【2020-2021自招】邯郸市第一中学初升高自主招生数学模拟试卷【4套】【含解析】
- 格式:docx
- 大小:1.89 MB
- 文档页数:99
2024初升高自主招生数学模拟试卷(四)一、选择题1.将4046减去它的,再减去余下的,再减去余下的,再减去余下的,…依此类推,直至最后减去余下的则最后余下的数为()A.4B.3C.2D.12.若正实数a,b,c满足不等式组则a,b,c的大小关系为()A.b<a<cB.b<c<aC.c<b<aD.c<a<b3.若实数a,b满足等式2a-b=2a2-2则a b=()A. C. D.44.在Rt△ABC中,∠ABC=90°,AB=2,BC=33,点D是平面内一动点,且上ADB=30°,连CD,则CD长的最大值是()A.8B.9C.10D.115.已知三个实数x1,x2,x3它们中的任何一个数加上其余两数积的6倍总等于7,则这样的三元数组(x1,x2,x3)共有组()A.3B.4C.5D.66.如图,在Rt△ABC中,∠BAC=90°,sin B=45,点D是边BC的中点,以AD为底边在其右侧作等腰△ADE,使∠ADE=∠B,连CE,则CEBC ()A.65 B.56 C.58 D.5127.四边形ABCD 中,AC ,BD 是其两对角线,△ABC 是等边三角形,AD =6,BD =10,CD =8,则∠ADC =()A.30°B.45°C.60°D.75°二、填空题8.已知19个连续整数的和为380,则紧接在这19个数后面的21个连续偶数的和是__.9.已知x =54-,则(2x +1)(x +1)(2x +3)(x +2)=.10.在实数范围内因式分解:a 2-2b 2+3c 2-ab +bc +4ca =.11.在平面直角坐标系xOy 中,点A (4,0),B (4,),连OB ,AB ,若线段OB ,AB 分别交双曲线(0k y k x =>,0)x >于点D ,E (异于点B ),若DE 丄OB ,则k 的值为.12.把两个半径为8和一个半径为9的圆形纸片放在桌面上,使它们两两相外切,若要用一个圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于.13.在菱形ABCD 中,∠A =60°,点E ,F 分别在边AD ,AB 上,将△AEF 沿着EF 对折,使点A 恰好落在对角线BD 上的点G ,若DG =4,BG =6,则△AEF 的面积等于.14.对于任意不为0的实数a ,b ,c 定义一种新运算“#”:①a #a =1;②a #(b #c )=(a #b )c ,则关于x 的方程(x 2)#2=x +4的根为.三、解答题15.回答下列问题:(1)解方程:x =(x 2+4x 一3)2+4x 2+16x 一15;(2)求所有的实数a ,使得关于x 的方程x 2-(2a -1)x +4a -3=0的两根均为整数.16.如图,点E是正方形ABCD的边CD上一动点(异于C,D),连BE,以BE为对角线作正方形BGEF,EF与BD交于点H,连AF.(1)求证:A,F,C三点共线;(2)若CE:DE=1:2,求DHBH的值.17.在平面直角坐标系xOy中,抛物线C1:y=ax2+bx+c(a>0)经过点(0,-3)和(4,-11),且在x轴上截得的线段长为(1)求抛物线C1的解析式;(2)已知点A在抛物线C1上,且在其对称轴右侧,点B在抛物线C1的对称轴上,若△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)将抛物线C1向左平行移动3个单位得到抛物线C2,直线y=kx(k≠0)与C2交于E,F两点,直线2y xk=-与C2交于G,H两点,若M,N分别为线段EF和线段GH的中点,连接MN.求证:直线MN过定点.18.如图,等边△ABC内有一动点D,△CDE是等边三角形(点B,E在直线AC两侧),直线BD与直线AE交于点F.(1)判断∠AFC的大小是否为定值?若是定值,求出其大小;若不是定值,请说明理由.(2)若AB=5,CD=3,求线段AF长的最小值.参考答案1.答案:C解析:令,第二次余下的数为,,.故选:C.2.