磁阻从原理到应用
- 格式:ppt
- 大小:725.00 KB
- 文档页数:46
永磁辅助同步磁阻电机设计与应用下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!在电机领域,永磁辅助同步磁阻电机是一种新型的电机结构,具有高效、低噪音、高可靠性等优点,在工业生产中得到了广泛的应用。
开关磁阻电机开关磁阻电机是一种新型调速电机,调速系统兼具直流、交流两类调速系统的优点,是继变频调速系统、无刷直流电动机调速系统的最新一代无极调速系统。
它的构造简单稳固,调速范围宽,调速性能优异,且在整个调速范围内都具有较高效率,系统可靠性高。
主要由开关磁阻电机、功率变换器、控制器与位置检测器四部分组成。
控制器内包含控制电路与功率变换器,而转子位置检测器那么安装在电机的一端。
其电机部分由于是运用了磁阻最小原理,故称为磁阻电动机,又由于线圈电流通断、磁通状态直承受开关控制,故称为开关磁阻电动机。
特征开关磁阻电机构造简单,性能优越,可靠性高,覆盖功率范围10W~5MW的各种上下速驱动调速系统。
使的开关磁阻电机存在许多潜在的领域,在各种需要调速和高效率的场合均能得到广泛使用〔电动车驱动、通用工业、家用电器、纺织机械、电力传动系统等各个领域〕。
优点◆其构造简单,价格廉价,电机的转子没有绕组和磁铁。
◆电机转子无永磁体,允许较高的温升。
由于绕组均在定子上,电机容易冷却。
效率高,损耗小。
◆转矩方向与电流方向无关,只需单方相绕组电流,每相一个功率开关,功率电路简单可靠。
◆转子上没有电刷构造稳固,适用于高速驱动。
◆转子的转动惯量小,有较高转矩惯量比。
◆调速范围宽,控制灵敏,易于实现各种再生制动才能。
◆并具频繁启动〔1000次/小时〕,正向反向运转的特殊场合使用。
◆且启动电流小,启动转矩大,低速时更为突出。
◆电机的绕组电流方向为单方向,电力控制电路简单,具有较高的经济性和可靠性。
◆可通过机和电的统一协调设计满足各种特殊使用要求。
缺点其工作原理决定了,假设需要开关磁阻电机运行稳定可靠,必须使电机与控制配合的很好。
因其要使用位置传感器,增加了构造复杂性,降低了可靠性。
对于电机本身而言,转矩脉动大是其固有的缺点;在电机远离设计点的时候,转矩脉动大会表达的更加明显。
假设单纯使用电流斩波或最优导通角控制方法,对其转矩脉动的改善不是很大,需要参加更加复杂的算法。
磁阻传感器原理磁阻传感器是一种常见的磁传感器,利用磁性材料的磁阻特性来感知磁场的变化。
本文将介绍磁阻传感器的原理及其应用。
一、磁阻效应的基本原理磁阻效应是指磁性材料在外加磁场作用下,其电学特性发生变化的现象。
常见的磁阻效应有磁阻效应、霍尔效应和洛伦兹力等。
其中,磁阻效应是指当材料在磁场中发生形变时,其电阻值会发生变化。
二、磁阻传感器的工作原理磁阻传感器通常由磁敏感层和电路部分组成。
磁敏感层是一层薄膜,其由磁性材料制成,具有磁阻效应。
电路部分负责测量磁敏感层的电阻值,并将其转换为电信号输出。
磁阻传感器的工作原理基于磁敏感层的电阻值会因外加磁场的变化而发生变化。
当磁场方向与磁敏感层的磁场方向相同时,磁敏感层的电阻值会减小;而当外加磁场的方向与磁敏感层的磁场方向相反时,磁敏感层的电阻值会增大。
电路部分通常采用桥式电路结构来测量磁敏感层的电阻值变化。
桥式电路由电阻和基准电阻组成,当磁敏感层的电阻值发生变化时,将引起桥式电路的不平衡,进而产生输出电信号。
通过测量输出电信号的大小,可以得知磁阻传感器所感测到的磁场强度。
三、磁阻传感器的应用磁阻传感器的应用十分广泛,涵盖了许多领域。
以下是几个常见的应用领域:1. 位置检测磁阻传感器可以用于检测物体的位置。
通过将磁阻传感器安装在被检测物体附近的固定位置,当被检测物体发生移动时,外加磁场的变化会导致磁阻传感器的输出电信号发生变化,从而实现位置检测。
