角级数。
它的一般形式为其中为常数。
傅里叶级数存在,则称它们为函数f x 的傅里叶系数,由傅里叶系数组成的三角级数设f x 是周期为的周期函数,如果称为傅里叶级数。
收敛定理的周期函数f x 满足条件(狄利克雷充分条件)若周期为(1)在区间连续或只有有限个第一类间断点;(2)在区间只有有限极值点,则函数 f x 的傅里叶级数收敛,且(1)当是连续点时,级数收敛于f x ;(2)当是间断点时,级数收敛于三、进一步的练习练习1 [脉冲矩行波] 如右图所示,求此函数的脉冲矩形波的信号函数 f x 是以为周期的周期函数,它在的表达式为傅里叶级数展开式。
解用傅里叶系数公式计算傅里叶系数如下: 因为函数f x 是奇函数,所以f x cosnx是奇函数,因此fx cosnx 上积分为零.于是于是,函数f x 的傅立叶级数展开式为由收敛定理知函数f x 在范围内与级数相等,即当此函数的傅立叶级数收敛情况如下图所示.当n分别1,2,3,6取时,傅立叶级数的部分和Sn x 图形与函数f x 的方波逼近的情况,类似于本章开始演示的图形.时,傅立叶级数收敛于练习2 [脉冲三角信号] 已知脉冲三角信号f x 是以为周期的周期函数,它在的表达式为如右图所示,将函数 f x 展开成傅里叶级数。
函数的周期性一、正弦函数的周期三角函数,以正弦函数 y = sin x 为代表,是典型的周期函数. 幂函数 y = x α 无周期性,指数函数 y = a x 无周期性,对数函数 y =log a x 无周期,一次函数 y = kx +b 、二次函数 y = ax 2+bx +c 、三次函数 y = ax 3+bx 2 + cx +d 也无周期性.周期性是三角函数独有的特性.1、正弦函数 y =sin x 的最小正周期在单位圆中,设任意角α的正弦线为有向线段MP . 正弦函数的周期性动点P 每旋转一周,正弦线MP 的即时位置和变化方向重现一次. 同时还看到,当P 的旋转量不到一周时,正弦线的即时位置包括变化方向不会重现.因此,正弦函数y =sin x 的最小正周期2π.2、y =sin (ωx )的最小正周期设ω>0,y =sin (ωx )的最小正周期设为L .按定义 y = sin ω(x +L ) = sin (ωx + ωL ) = sin ωx . 令ωx = x ' 则有 sin (x ' + ωL ) = sin x ' 因为sin x 最小正周期是2π,所以有ωωπ2π2=⇒=L L例如 sin2x 的最小正周期为π2π2= sin2x 的最小正周期为π421π2=3、正弦函数 y =sin (ωx +φ) 的周期性对正弦函数sin x 的自变量作“一次替代”后,成形式y = sin (ωx +φ). 它的最小正周期与y = sin ωx 的最小正周期相同,都是ωπ2=L .如⎪⎭⎫⎝⎛+=2π3sin x y 的最小周期与 y = sin (3x )相同,都是3π2.于是,余弦函数⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-==2πsin 2πsin cos x x x y 的最小正周期与sin x 的最小正周期相同,都是2π.二、复合函数的周期性将正弦函数 y = sin x 进行周期变换x →ωx ,sin x →sin ωx后者周期变为)0(π2>ωω而在以下的各种变换中,如(1)初相变换sin ωx → si n ( ωx +φ);(2)振幅变换sin (ωx +φ)→ A sin ( ωx +φ);(3)纵移变换 A si n ( ωx +φ) → A si n ( ωx +φ)+m ;后者周期都不变,亦即 A si n ( ωx +φ) +m 与si n (ωx )的周期相同,都是ωπ2.而对复合函数 f (sin x )的周期性,由具体问题确定.1、复合函数 f (sin x ) 的周期性 【例题】 研究以下函数的周期性: (1)2 sin x ; (2)x sin(2)x sin 的定义域为[2k π,2k π+π],值域为[0,1],作图可知, 它是最小正周期为2π的周期函数.