答案:B解析:由题意可得,因a ,b ,c 均为正实数,于是因此,故选:B.3.答案:A,根据非负性可知,所以故选:A.4.答案:B解析:要使长取到最大,则点C 与点D 位于直线两侧.延长到点E ,使4046=11211123323a a a ⎛⎫⨯-=⨯= ⎪⎝⎭13111,4434a a ⎛⎫⨯-=⨯= ⎪⎝⎭ 1202211114046220232023202220232023a a ⎛⎫⨯-=⨯==⨯= ⎪⎝⎭117,531326c abc c a a b c a ⎧<++<⎪⎪⎪<++<⎨⎪⎪⎪⎩11753132,6153,4a b c c a b c a c a b b ++⎧<<⎪⎪++⎪<<⎨⎪++⎪<<⎪⎩711133356a b c c ++>>>>>>b c a <<(21)20a b -+-=1,22a b ==b a =CD AB CB BE =连,则,,于是点D 在以为直径的圆上(与E 在直线同侧),设圆心为O ,则,当C ,O ,D 三点共线时,长取到最大,最大值为,故选:B.5.答案:C 解析:由条件知①-②得,,所以或.当时,代入③得,又代入①得,消去得,解得于是,或.当,解得或故选:C.6.答案:D解析:由条件知,,所以,所以,又公共,所以,所以也是等腰三角形,于是发现,故选:D.7.答案:A解析:以为一边在四边形外作等边,连,则可证,所以,又,,于是,所以,故选:A.AE 30AEB ∠=︒4AE =AE AB 7OC ==CD 729+=12321331267,67,,67,x x x x x x x x x +=⎧⎪+=⎨⎪+=⎩①②③()()123160x x x --=12x x =316x =12x x =23267x x +=22367x x x +=3x ()()()222161670x x x --+=2x =()()123,,1,1,1x x x =1141,,666⎛⎫ ⎪⎝⎭777,,666⎛⎫--- ⎪⎝⎭3x =121274136x x x x +==1216416x x ⎧=⎪⎪⎨⎪=⎪⎩12x x ⎧=⎪⎪⎨⎪⎪⎩AD BD DC ==B BAD ADE ∠=∠=∠//DE AB CDE B ADE ∠=∠=∠DE ADE CDE ≌△△CDE △CDE BAD ∽△△11552236BC CD AB AB ===⨯=15226CE BD ==⨯=CD ABCD CDE △AE BCD ACE ≌△△10BD AE ==6AD =8DE =222AD DE AE +=90ADE ∠=︒906030ADC ∠=-=︒︒︒8.答案:1050解析:设19个连续整数中最小的整数是,则最大的整数是,,解得,所以紧接在这19个数后面的21个连续偶数分别为30,32,34,,70,.9.答案:42解析:由条件得,又.10.答案:解析:利用待定系数法或双十字相乘法.解析:由条件知,设,则,,又,,所以,,于是于,所以(舍)或12.答案:18解析:要使大圆形纸片的半径最小,只需这个大圆形纸片与三个小圆形纸片均内切,设最小半径大小为r ,则,解得.解析:作于点P ,设,则,,,,n 18n +380=11n = 1050=22540x x +-=()()()()()()()()211232212123x x x x x x x x ⎡⎤⎡⎤++++=++++⎣⎦⎣⎦()()222522536742x x x x =++++=⨯=()()23a b c a b c ++-+:OB y =()D t 2k =2OD t =8OB =60AOB ∠=︒82BD t =-60BED ∠=︒DE =BE =AE ==E ⎛ ⎝k =2=4=t =k =222(8)8(915)r r -=++-18r =FP BD ⊥BP x =PF =2BF x =PF =102AF GF x ==-在中,,即,解得所以14.答案:4或-2解析:令,因,由得,令,由得,于是,所以,解方程得两根分别为4或-2.15.