2. 速度测量磁阻传感器可以用于测量物体的速度。
通过将磁阻传感器与运动物体相对应,当运动物体通过磁阻传感器时,磁阻传感器会感知到由物体带来的磁场变化,从而测量出物体的速度。
3. 磁场检测磁阻传感器可以用于检测磁场的强度和方向。
通过将磁阻传感器放置在需要检测磁场的区域,当磁场强度或方向发生变化时,磁阻传感器会产生相应的电信号,从而实现磁场检测。
4. 指南针磁阻传感器可以用于制作指南针。
通过将磁阻传感器与指南针结合,可以测量地磁场的方向,并将其转化为指南针指示的方向。
巨磁阻效应的原理及应用物质在一定磁场下电阻改变的现象,称为磁阻效应。
磁性金属和合金材料一般都有这种现象。
一般情况下,物质的电阻率在磁场中仅发生微小的变化,在某种条件下,电阻减小的幅度相当大,比通常情况下约高十余倍,称为巨磁阻效应(GMR )。
要说这种效应的原理,不得不说一下电子轨道及自旋。
种角动量在原子物理学中,对于单电子原子(包括碱金属原子)处于一定的状态,有一定的能量、轨道角动量、自旋角动量和总角动量。
表征其性质的量子数是主量子数n、角量子数I、自旋量子数s= 1 /2,和总角动量量子数j。
主量子数(n=1 , 2, 3, 4…)会视电子与原子核间的距离(即半径座标r)而定。
平均距离会随着n增大,因此不同量子数的量子态会被说成属于不同的电子层。
角量子数(1=0, 1…n-1)(又称方位角量子数或轨道量子数)通过关系式来代表轨道角动量。
在化学中,这个量子数是非常重要的,因为它表明了一轨道的形状,并对化学键及键角有重大形响。
有些时候,不同角量子数的轨道有不同代号,1=0的轨道叫s轨道,1=1的叫p轨道,1=2的叫d轨道,而1=3的则叫f轨道。
磁量子数(ml= -I, -I+1…0…1-1 , I)代表特征值,。
这是轨道角动量沿某指定轴的射影。
从光谱学中所得的结果指出一个轨道最多可容纳两个电子。
然而两个电子绝不能拥有完全相同的量子态(泡利不相容原理),故也绝不能拥有同一组量子数。
所以为此特别提出一个假设来解决这问题,就是设存在一个有两个可能值的第四个量子数一自旋量子数。
这假设以后能被相对论性量子力学所解释。
我们对过渡金属的电导率有了如下认识:电流由s电子传递,其有效质量近乎于自由电子。
然而电阻则取决于电子从s带跃迁到d带的散射过程,因为跃迁几率与终态的态密度成正比,而局域性的d带在费米面上的态密度是很大的。
这就是过渡金属电阻率高的原因。
这种s-d散射率取决于s电子与d电子自旋的相对取向。
巨磁电阻(GMR )效应来自于载流电子的不同自旋状态与磁场的作用不同,因而导致的电阻值的变化。
永磁磁阻电机和永磁同步电机永磁磁阻电机和永磁同步电机是两种常见的永磁电机类型。
它们在工业生产和家用电器中具有广泛的应用。
本文将分别介绍永磁磁阻电机和永磁同步电机的工作原理、特点和应用领域。
一、永磁磁阻电机永磁磁阻电机是一种利用永磁体和磁阻调节器组成的电机。
其工作原理是利用转子上的永磁体产生磁场,与定子上的磁阻调节器相互作用,从而实现电能到机械能的转换。
永磁磁阻电机具有以下特点:1. 简单结构:永磁磁阻电机的结构相对简单,由于没有传统电机中的电枢线圈,减少了电机的复杂性和维护成本。
2. 高效率:永磁磁阻电机由于没有电枢损耗,相对于传统电机具有更高的效率,能够更好地利用电能。
3. 调速范围广:永磁磁阻电机的转速范围广,可以根据实际需要进行调节,适应不同的工作负载。
4. 启动性能好:永磁磁阻电机的启动性能良好,能够在较低的电压下启动,无需额外的启动装置。
永磁磁阻电机在家用电器、风力发电、制造业等领域有广泛的应用。
例如,家用电器中的洗衣机、空调、电风扇等都采用永磁磁阻电机作为驱动装置。