【解答】 (1)2sin x 的定义域为R ,值域为⎥⎦⎤⎢⎣⎡2 ,21,作图可知,它是最小正周期为2π的周期函数. 【说明】 从基本函数的定义域,值域和单调性出发,通过作图,还可确定,log a x ,sin x ,xsin 1, sin (sin x )都是最小正周期2π的周期函数.2、y = sin 3 x 的周期性对于y = sin 3x =(sin x )3,L =2π肯定是它的周期,但它是否还有更小的周期呢? 我们可以通过作图判断,分别列表作图如下.图上看到,y = sin 3x 没有比2π更小的周期,故最小正周期为2π.3、y = sin 2 x 的周期性对于y = sin 2x = (sin x )2,L =2π肯定是它的周期,但它的最小正周期是否为2π? 可以通过作图判定,分别列表作图如下.图上看到,y = sin 2x 的最小正周期为π,不是2π.4、sin 2n x 和sin 2n -1 x 的周期性y = sin2x 的最小正周期为π,还可通过另外一种复合方式得到. 因为 cos2x 的周期是π,故 sin 2x 的周期也是π.sin 2x 的周期,由cos x 的2π变为sin 2x 的π. 就是因为符号法“负负得正”所致.因此,正弦函数sin x 的幂符合函数sin m x ,当m =2n 时,sin m x 的最小正周期为π;m = 2n –1时,sin m x 的最小正周期是2π.5、幂复合函数举例【例1】 求 y =|sin x |的最小正周期.【解答】 x x y 2sin |sin |==最小正周期为π.【例2】 35)(sin x y =求的最小正周期.【解答】 5335)(sin )(sin x x =最小正周期为2π.【例3】 求52)(sin x y =的最小正周期.【解答】5252)(sin )(sin x x =最小正周期为π.【说明】 正弦函数sin x 的幂复合函数pq x )(sin . 当q 为奇数时,周期为2π;q 为偶数时,周期为π.三、周期函数的和函数两个周期函数,如 sin x 和 cos x ,它们最小正周期相同,都是 2π. 那么它们的和函数,即 si nx + cos x 的最小正周期如何?)4πsin(2cos sin +=+x x x和函数的周期与原有函数的周期保持不变. 这个结论符合一般情况.对于另一种情况,当相加的两个函数的最小正周期不相同,情况将会如何?1、函数 sin x + sin2 x 的周期性sin x 的最小正周期为2π,sin2x 的最小正周期是π,它们之间谁依赖谁,或依赖一个第三者? 列表如下.表上看到函数sin x +sin2x 的最小正周期是2π.2、函数 sin x + sin2x 的周期性依据上表,作sin x +sin2x 的图像如右.从图上看到,函数的最小正周期为2π. 由si nx ,sin2x 的最小正周期中的大者决定,因为前者是后者的2倍.从图上看到,sin x +sin2x 仍然是个“振动函数”,但振幅已经不是常数了.3、函数sin x +sin32x 的周期性 sin x 的最小正周期为2π,sin 32x 的最小正周期是3π. 它们之间的和sin x + sin 32x 的最小正周期也由“较大的”决定吗?即“和函数”的周期为3π吗?不妨按周期定义进行检验. 设2π0=x 则x 0 +3π=π32π+ 2312π32sin 2πsin 2π)(0+=⎪⎭⎫⎝⎛∙+=⎪⎭⎫ ⎝⎛=f x f )(23127π32sin 27πsin π32ππ)3(00x f f x f ≠+-=⎪⎭⎫⎝⎛∙+=⎪⎭⎫ ⎝⎛+=+因此3π不是sin x + sin32x 的最小正周期.通过作图、直观看到,sin x +sin32x 的最小正周期为6π,即sin x 和sin 32x 最小正周期的最小倍数.