答案:(1)解析:(1)原方程可化为令,则原方程可化为,于是,整理得,所以于是或,当时,,解得当时,,解得综上,原方程的根为(2)不妨设两根为,,则根据韦达定理可知,,于是,所以6PG x=-Rt PFQ △222PF PG GF +=2223(6)(102)x x x +-=-x =AF =AE =AEF △b c a ==#1a a =()()###a b c a b c =#1a a =c b =()()###a b c a b c =()()###a b b a b b =()##1a b b a a ==#a b =)2#2x x =+4x =+x ==()()222434433x x x x x =+-++--243x x t +-=243x t t =+-()224343x t t t x x -=+--+-()2250x t x t -+-=()()50x t x t -++=x t =50x t ++=x t =2330x x +-=x =50x t ++=2520x x ++=x =x =x =1x ()212x x x ≤1221x x a +=-1243x x a =-()121221x x x x -+=-()()12223x x --=因,为整数,,于是,也为整数,且,所以或,当时,解得,此时当时,解得,此时16.答案:(1)见解析解析:证明:(1)在正方形和正方形中,所以,即,所以,所以,又,所以A ,F ,C 三点共线(2)因,设,则,,因,,公共,所以,于是即,解得所以17.答案:(1)(2)或1x 2x 12x x ≤12x -22x -1222x x -≤-122123x x -=⎧⎨-=⎩122321x x -=-⎧⎨-=-⎩122123x x -=⎧⎨-=⎩1235x x =⎧⎨=⎩a =122321x x -=-⎧⎨-=-⎩1211x x =-⎧⎨=⎩12a =ABCD BGEF 45ABD FBE ∠=∠=BE BF==ABD DBF FBE DBF ∠-∠=∠-∠ABF DBE ∠=∠ABF DBE ∽△△45BAF BDC ∠=∠=︒45BAC ∠=︒:1:2CE DE =CE t =2DE t =BD =BE =45BEH BDE ∠=∠=︒DBE ∠BEH BDE ∽△△=2BE BD BH =⋅210t BH =⋅BH =DH BD BH =-=-==263y x x =--()7,4()6,3-(3)解析:(1)由条件可知又,解得所以抛物线的解析式为.(2)当点A 在x 轴上方时,过点A 作轴于点P ,过点B 作直线的垂线,垂足为点Q ,因,,所以,又,,所以,于是.设,则,所以,解得,所以点同理当点A 在x 轴下方时,可求得,综上所述,点A 的坐标为或.(3)由条件知,联立得,于是点,同理可得,设,则,解得所以,其过定点.18.答案:(1)的大小是定值,定值大小为,理由见解析()0,1316411,c a b c ⎧⎪=-⎪⎪++=-⎨=0a >163a b c =⎧⎪=-⎨⎪=-⎩1C 263y x x =--AP x ⊥AP 90OAP BAQ ∠+∠=︒90OAP AOP ∠+∠=︒AOP BAQ ∠=∠OA AB =90OPA AQB ∠=∠=︒OAP ABQ ≌△△AP BQ =()2,63A m m m --3m >2633m m m --=-7m =()7,4A ()6,3A -()7,4()6,3-22:12C y x =-212y kx y x =⎧⎨=-⎩2120x kx --=2,22k k M ⎛⎫ ⎪⎝⎭212,N k k ⎛⎫- ⎪⎝⎭:MN y px q =+222221k k p q p q kk ⎧=+⎪⎪⎨⎪=-+⎪⎩p q ⎧=⎪⎨⎪=⎩22:1k MN y x k-=+()0,1AFC ∠120︒(2)解析:(1)的大小是定值,定值大小为,理由如下:在等边和等边中,,,,于是,即,所以,所以,所以C ,D ,F ,E 四点共圆,所以,于是(2)由(1)知,所以A,F ,C ,B 四点共圆.若最大,则最小.当时,最大,因,,所以,由(1)得,,于是在和中,,所以,所以,于是所以线段长的最小值为.4AFC ∠120︒ABC △CDE △AC BC =CE CD =60ACB DCE CDE ∠=∠=∠=︒ACB ACD DCE ACD ∠-∠=∠-∠ACE BCD ∠=∠ACE BCD ≌△△BDC AEC ∠=∠60CFE CDE ∠=∠=︒180********AFC CFE ∠=-∠=︒-=︒︒︒12060180AFC ABC ︒∠+︒+∠==︒CBF ∠AF CD BF ⊥CBF ∠5AB =3CD =4BD ==ACE BCD ≌△△4AE BD ==90AEC BDC ∠=∠=︒Rt CEF △Rt CDF △CE CD =CF CF=Rt Rt CEF CDF ≌△△30ECF DCF ∠=∠=︒EF =4AF AE EF =-=-AF 4。