此外,永磁磁阻电机还广泛应用于工业自动化控制系统中,如机床、搬运设备等。
二、永磁同步电机永磁同步电机是一种利用永磁体产生的磁场与定子磁场同步旋转的电机。
其工作原理是通过控制定子上的电流,使其产生旋转磁场,与永磁体的磁场同步旋转,从而实现电能到机械能的转换。
永磁同步电机具有以下特点:1. 高效率:由于没有电枢损耗,永磁同步电机具有较高的效率,可以更有效地利用电能。
2. 高功率密度:永磁同步电机具有较高的功率密度,体积小、重量轻,适合安装在有限空间的场合。
3. 调速性能好:永磁同步电机的调速性能优良,可以通过控制定子电流的大小和频率来实现精确的调速。
4. 启动性能较差:永磁同步电机的启动性能相对较差,通常需要外部启动装置或者与其他电机联动启动。
永磁同步电机在电动汽车、机器人、轨道交通等领域得到广泛应用。
例如,电动汽车中的驱动电机通常采用永磁同步电机,其高效率和优良的调速性能可以提高汽车的续航里程和驾驶体验。
磁阻效应实验报告磁阻效应实验报告引言:磁阻效应是指当磁场作用于导体时,导体内的电阻会发生变化的现象。
这一现象在工业和科学领域中具有重要的应用价值。
本实验旨在通过测量磁场强度和电阻的变化关系,探究磁阻效应的原理和应用。
实验装置:本实验所用装置包括磁场发生器、导线、电流表、电压表和电源等。
磁场发生器用于产生磁场,导线则用于连接电源、电流表和电压表。
实验过程:1. 首先,将磁场发生器放置在实验台上,并连接电源。
2. 将导线绕在磁场发生器的铁芯上,确保导线与磁场发生器之间的接触良好。
3. 将电流表和电压表分别连接到导线的两端,以测量电流和电压的变化。
4. 通过调节电源的电压,使得电流表读数在合适的范围内。
5. 用磁铁靠近磁场发生器,观察电流表和电压表的读数变化。
实验结果:实验中我们记录了不同磁场强度下的电流和电压变化。
结果显示,在磁场强度增加的情况下,电流表的读数逐渐减小,而电压表的读数则逐渐增加。
这一结果表明了磁阻效应的存在。
讨论和分析:根据实验结果,我们可以得出以下结论:1. 磁阻效应是由磁场对导体内电子运动的影响所引起的。
当磁场增强时,磁场对电子的作用力也增强,从而导致电子在导体内运动的受阻,导致电流减小。
2. 磁阻效应的大小与导体的材料和几何形状有关。
不同材料和形状的导体对磁阻效应的响应程度不同。
3. 磁阻效应在实际应用中具有广泛的用途。
例如,磁阻效应可用于制造磁阻传感器,用于测量磁场强度和位置。
此外,磁阻效应还可应用于磁存储器、磁记录和磁传感等领域。
结论:通过本实验,我们深入了解了磁阻效应的原理和应用。
磁阻效应是磁场对导体内电子运动的影响,导致电流减小的现象。
磁阻效应在工业和科学领域中具有重要的应用价值,例如磁阻传感器、磁存储器等。
通过进一步研究和应用,我们可以不断发掘磁阻效应的潜力,为技术创新和进步做出贡献。
总结:本实验通过测量磁场强度和电阻的变化关系,探究了磁阻效应的原理和应用。
实验结果表明,在磁场强度增加的情况下,电流减小,电压增加,验证了磁阻效应的存在。
磁阻效应具体应用及原理磁阻效应是指当电流通过一个材料时,由于材料的电阻随着外加磁场的变化而发生变化,从而导致电阻的值发生变化。
它是固体材料中一种重要的磁电耦合效应,也是磁电耦合研究的重要内容之一。
磁阻效应的具体应用及原理如下:1.磁阻传感器磁阻传感器利用磁阻效应来测量磁场强度,常见的磁阻传感器有磁阻式角位移传感器、磁阻式线性位移传感器等。
这些传感器通常包含一个可测量磁场的磁敏感元件以及一个测量电阻变化的电路。
当磁场作用在磁敏感元件上时,电阻值发生变化,通过测量这个变化可以得到磁场的大小。
2.磁阻随机存取存储器(M R A M)磁阻随机存取存储器采用磁阻效应来实现数据存储。
它利用自旋极化的磁性材料中的磁阻变化来表示二进制信息。