四、周期函数在高考中三角函数是高考命题的重要板块之一,小题考,大题也考,比分约占高考总分的七分之一,与立体几何相当. 与立几不同的是,它还与函数、方程、不等式、数列、向量等内容综合.正弦函数是三角函数的代表,而周期性又是正弦函数的特性. 关系到正弦函数的试题,有2种形式. (1)直接考,求正弦函数的最小正周期.(2)间接考,考周期在正弦函数性质中的应用. 求单调区间,求最值,简单方程的通解等.1、求正弦函数的周期【例1】 函数 y =|sin 2x|的最小正周期为 (A )2π(B )π (C )2π (D )4π 【解答】 2sin |2sin |2x x y == 最小正周期是2sinx最小正周期的一半,即2π. 答案为(C ) 【说明】 图象法判定最简便,|sin x |的图象是将sin x 的图象在x 轴下方部分折到x 轴上方去. 倍角法定判定最麻烦 x xy cos 212sin2-== 【解答】 (1)y = 2cos2x + 1的最小正周期由cos2x 决定2、求正弦函数的周期【例2】 (1)y =2cos 2x +1的最小正周期为 .(2)y =|sin x + cos x |的最小正周期为 .【解答】 (1)y = 2cos 2x + 1的最小正周期由cos 2x 决定,故答案为π.(2))(sin 2|)sin(|2|cos sin |2ϕϕ+=+=+x x x x 故答案为π.【说明】 )(sin cos 22ϕ+x x 都可看作sin x 的幂函数的复合函数.3、函数周期性应用于求值【例题】 f (x )是R 上的偶函数,且是最小正周期为π的周期函数.【解答】 ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛3π 3π 32π 35π f f f f 233πsin == 【说明】 周期性应用于区域转化. 将“无解析式”的区域函数转化到“有解析式”的区间上求值.若 时 f (x ) = si nx 试求 的值.4、函数周期性应用于求单调区间【例题】 x ∈R ,求函数 y =sin 2x + 3sin x cos x +2cos 2x 的单调增区间.【解答】 )2cos 1(2sin 2322cos 1x x x y +++-=23)6π2sin(232cos 212sin 23++=++=x x x 函数的最小正周期为π. 令 2π6π22π≤+≤-x 得 6π3π≤≤-x 因为函数周期为π,故函数的单调增区间为⎥⎦⎤⎢⎣⎡+-6ππ ,3ππk k .【说明】 先求包含零点的增区间,再用最小正周期求单调增区间的集合.周期函数在高考中5、周期性应用于求函数零点【例题】 已知函数412sin 2cos sin cos sin )(2244--++=x x x x x x f .【解答】 41)cos sin 1(2cos sin 1412sin 2cos sin cos sin )(222244---=--++=x x x x x x x x x x fx x 2sin 4141412sin 4121+=-+=令 02s i n4141=+x 得 4π=x 故交点横坐标的值的集合为4π=x .【说明】 先求绝对值最小的解,再利用最小正周期求“通解”.五、高考史上的周期大难题高考史上第一次“周期大难题”出现在恢复高考后的第3年,即1980年的理科数学卷上.本题排在该卷的第六大题上. 在有十个大题的试卷上,这是个中间位置,然而,从当年的得分情况来看,本题的难度超过了包括压轴题和附加题在内的所有题目. 这点为命题人事先未能预料. 后来分析,该题的难点有三 .(1)函数抽象,导致周期中含有参数;(2)求参数范围,与解不等式综合;(3)求最小正整数解,连命题人自拟的“标答”都含糊不清. 20多年来数学界质疑不断.【考题】设三角函数)3π5πsin()(+=k x f ,其中k ≠0.