2020年河北省邯郸市中考数学一模试卷(4月份)一、选择题(本大题共15小题,共45.0分)1.在实数0,−√3,√2,−2中,最小的是()A. −2B. −√3C. √2D. 02.据有关部门统计,2019年春节期间,广东各大景点的游客总数约25200000人次,将数25200000用科学记数法表示为()A. 2.52×107B. 2.52×108C. 0.252×107D. 0.252×1083.下列图形中主视图是圆的是()A. B.C. D.4.下列运算正确的是()A. a6÷a2=a3B. 3a2b−a2b=2C. (−2a3)2=4a6D. √2+√3=√55.下列图形中,不是中心对称图形的是()A. 平行四边形B. 矩形C. 等边三角形D. 圆6.一元二次方程(x+1)(x+2)=2的解是()A. x1=0,x2=−3B. x1=−1,x2=−2C. x1=1,x2=2D. x1=0,x2=37.抛物线y=−3x2+1的对称轴是()A. 直线x=13B. 直线x=−13C. y轴D. 直线x=38.一次函数y=(m−3)x−m的图象经过一、二、四象限,则m的取值范围是()A. m<0B. m<3C. 0<m<3D. m>09.如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则sin A的值为()A. √32B. √3C. √33D. 1210.如图,菱形ABCD的边长为10,圆O分别与AB、AD相切于E、F两点,且与BG相切于G点.若AO=5,且圆O的半径为3,则BG的长度是()A. 4B. 5C. 6D. 711.如图,菱形OABC在直角坐标系中,点A的坐标为(5,0),对角线(k≠0,x>0)经过点C,则k的值OB=4√5,反比例函数y=kx等于()A. 12B. 8C. 15D. 912.若点A(2,y1),B(3,y2)是反比例函数y=−6图象上的两点,则y1与y2的大小关系是().xA. y1<y2B. y1>y2C. y1=y2D. 3y1=2y213.已知,AB是⊙O的一条弦,∠AOB=120°,则AB所对的圆周角为()A. 60°B. 90°C. 120°D. 60°或120°14.如图,将抛物线y=−x2+x+5的图象x轴上方的部分沿x轴折到x轴下方,图象的其余部分不变,得到一个新图象.则新图象与直线y=−5的交点个数为()A. 1B. 2C. 3D. 415.如图,点E、F、G、H是正方形ABCD四条边(不含端点)上的点,DE=AF=BG=CH,设线段DE的长为x(cm),四边形EFGH的面积为y(cm2),则能够反映y与x之间函数关系的图象大致是()A.B.C.D.二、填空题(本大题共4小题,共12.0分)16.一种产品共有10件,其中有1件是次品,现从中任意抽取1件,恰好抽到次品的概率是________。
河北省邯郸市(新版)2024高考数学统编版(五四制)模拟(自测卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知双曲线C:的左、右焦点分别为,,第一象限的点M在双曲线C上,且,线段与双曲线C的左支交于点N,若,则双曲线C的渐近线方程为()A.B.C.D.第(2)题已知集合,,则()A.B.C.D.第(3)题已知数列的前n项和为,,,则()A.414B.406C.403D.393第(4)题由曲线y=,y=围成的封闭图形面积为A.B.C.D.