在读取数据时,通过检测电阻的变化来判断存储的信息。
相较于传统的存储器技术,M R A M具有非常快的读写速度、低功耗和无需刷新等优点,已经广泛应用于电子产品中。
3.磁阻式磁力传感器磁阻式磁力传感器利用磁阻效应来测量磁场中的磁力大小和方向。
它通常由一个磁阻敏感层和一个感测电路组成。
当磁场作用于磁阻敏感层时,磁场的变化会导致敏感层的电阻发生变化,通过测量电阻的变化可以得到磁场的信息。
4.磁阻式变压器磁阻式变压器利用磁阻效应来实现电力的传输和变换。
它由一个磁阻敏感材料制成的传感器和一个电路组成。
当磁阻传感器接收到输入信号时,电路会根据电阻变化来调节和控制输出信号的大小,从而实现电力的传输和变换。
磁阻效应的基本原理是磁场对材料的电子态和载流子运动的影响。
磁场作用下,电子运动轨迹呈螺旋状,使平均自由程减小,电阻增大。
这是由于磁场引起了电子动量的散射,并阻碍了电子的运动。
在某些材料中,磁场对自旋运动的影响尤为显著,通过改变自旋方向来调控电子的散射和运动,从而实现电阻的变化。
磁阻效应的具体机制包括“自旋极化效应”和“自旋依赖散射效应”。
自旋极化效应是指磁场改变了电子的自旋方向,进而影响了载流子的散射和运动。
磁阻电机永磁电机
磁阻电机和永磁电机都是电机的一种,它们的主要区别在于电机
所使用的电磁铁。
在磁阻电机中,电磁铁是由铁芯和线圈组成的,而
在永磁电机中,则是使用具有永久磁性的材料。
1. 磁阻电机的工作原理
当电流经过线圈时,它会产生磁场。
这个磁场会与电机中的铁芯
相互作用,从而产生一个旋转力。
这个旋转力会被用来驱动电机的转子。
2. 磁阻电机的优点和缺点
磁阻电机的优点在于它们能够提供更高的转矩,并且可以通过调
整电流来控制电机的速度。
然而,由于线圈的阻力也会对电机的性能
产生影响,所以磁阻电机的效率相对较低。
3. 永磁电机的工作原理
永磁电机则运用了永久磁性材料来产生磁场。
这种电机的电磁铁
不需要外部电源来提供磁场,因为它们已经拥有了一个永磁铁。
这个
永磁铁会与电机的线圈相互作用,从而产生一个旋转力,驱动电机的
转子转动。
4. 永磁电机的优点和缺点
永磁电机的优点在于它们能够提供更高的效率,因为它们不需要
额外的电流来产生磁场,能源利用率更高。
但是,如果电机需要在高
负载条件下工作,那么永磁电机的转矩可能会受到限制。
总的来说,选择使用磁阻电机还是永磁电机,取决于具体的应用
场景。
对于一些需要高效能和可靠性的应用场合,比如电动汽车和风
力涡轮机等,使用永磁电机会是一个不错的选择。
其他一些应用场景,比如家庭用品和一些低成本的商业产品,可以选择磁阻电机。
开关磁阻电机驱动系统的运行原理及应用二低轴阻发电机参考资料1 引言开关磁阻电机驱动系统SDR具有一些很有特色的优点:电机结构简单、坚固、维护方便甚至免维护,启动及低速时转矩大、电流小;高速恒功率区范围宽、性能好,在宽广转速和功率访问内都具有高输出和高效率而且有很好的容错能力;这使得SR电机系统在家用电器、通用工业、伺服与调速系统、牵引电机、高转速电机、航空航天等领域得到广泛应用;SR电机是一种机电能量转换装置;根据可逆原理,SR电机和传统电机一样,它既可将电能转换为机械能—电动运行,在这方面的理论趋于成熟;也可将机械能转换为电能—发电运行,其内部的能量转换关系不能简单看成是SR电动机的逆过程;本文将从SR电机电动和发电运行这两个角度阐述SR电机的运行原理;2 