(1)写出 f (x )极大值M 、极小值m 与最小正周期;(2)试求最小的正整数k ,使得当自变量x 在任意两个整数间(包括整数本身)变化时,函数 f (x )至少有一个值是M 与一个值是m .【解答】 (1) M =1,m = -1,k k T π10π25=⨯=.(2)f (x )在它的每一个周期中都恰好有一个值是M 与一个值是m .而任意两个整数间的距离都≥1因此要使任意两个整数间函数f (x )至少有一个值是M 与一个值是m ,必须且只须使 f (x )的周期≤1即:k =32就是这样的最小正整数. .4.31 π10 ,1 π10 =≥≤k k六、高考史上的周期大错题中学教材上的周期函数,一般都是简单和具体的函数. 关于最小正周期的求法,也是一些感性的结果;没有系统和完整“最小正周期”的系统研究.然而,随着“抽象函数”的不断升温,对周期函数周期的考点要求越来越高. 2006年福建理数卷出现的“周期大错题”正是这种盲目拔高的必然结果.【例题】 f (x )是定义在R 上的以3为周期的奇函数,且f (2)=0,则方程f (x )=0在区间(0,6)内解的个数的最小值是A.2B.3C.4D.5【说明】 这是2005年福建卷(理)第12题,命题组提供的答案是D ,即答案为5. 答案D 从何而来?以下,就是“D”的一种解法.【解答】 f (x )周期为3,由 f (2)=0,得 f (5) = f (2)=0,得 f (-1)= f (2-3) = f (2)=0,得 f (-4) = f (2-6) = f (2)=0f (x )为奇函数,得 f (1) = - f (-1) =0 f (4)= - f (-4)=0,得 f (-0)= - f (0),得 f (0)=0 f (3)= f (3+0)= f (0)=0于是,求得 f (x )=0的解为:1、2、3、4、5. 共5个解,答案为D. 【讨论】 除了上述解法得 f (x )=0的5个解外,还有如下的解.根据方程 f (x )=0的定义, x = 1.5 和 x =4.5 也是方程的解,证明如下: 由 f (x )的周期性,知 f (-1.5)= f (1.5) (1) 由 f (x )的奇偶性,知 f (-1.5) = - f (1.5) (2) 从而有 f (1.5)=0,f (4.5) = f (1.5)=0.所以,1.5和4.5也是方程 f (x )=0的解.于是,方程的解共有7个:即是1、1.5、2、3、4、4.5、5. 【思考】 按上面讨论的结果,方程 f (x ) = 0的解至少有7个. 而原题的四个选项支中均没有这个答案. 命题人给定的答案D 是错的. 高考史上的周期大错题【实验检验】 f (x )同时满足4个条件:(1)定义在R 上;(2)奇函数;(3)周期为3;(4)f (2) =0. 据此,我们找到 f (x )的一个具体例子:x x x f 3π4sin 3π2sin)(+= 并在区间(0,6)上找到 f (x )=0的7个解,列表如下:这7个解即是1,1.5,2,3,4,4.5,5.函数x x x f 3π4sin 3π2sin)(+=在一个周期[0,3]上的图像如右. 图像与 x 轴有5个交点,故在[0,6]有9个交点,从而在(0,6)上有7个交点.【反思】 命题人的错误自然出在疏忽二字上. 实在地,本题较难,首先难倒了命题人自己.严格地讲,试题“超纲”. 对两个周期函数的和函数,其最小正周期是它们的“最小公倍数”——这本身就没有进行过证明,对某些具体函数可以具体分析,但对抽象函数来讲,却没有理论依据. 而本题,又恰恰是个抽象函数,而且是个综合问题. 命题出错似乎是必然的.。
