扫描隧道显微镜(1)
- 格式:ppt
- 大小:2.88 MB
- 文档页数:37
1 扫描隧道显微镜(STM)扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。
将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。
这种现象即是隧道效应。
隧道电流I 是电子波函数重叠的量度,与针尖和样品之间距离S 和平均功函数Φ 有关:V b是加在针尖和样品之间的偏置电压,平均功函数,分别为针尖和样品的功函数,A 为常数,在真空条件下约等于1。
扫描探针一般采用直径小于1mm的细金属丝,如钨丝、铂―铱丝等;被观测样品应具有一定导电性才可以产生隧道电流。
由上式可知,隧道电流强度对针尖与样品表面之间距非常敏感,如果距离S 减小0.1nm,隧道电流I 将增加一个数量级,因此,利用电子反馈线路控制隧道电流的恒定,并用压电陶瓷材料控制针尖在样品表面的扫描,则探针在垂直于样品方向上高低的变化就反映出了样品表面的起伏,见图1(a)。
将针尖在样品表面扫描时运动的轨迹直接在荧光屏或记录纸上显示出来,就得到了样品表面态密度的分布或原子排列的图象。
这种扫描方式可用于观察表面形貌起伏较大的样品,且可通过加在z 向驱动器上的电压值推算表面起伏高度的数值,这是一种常用的扫描模式。
对于起伏不大的样品表面,可以控制针尖高度守恒扫描,通过记录隧道电流的变化亦可得到表面态度的分布。
这种扫描方式的特点是扫描速度快,能够减少噪音和热漂移对信号的影响,但一般不能用于观察表面起伏大于1nm的样品。
(a)(b)从式可知,在V b和I 保持不变的扫描过程中,如果功函数随样品表面的位置而异,也同样会引起探针与样品表面间距S 的变化,因而也引起控制针尖高度的电压V z的变化。
如样品表面原子种类不同,或样品表面吸附有原子、分子时,由于不同种类的原子或分子团等具有不同的电子态密度和功函数,此时扫描隧道显微镜(STM)给出的等电子态密度轮廓不再对应于样品表面原子的起伏,而是表面原子起伏与不同原子和各自态密度组合后的综合效果。
扫描隧道显微镜的工作原理与应用扫描隧道显微镜(Scanning Tunneling Microscope,简称STM)是一种利用量子隧穿效应的高分辨率显微镜。
它采用的是一根极细的金属探头和样品之间的隧穿电流来获取样品表面的信息。
STM具有非常高的分辨率,能够在原子尺度下的样品表面进行观测和操纵,因此在材料科学、表面物理、纳米技术等领域有着广泛的应用。
一、工作原理STM的工作基于量子力学中的隧穿效应。
隧穿效应是一种粒子从一个区域超越到另一个区域的现象。
在STM中,金属探头和样品之间形成一个电势差,并使用一个反馈电路来保持电流恒定。
隧穿电流是通过探头和样品之间的隧穿效应产生的。
探头与样品之间的距离非常小,约为几个纳米,隧穿电流的大小取决于两者之间的距离。
当探头在样品表面上移动时,由于样品表面具有不同的高度和电性特征,因此隧穿电流的大小也会发生变化。
这种变化通过反馈电路测量并转换为高度和电性的信息,然后通过计算机处理并呈现出来。
样品表面的信息在计算机中显示为一个图像。
二、应用A.材料科学STM被广泛应用于材料科学领域,如表征材料表面和分析材料电子结构等。
在纳米材料研究中,STM可以检测材料中的特定原子和分子,并且可以通过组装单个原子或分子来设计新的材料。
B.表面物理STM是表面物理学中非常有用的工具。
它可以研究各种表面效应,例如表面扭转、重排和易于惯性传输的晶格振动模式。
此外,STM还可以用于表面缺陷和缺失等杂质的检测和定位。
C.纳米技术STM在纳米技术领域具有广泛应用。
纳米材料、纳米结构的制备和表征在纳米技术领域是非常重要的。
通过STM可以定量地观察单个原子和分子,这对于设计和制备纳米材料和纳米器件非常有帮助。
D.生物学STM可以在原子和分子的尺度上进行生物学实验。
在生物领域,STM可用于研究DNA分子的结构和功能,以及在膜结构中的蛋白质微区域中检测生物分子等。
E.电子学STM还可以用作电子学中的电极,例如调制电流分布、表征器件中的界面和自旋极化等方法。
自旋极化扫描隧道显微镜原理自旋极化扫描隧道显微镜(Scanning Tunneling Microscope,简称STM)是一种高分辨率的表面成像技术,能够直接观察原子尺度下的表面结构和电子状态。
其原理基于量子隧道效应和自旋极化效应的结合。
我们来了解一下量子隧道效应。
根据量子力学原理,当两个物体之间存在一个很薄的障壁时,粒子仍有一定的概率穿过障壁。
在STM 中,利用这一原理,通过在样品表面和探针之间建立一个纳米级的隧道障壁,使得电子能够通过这个隧道进行隧道传输。
当探针靠近样品表面时,电子会通过隧道效应从探针的尖端跃迁到样品表面上。
而自旋极化效应则是指电子带有自旋这一内禀属性,其自旋方向可以用“上”和“下”来表示。
自旋极化扫描隧道显微镜利用自旋极化的电子来观察表面的磁性信息。
在实际操作中,可以通过在探针尖端引入一个磁性原子,使得探针上的电子自旋发生极化。
当探针与样品表面接触时,这些自旋极化的电子会与样品表面上的自旋相互作用,从而产生一种称为自旋极化电流的物理量。
通过测量这种电流的大小和方向,可以获得样品表面上的自旋信息。
通过对隧道电流信号的测量和分析,STM可以实现对样品表面原子排列的高分辨率成像。