电动运行原理转矩产生原理控制器根据位置检测器检测到的定转子间相对位置信息,结合给定的运行命令正转或反转,导通相应的定子相绕组的主开关元件;对应相绕组中有电流流过,产生磁场;磁场总是趋于“磁阻最小”而产生的磁阻性电磁转矩使转子转向“极对极”位置;当转子转到被吸引的转子磁极与定子激磁相相重合平衡位置时,电磁转矩消失;此时控制器根据新的位置信息,在定转子即将达到平衡位置时,向功率变换器发出命令,关断当前相的主开关元件,而导通下一相,则转子又会向下一个平衡位置转动;这样,控制器根据相应的位置信息按一定的控制逻辑连续地导通和关断相应的相绕组的主开关,就可产生连续的同转向的电磁转矩,使转子在一定的转速下连续运行;再根据一定的控制策略控制各相绕组的通、断时刻以及绕组电流的大小,就可使系统在最隹状态下运行;图1 三相sr电动机剖面图从上面的分析可见,电流的方向对转矩没有任何影响,电动机的转向与电流方向无关,而仅取决于相绕组的通电顺序;若通电顺序改变,则电机的转向也发生改变;为保证电机能连续地旋转,位置检测器要能及时给出定转子极间相对位置,使控制器能及时和准确地控制定子各相绕组的通断,使srm能产生所要求的转矩和转速,达到预计的性能要求;电路分析图2中电源vcc是一直流电源,3个电感分别表示srm的三相绕组,igbt1~igbt6为与绕组相连的可控开关元件,6个二极管为对应相的续流二极管;当第一相绕组的开关管导通时,电源给第一相励磁,电流的回路即励磁阶段是由电源正极→上开关管→绕组→下开关管→电源负极,如图2a所示;开关管关断时,由于绕组是一个电感,根据电工理论,电感的电流不允许突变,此时电流的续流回路即去磁阶段是绕组→上续流二极管→电源→下续流二极管→绕组,如图2b所示;图2 srm电路工作示意图能量转换关系当忽略铁耗和各种附加损耗时,srm工作时的能量转换过程为:通电相绕组的电感处在电感上升区域内转子转向“极对极”位置,当开关管导通时,输入的净电能一部分转化为磁场储能,一部分转化为机械能输出;当开关管关断时,绕组电流通过二极管和电源续流,存储的磁场储能一部分转化为电能回馈电源,另一部分则转化为机械能输出;sr电动机的运行特性12 sr电动机运行速度低于ωfc第一临界速度的范围内,为了保证ψmax和i不超过允许值,采用改变电压、导通角和触发角三者中任一个或任两个,或三者同时配合控制;当sr电动机在高于ωfc范围运行时,在外加电压、导通角和触发角都一定的条件下,随着转速的增加,磁链和电流将下降,转矩则随着转速的平方下降如图3中细实线;为了得到恒功率特性,必须采用可控条件;但是外施电压最大值是由电源功率变换器决定的,而导通角又不能无限增加一般不能超过半个转子极距;因此,在电压和导通角都达最大时,能得到的最大功率的最高转速ωsc被称之为“第二临界转速”;当转速再增加时,由于可控条件都已经达到极限,转矩将随转速的二次方下降,如图3所示;图3 sr电动机的运行特性开关磁阻电机一般运行在恒转矩区和恒功率区;在这两个区域中,电机的实际运行特性可控;通过控制条件,可以实现在粗实线以下的任意实际运行特性;而在串励特性区,电机的可控条件都已达极限,电机的运行特性不再可控,电机呈现自然串励运行特性,故电机一般不会运行在此区域; 运行时存在着第一、第二两个临界运行点是开关磁阻电机的一个重要特点;采用不同的可控条件匹配可以得到两个临界点的不同配置,从而得到各种各样所需的机械特性,这就是开关磁阻电动机具有优良调速性能的原因之一;从设计的观点看,两个临界点的合理配置是保证sr电动机设计合理,满足给定技术指标要求的关键; 从控制角度看,在上述两个区域采用不同的控制方法,在第一临界转速以下一般采用电流斩波控制方式ccc方式,在第一、第二临界转速之间采用角度位置控制方式apc方式;3 发电运行原理开关磁阻发电机switched reluctance generator简介开关磁阻发电机srg的研究始于20世纪80年代末;初期它是被用作飞机上的起动/发电机的,所以,又称为sr起动/发电机456;由于开关磁阻电机在航天飞机中的广阔应用前景,引起了一些国家政府部门和航天企业的高度重视;1990年美国空军usaf、wright实验室、wpafb联合与通用电气飞机发动机公司general