求函数f(x)周期的几种常见方法函数的周期性是函数的一个重要性质.对一般函数f(x)的周期,不少中学生往往不知从何入手去求.为了加深对函数f(x)周期概念的理解,本文以实例来说明求函数f(x)周期的几种常见方法,供读者参考.1 定义法根据周期函数的定义以及题设中f(x)本身的性质推导出函数的周期的方法称为定义法.(1)∴f(x)为周期函数,且2a是它的一个周期.注:如果题设函数方程中只有一边含有不为零的常数a,另一边与a无关,这时周期T应取决于a,假设T能被a整除,就分别试算f(x+2a),f(x+3a),f(x+4a),…,当出现f(x+T)=f(x)(T≠0)的形式时,就可知T是f(x)的周期.周期函数,若是,求出它的周期;若不是,说明理由.(1)∴f(x+2a)=f[(x+a)+a](2)∴f(x)为周期函数,3a是它的周期.2 特殊值法当题设条件中有f(m)=n(m,n为常数)时,常常以此条件为突破口,采用特殊值法解即可奏效.f(x)是不是周期函数.若是,求出它的一个周期;若不是,说明理由.∴f(x)为周期函数,2π是它的一个周期.3 变量代换法例4设函数f(x)在R上有定义,且对于任意x都有f(x+1995)=f(x+1994)+f(x+1996),试判断f(x)是否周期函数.若是,求出它的一个周期;若不是,说明理由.解在f(x+1995)=f(x+1994)+f(x+1996) (x∈R)中,以x代x +1995,得f(x)=f(x-1)+f(x+1);(1)在(1)中以x+1代x,得f(x+1)=f(x)+f(x+2).(2)(1)+(2),得f(x-1)+f(x+2)=0,∴f(x-1)=-f(x+2).(3)在(3)中以x+1代x,得f(x)=-f(x+3);(4)在(4)中以x+3代x,得f(x+3)=-f(x+6).(5)将(5)代入(4),得f(x+6)=f(x).∴f(x)为周期函数,6是它的一个周期.4 递推法f(x)是不是周期函数.若是,求出它的一个周期;若不是,说明理由.(1)在(1)中以x+2代x,得f(x+4)=f(x+6)+f(x+2).(2)(1)+(2),得f(x)+f(x+6)=0,∴f(x)=-f(x+6).(3)在(3)中以x+6代x,得f(x+6)=-f(x+12).(4)(4)代入(3),得f(x+12)=f(x).∴f(x)为周期函数,12是它的一个周期.5 消去法例6若函数f(x)定义在R上,且对一切实数x,都有f (5+x)=f (5-x),f (7+x)=f (7-x),试判断f(x)是不是周期函数.若是,求出它的一个周期;若不是,说明理由.解在f(5+x)=f(5-x)中以5-x代x,得f(x)=f(10-x);(1)在f(7+x)=f(7-x)中以7-x代x,得f(x)=f(14-x).(2)由(1)和(2),得f(10-x)=f(14-x).(3)在(3)中以10-x代x,得f(x+4)=f(x).∴f(x)是周期函数,4为它的一个周期.6 结构类比法f(x)是不是周期函数.若是,求出它的一个周期;若不是,说明理由.解:可视sinx为本题中f(x)的一个实例,由此可设想f(x)为周期函数,且2π是它的一个周期.下面进行证明:于是f(x+2π)=f[(x+π)+π]=-f(x+π)=f(x).∴f(x)为周期函数,2π是它的一个周期.7 公式法例8已知y=f(x)(x∈R)的图象是连续的曲线,且f(x)不为常数,f(x)的图象关于直线x=a和直线x=b对称(a<b).(1)求证:f(x)=f(2a-x),f(x)=f(2b-x);(2)求证f(x)是周期函数,并求出它的一个正周期.证明(1)∵ f(x)的图象关于直线x=a对称,且图象连续,不是平行于x轴的直线,∴设P(x,y)为曲线上任一点,点P关于x=a的对称点P'的坐标为P'(x',y'),同理可证 f(x)=f(2b-x).解(2)由(1)可知,f(x)=f(2a-x)=f(2b-x),∴f(2a-x)=f(2b-x),以x代2a-x,得f[x+(2b-2a)]=f(x).∵a<b,2b-2a>0且为常数,∴f(x)是周期函数,2b-2a为它的周期.由例8可得到如下的定理若函数y=f(x)(x∈R)的图象关于直线x=a和直线x=b(a<b)对称,且在这两条直线之间再无对称轴,那么f(x)是周期函数,2b -2a为它的周期.此定理可当作一个公式用,如例6中函数f(x)的周期为2.7-2.5=4.。