其空间分辨率可达到原子级别,甚至可以观察到单个原子和分子的结构。
此外,STM还可以通过调节探针与样品之间的隧道电流强度,实现原子尺度的表面成分分析和表面态密度测量。
自旋极化扫描隧道显微镜凭借量子隧道效应和自旋极化效应的结合,实现了对原子尺度下表面结构和电子状态的直接观察。
它的应用不仅帮助我们深入理解物质的微观世界,还在纳米科技、材料科学和表面物理等领域发挥着重要的作用。
通过不断的技术改进和创新,相信自旋极化扫描隧道显微镜将进一步推动科学研究的发展和进步。
STM 扫描隧道显微镜13应用物理一班张光义 2013326690023【概述】1982年,IBM 公司苏黎世实验室的G . Binnig 和H. Rohrer 发明了世界上第一台扫描隧道显微镜(简称STM )。
利用STM ,人类有史以来第一次在实空间观察到了原子的晶格结构图像,为此,其研制者在1986年获得诺贝尔物理学奖。
在STM 的基础上,后来又发展出原子力显微镜(AFM ),光子扫描隧道显微镜(PSTM ),扫描近场光学显微镜(SNOM ),静电力显微镜(EFM ),磁力显微镜(MFM ),扫描离子电导显微镜(SICM)等仪器技术,形成一个扫描探针显微镜(SPM )家族。
STM 和AFM 等仪器的问世(图1),为人类认识超微观世界的奥秘提供了有力的观察和研究工具,已经在物理学、高分子化学、材料科学、光电子学、生命科学和微电子技术等领域中得到广泛应用。
【实验原理】隧道电流STM 的工作原理基于微探针(针尖)与样品之间的隧道效应及隧道电流。
当一根十分尖锐的针尖在纵向充分逼近施加了一定偏压的样品表面至数纳米甚至更小间距S 时,针尖尖端的原子与样品表面原子之间将产生隧道电流It 。
根据量子力学的隧道效应理论,It 与间距S 之间存在负指数关系,探测隧道电流It 的大小,即可检测出间距S的大小,当针尖在横向扫描样品时,即可获得根据隧道电流的图1 从光学显微镜到扫描隧道显微镜及原子力显微镜变化而获得样品表面的三维微纳米形貌(图2)。
It图2 隧道电流及扫描隧道显微镜(STM)的基本原理隧道针尖隧道针尖的结构是扫描隧道显微技术要解决的主要问题之一。
针尖的大小、形状和化学同一性不仅影响着扫描隧道显微镜图象的分辨率和图象的形状,而且也影响着测定的电子态。
针尖的宏观结构应使得针尖具有高的弯曲共振频率,从而可以减少相位滞后,提高采集速度。
如果针尖的尖端只有一个稳定的原子而不是有多重针尖,那么隧道电流就会很稳定,而且能够获得原子级分辨的图象。
扫描探针显微镜(SPM)原理简介庞文辉 2012.2.22一、SPM定义扫描探针显微镜(Scanning Probe Microscope,SPM)是扫描隧道显微镜及在扫描隧道显微镜的基础上发展起来的各种新型探针显微镜(原子力显微镜AFM,激光力显微镜LFM,磁力显微镜MFM等等)的统称,包括多种成像模式,他们的共同特点是探针在样品表面扫描,同时针尖与样品间的相互作用力被记录。
SPM的两种基本形式:1、扫描隧道显微镜(Scanning Probe Microscope,STM)2、原子力显微镜(Atomic Force Microscope,AFM)AFM有两种主要模式:●接触模式(contact mode)●轻敲模式(tapping mode)SPM的其他形式:●侧向摩擦力显微术(Lateral Force Microscopy)●磁场力显微镜(Magnetic Force Microscope)●静电力显微镜(Electric Force Microscope)●表面电势显微镜(Surface Potential Microscope)●导电原子力显微镜(Conductive Atomic Force Microscope)●自动成像模式(ScanAsyst)●相位成像模式(Phase Imaging)●扭转共振模式(Torisonal Resonance Mode)●压电响应模式(Piezo Respnance Mode)●……二、STM原理及应用基于量子力学中的隧穿效应,用一个半径很小的针尖探测被测样品表面,以金属针尖为一电极,被测固体表面为另一电极,当他们之间的距离小到1nm左右时,形成隧道结,电子可从一个电极通过量子隧穿效应穿过势垒到底另一个电极,形成隧穿电流。
在极间加很小偏压,即有净隧穿电流出现。
隧穿电流与两极的距离成指数关系,反馈原理是采用横流模式,当两极间距不同(电流不同),系统会调整Z轴的位置从而成高度像。
什么是扫描隧道显微镜
扫描隧道显微镜(Scanning Tunneling Microscope,缩写为STM)是一种扫描探针显微术工具,它可以让科学家观察和定位单个原子,具有比同类原子力显微镜更高的分辨率。
STM在低温下(4K)可以利用探针尖端精确操纵原子,因此它在纳米科技既是重要的测量工具又是加工工具。
扫描隧道显微镜利用量子力学中的隧道效应,当扫描针尖在样品表面上方沿z轴来回扫描时,由于针尖和样品之间的距离非常近,使得针尖和样品之间产生隧道效应,从而获得表面形貌的微细结构信息。
扫描隧道显微镜具有原子级(埃级)的空间分辨率和优于500飞秒的时间分辨率,成为国内首套自主研制的太赫兹扫描隧道显微镜系统。
STM在原子级扫描、材料表面探伤及修补、引导微观化学反应、控制原子排列等领域广泛应用。
如需了解更多有关扫描隧道显微镜的信息,可以查阅相关的专业文献,或者咨询相关领域的专家学者。