electric aircraft engine签约,共同资助ge公司开展开关磁阻组合起动/发电机的研究;lucas航空公司lucas aerospace也开展了sr起动/发电机的研究,认为sr起动/发电机可以在飞机发动机熄火的紧急情况下,由风力发动机windmilling engine驱动为众多的机载设备提供更加可靠的应急电源; 我国在sr发电机的领域也开展了相关的研究活动;其中西北工业大学、西安交通大学在国家“九五”预研基金和国家教委博士点基金的资助下进行sr起动/发电机的相关研究,研制了4kw的sr 起动/发电机3;南京航天航空大学也开展了sr发电机的研究工作;与其它发电机相比,开关磁阻发电机具有独特的结构特点: 1 结构简单其定、转子均为简单的叠片式双凸极结构,定子上绕有集中绕组,转子上无绕组及永磁体; 2 容错能力强,无论从物理方面还是从电磁方面来讲,电机定子各相绕组间都是相互独立的,因而在一相甚至两相故障的情况下,仍然能有一定功率的电能输出; 3 可以作成很高转速的发电装置,从而达到很高的能流密度;转矩产生原理如图4所示,与电动运行时不同,绕组在转子转离“极对极”位置即电感下降区时通电,产生的磁阻性电磁转矩趋使电机回到“极对极”位置,但原动机驱动转子克服电磁转矩继续逆时针旋转;此时电磁转矩与转子运动方向相反,阻碍转子运动,是阻转转矩性质;图4 三相sr发电机剖面图当转子转到下一相的“极对极”位置时,控制器根据新的位置信息向功率变换器发出命令,关断当前相的主开关元件,而导通下一相,则下一相绕组会在转子转离“极对极”位置通电;这样,控制器根据相应的位置信息按一定的控制逻辑连续地导通和关断相应的相绕组的主开关,就可产生连续的阻转转矩,在原动机的拖动下发电;电路分析根据法拉第电磁感应定律“运动导体在磁场中会产生电势”,而srg转子仅由叠片构成,没有任何带磁性的磁体;这就需要在srg发电前有电源提供给srg励磁,使其内部产生磁场;所以,srg的特点是首先要通过定子绕组对电机励磁;这一点和其它发电机有着很明显的区别;srg的工作原理如下:图5中电源vcc是一直流电源,既可以是电池,也可以是直流电机;三个电感分别表示srg 的三相绕组,igbt1~igbt6为与绕组相连的可控开关元件,6个二极管为对应相的续流二极管;当第一相绕组的开关管导通时即励磁阶段,电源给第一相励磁,电流的回路是由电源正极→上开关管→绕组→下开关管→电源负极,如图5a所示;开关管关断时,由于绕组是一个电感,根据电工理论,电感的电流不允许突变,电流的续流回路即发电阶段是绕组→上续流二极管→电源→下续流二极管→绕组,如图5b所示;能量转换关系当忽略铁耗和各种附加损耗时,srg工作时的能量转换过程为:通电相绕组的电感处在电感下降区域内转子转离“极对极”位置,当开关管导通时,输入的净电能转化为磁场储能,同时原动机拖动转子克服srg产生的与旋转方向相反的转矩对srg做功使机械能也转化为磁场储能;当开关管关断时,srg绕组电流续流,磁场储能转化为电能回馈电源,并且机械能也转化为电能给电源充电;图5 srg电路工作示意图sr发电机的运行特性 sr发电机的运行特性与sr电动机的运行特性类似,只不过将曲线沿速度轴翻转到转矩为负的第四象限,在此不再赘述;4 结束语虽然srd系统的发展历程仅仅二十余年,但它取得了令人瞩目的成绩;其产品已在电动车用驱动系统、家用电器、工业应用、伺服系统、高速驱动、航空航天等众多领域得到成功应用,其功率范围也覆盖了从10w到5mw的宽广范围;它已成为现代调速系统中一支不可忽视的竞争力量;作为一种结构简单、鲁棒性能好、价格便宜的新型调速系统,开关磁阻电机及其调速系统引起各国电气传动界的广泛关注和浓厚兴趣,在世界范围内,正在形成理论研究和实际应用齐头并进的发展趋势;。