请找出图中的平行线! 它们为什么平行?
公理 两条直线被第三条直线所截,如果同位 角相等,那么这两条直线平行.
简单说成:同位角相等,两直线平行 利用“同位角相等,两直线平行”这个基本 事实,可以证明哪些判别两直线平行的真命题呢?
议一议
据说,人类知识的75%是在操作中学到的. 小明用下面的方法作出平行线,你认为他的作法对 吗?为什么?
【跟踪训练】
1.如图:直线AB,CD都和AE相交,且 ∠1+∠A=180°.
求证:AB//CD
证明:∵∠1与∠2是对顶角. A
∴∠1=∠2.
C
∵∠1+∠A=180°( 已知 ),
B
2
13
D
E
∴∠2+∠A=180°(等量代换).
∴AB‖CD ( 同旁内角互补,两直线平行 ).
你还有其他证明方法吗?
2.(潜江·中考)对于图中标记的各角,下列条件能够 推理得到a∥b的是( )
平行线的判定方法
公理:
同位角相等,两直线平行.
a
∵ ∠1=∠2, ∴ a∥b.
b
判定定理:
内错角相等,两直线平行.
a
∵ ∠1=∠2, ∴ a∥b.
b
判定定理:
同旁内角互补,两直线平行.
a
∵∠1+∠2=180°, ∴ a∥b. b
c
1 2
c
12
c
1 2
证明一个命题的一般步骤: (1)弄清条件和结论; (2)根据题意画出相应的图形; (3)根据条件和结论写出已知,求证; (4)分析证明思路,写出证明过程.
证明:∵ ∠1与∠2互补 (已知),
∴∠1+∠2=180°(互补的定义).