三角函数的周期性与奇偶性知识点三角函数是数学中重要的概念之一,包括正弦函数、余弦函数和正切函数。
它们在数学中有着广泛的应用,涉及到周期性与奇偶性的概念。
本文将详细介绍三角函数的周期性与奇偶性知识点,以便读者更好地理解和运用这些函数。
一、正弦函数的周期性与奇偶性正弦函数是一种周期函数,其周期为2π。
换句话说,当自变量增加2π时,正弦函数的值会再次重复。
具体而言,正弦函数的周期性可以表示为sin(x + 2π) = sin(x)。
这意味着,如果我们将自变量x增加一个周期的长度,正弦函数的值将保持不变。
正弦函数还具有奇偶性。
奇函数的特点是在原点关于y轴对称,即f(-x) = -f(x)。
对于正弦函数来说,sin(-x) = -sin(x),因此它是一个奇函数。
这也意味着,正弦函数的图像关于坐标原点对称。
二、余弦函数的周期性与奇偶性余弦函数也是一种周期函数,其周期同样为2π。
与正弦函数类似,余弦函数的值在自变量增加一个周期的长度后会再次重复,即cos(x +2π) = cos(x)。
不同的是,余弦函数是一个偶函数,即f(-x) = f(x)。
在余弦函数中,cos(-x) = cos(x),这意味着余弦函数的图像关于y轴对称。
三、正切函数的周期性与奇偶性正切函数是一个没有周期的函数,它在某些点上是无界的。
因此我们不能像正弦函数和余弦函数一样讨论它的周期性。
然而,正切函数具有奇偶性。
在正切函数中,tan(-x) = -tan(x),因此它也是一个奇函数。
与正弦函数一样,正切函数的图像关于原点对称。
综上所述,三角函数的周期性与奇偶性是它们在数学中重要的性质。
正弦函数和余弦函数都是周期函数,正弦函数是奇函数而余弦函数是偶函数。
正切函数虽然没有周期,但仍然是一个奇函数。
这些性质在解决数学问题和实际应用中起到重要的作用。
通过了解三角函数的周期性与奇偶性,我们可以更好地理解和分析三角函数的性质。
这对于解题和应用三角函数来说是非常有帮助的。
函数周期归纳总结函数是数学中一个重要的概念,它描述了一种映射关系,将一个自变量映射到对应的因变量上。
在函数的研究中,周期是一个经常遇到的概念。
周期函数是指具有某种规律性重复出现的函数。
本文将对函数周期的概念进行归纳总结。
周期函数是指在一定的自变量取值下,函数值具有规律性的重复出现的函数。
在函数图像上,这种重复出现往往表现为图像的部分或者整体重复。
函数周期的概念是从图像的视角来考虑的,因此我们首先需要了解函数图像的特点和性质。
函数图像是函数在直角坐标系中的表现形式,横坐标表示自变量的取值,纵坐标表示函数值。
在直角坐标系中,我们可以通过绘制函数图像来观察函数的变化规律,从而更好地理解函数的性质。
对于周期函数来说,函数图像将呈现出一定的规律性重复。
周期函数的周期可以通过观察函数图像的特点来进行判断。
当函数图像在横坐标某一段上具有重复性质时,我们可以认为函数具有周期。
周期即横坐标上的距离,可以通过测量函数图像的一段距离来确定。
在实际问题中,我们会遇到许多周期函数。
例如,三角函数就是常见的周期函数之一。
正弦函数和余弦函数是最基本的三角函数,它们的周期是2π。
对于正弦函数来说,当自变量增加2π时,函数值会重复出现;对于余弦函数来说,当自变量增加2π时,函数值也会重复出现。
除了三角函数,指数函数也是常见的周期函数。
指数函数具有形如f(x)=a^x的形式,其中a为常数,x为自变量。
对于指数函数来说,当自变量增加一个常数倍数时,函数值也会重复出现。
这种情况下,函数的周期可以通过求解指数函数的指数等式来确定。
需要注意的是,不是所有的函数都具有周期性。
只有满足一定条件的函数才能称为周期函数。
例如,常数函数就不具备周期性,因为它的函数图像是一条平行于横轴的直线,没有任何重复。
此外,非周期函数的图像也不能呈现规律性的重复。