第(5)题为研究某池塘中水生植物的覆盖水塘面积(单位:)与水生植物的株数(单位:株)之间的相关关系,收集了4组数据,用模型去拟合与的关系,设与的数据如表格所示:得到与的线性回归方程,则()34672 2.5 4.57A.-2B.-1C.D.第(6)题已知全集,集合,则()A.B.C.D.第(7)题已知,则()A.B.C.D.第(8)题一度跌入低谷的中国电影市场终于在兔年春节迎来了大爆发.2023年春节档(除夕至大年初六),在《满江红》《流浪地球2》《熊出没·伴我“熊芯”》《无名》《深海》《交换人生》等电影的带动下,全国票房累计67.59亿,超越2022年同期票房成绩,仅次于2021年成为史上第二强春节档.以下是历年的观影数据,下列选项正确的是()A.2022年春节档平均每场观影人数比2023年春节档平均每场观影人数多B.这4年中,每年春节档上映新片数量的众数为10C.这4年中,每年春节档票房的极差为29.38亿元D.这4年春节档中,平均每部影片的观影人数最多的是2023年二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数,其中为自然对数的底数,则()A.若为减函数,则B.若存在极值,则C.若,则D.若,则第(2)题先后抛掷一枚质地均匀的骰子两次,记向上的点数分别为,设事件“为整数”,“为偶数”,“为奇数”,则()A.B.C.事件与事件相互独立D.第(3)题正方体棱长为4,动点、分别满足,其中,且,;在上,点在平面内,则()A.对于任意的,且,都有平面平面B.当时,三棱锥的体积不为定值C.若直线到平面的距离为,则直线与直线所成角正弦值最小为.D.的取值范围为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知过三点的球的小圆为,其面积为,且,则球的表面积为__________.第(2)题已知圆与圆外切,此时直线被圆所截的弦长为_________.第(3)题在中,,,,则的值等于______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数.(1)讨论在上的单调性;(2)若,证明:函数在上有且仅有三个零点.第(2)题已知椭圆:的左、右焦点分别为,,过点的直线与椭圆相交于,两点(异于椭圆长轴顶点),的周长为.(1)求椭圆的标准方程;(2)求(为坐标原点)面积的最大值,并求此时直线的方程.第(3)题已知椭圆的焦点在轴上,中心在坐标原点.以的一个顶点和两个焦点为顶点的三角形是等边三角形,且其周长为.(1)求栯圆的方程;(2)设过点的直线(不与坐标轴垂直)与椭圆交于不同的两点,与直线交于点.点在轴上,为坐标平面内的一点,四边形是菱形.求证:直线过定点.第(4)题给定椭圆:,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”.已知椭圆的两个焦点分别是,椭圆上一动点满足.(Ⅰ)求椭圆及其“伴随圆”的方程;(Ⅱ)过点P作直线,使得直线与椭圆只有一个交点,且截椭圆的“伴随圆”所得的弦长为.求出的值.第(5)题已知a为常数,函数f(x)=x(lnx﹣ax)有两个极值点x1,x2(x1<x2).(1)求a的取值范围;(2)证明:.。
1. 已知一个数x满足x²-2x+1=0,则x的值为()A. 1B. 2C. 0D. -12. 在等差数列{an}中,若a1=2,d=3,则第10项an的值为()A. 27B. 28C. 29D. 303. 已知直角三角形ABC中,∠C=90°,AC=3,BC=4,则AB的长度为()A. 5B. 6C. 7D. 84. 若一个等腰三角形的底边长为8,腰长为10,则该三角形的面积为()A. 40B. 50C. 60D. 805. 在平面直角坐标系中,点P(3,4)关于直线y=x的对称点为()A.(4,3)B.(-4,-3)C.(-3,-4)D.(-4,3)二、填空题(每题5分,共25分)6. 已知数列{an}的通项公式为an=3n²-2n+1,则a4的值为______。
7. 在等差数列{an}中,若a1=1,公差d=2,则第10项an的值为______。
8. 已知直角三角形ABC中,∠C=90°,AC=5,BC=12,则AB的长度为______。