总结起来,函数周期是描述函数在一定自变量取值下函数值重复出现的规律。
周期函数是具有周期性的函数,其图像将呈现出一定的重复性质。
周期函数怎么判断三角函数的周期根据公式:弦函数的2π/w,切函数的π/w(w为正);一般的函数根据定义来判断,除了三角函数外,没有给出解析式的函数是周期的函数。
推知周期,常见的周期情况有f(x+T)=f(x),周期为T,f(x+a)=-f(x),周期为2a。
扩展资料周期函数的判定方法1、根据定义讨论函数的周期性可知非零实数T在关系式f(X+T)= f(X)中是与X无关的`,故讨论时可通过解关于T的方程f(X+T)- f(X)=0,若能解出与X无关的非零常数T便可断定函数f(X)是周期函数,若这样的T不存在则f(X)为非周期函数。
例:f(X)=cosx 是非周期函数。
2、一般用反证法证明。
(若f(X)是周期函数,推出矛盾,从而得出f(X)是非周期函数)。
例:证f(X)=ax+b(a≠0)是非周期函数。
证:假设f(X)=ax+b是周期函数,则存在T(≠0),使true ,a(x+T)+b=ax+b ax+aT-ax=0 aT=0 又a≠0,∴T=0与T≠0矛盾,∴f(X)是非周期函数。
例:证f(X)= 是非周期函数。
证:假设f(X)是周期函数,则必存在T(≠0)对,有(x+T)= f(X),当x=0时,f(X)=0,但x+T≠0,∴f(x+T)=1,∴f(x+T) ≠f(X)与f(x+T)= f(X)矛盾,∴f(X)是非周期函数。
例:证f(X)=sinx2是非周期函数证:若f(X)= sinx2是周期函数,则存在T(>0),使之true,有sin(x+T)2=sinx2,取x=0有sinT2=sin0=0,∴T2=Kπ(K∈Z),又取X= T有s in(T+T)2=sin(T)2=sin2kπ=0,∴(+1)2T2=Lπ(L∈Z+),∴与3+2 是无理数矛盾,∴f(X)=sinx2是非周期函数。
f(x)在x=π处的左极限为0,右极限为-π,其傅里叶级数在x=π处收敛于左右极限的平均值,即-π/2.
周期函数是无论任何独立变量上经过一个确定的周期之后数值
皆能重复的函数。
对于函数y=f(x),如果存在一个不为零的常数T,使得当x
取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函
数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。
事实上,任何一个常数kT(k∈Z,且k≠0)都是它的周期。
并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定
有最小正周期。
函数定义
设f(x)是定义在数集M上的函数,如果存在非零常数T具有性质:f(x+T)=f(x),则称f(x)是数集M上的周期函数,常数T称为f(x)的一个周期。
如果在所有正周期中有一个最小的,
则称它是函数f(x)的最小正周期。
由定义可得:周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期,譬如狄利克雷函数。
函数性质
周期函数周期函数的性质[1]共分以下几个类型:
(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。
(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。
(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。
(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T
一定是T*的正整数倍。
(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。
(6)周期函数f(x)的定义域M必定是至少一方无界的集合。