9. 在等腰三角形ABC中,底边AB=8,腰AC=10,则该三角形的面积为______。
10. 在平面直角坐标系中,点P(-2,3)关于直线y=-x的对称点为______。
三、解答题(每题10分,共40分)11. (10分)已知数列{an}的通项公式为an=2n+1,求该数列的前10项之和。
12. (10分)已知等差数列{an}的公差d=3,若a1+a4+a7=27,求该数列的前10项之和。
13. (10分)在直角三角形ABC中,∠C=90°,AC=6,BC=8,求斜边AB的长度。
14. (10分)在等腰三角形ABC中,底边AB=10,腰AC=12,求该三角形的面积。
15. (10分)在平面直角坐标系中,点P(2,-3)关于直线y=x的对称点为Q,求点Q的坐标。
河北省邯郸市县第一中学2020-2021学年高一数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设,函数在区间上的最大值与最小值之差为,则()A. B.2 C.D.4参考答案:D略2. 已知函数,若,则实数 ()A. B. C.或D.或参考答案:C3. 如图给出了某种豆类生长枝数(枝)与时间(月)的散点图,那么此种豆类生长枝数与时间的关系用下列函数模型近似刻画最好的是().A.B.C.D.参考答案:B∵由图像知模型越来越平滑,∴只有符合条件,∴选择.4. 设函数的定义域为R,它的图像关于x=1对称,且当x≥1时,则有()ABCD参考答案:B5. 在△ABC中,角A,B,C所对边分别为a,b,c,且(2b﹣a)cosC=ccosA,c=3,,则△ABC的面积为()A.B.2 C.D.参考答案:A【考点】HT:三角形中的几何计算.【分析】由正弦定理化简已知等式可得:(2sinB﹣sinA)cosC=sinCcosA,利用三角形内角和定理整理可得2sinBcosC=sinB,由sinB≠0,解得cosC=,结合范围0<C<π,可求C的值.由余弦定理得(a+b)﹣3ab﹣9=0,联立解得ab的值,利用三角形面积公式即可得解.【解答】由于(2b﹣a )cosC=ccosA,由正弦定理得(2sinB﹣sinA)cosC=sinCcosA,即2sinBcosC=sinAcosC+sinCcosA,即2sinBcosC=sin(A+C),可得:2sinBcosC=sinB,因为sinB≠0,所以cosC=,因为0<C<π,所以C=.由余弦定理得,a2+b2﹣ab=9,即(a+b)﹣3ab﹣9=0…①,又…②,将①式代入②得2(ab)2﹣3ab﹣9=0,解得 ab=或ab=﹣1(舍去),所以S△ABC=absinC=,故选:A.6. 函数的单调递减区间是( D )A. B. C. D.参考答案:D7. 下列大小关系正确的是()A. B.C. D.参考答案:C略8. 等差数列{ a n }中有两项a m和a k,满足a m =、a k =,则该数列前m k项之和是()(A)– 1 (B)(C)(D)+ 1参考答案:C9. 设A={x|1<x<2},B={x|x<a},若A B,则a的取值范围是()A.a≥1 B.a≥2 C.a≤1 D.a≤2参考答案:A10. 若tanα<0,且sinα>cosα,则α在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 若等比数列{a n }满足,则q= 。
2018-2019年最新邯郸市第一中学自主招生语文模拟精品试卷(第一套)(满分:100分考试时间:90分钟)一、语文基础知识(18分,每小题3分)1.下列词语中加点的字,读音全都正确的一组是()A.连累(lěi) 角(juã)色河间相(xiàng) 冠冕(miǎn)堂皇B专横(hâng) 忖(cǔn)度涮(shuàn) 羊肉妄加揣(chuāi)测C.笑靥(yâ) 顷(qīng)刻汗涔(cãn)涔休戚(qì)相关D慨叹(kǎi) 俨(yǎn)然刽子手(kuàì) 刎(wěn)颈之交2、下列各项中字形全对的是()A、橘子州偌大急躁光阴荏苒B、蒙敝犄角慰籍书生意气C、敷衍磕绊笔竿艰难跋涉D、翱翔斑斓屏蔽自怨自艾3、依次填入下列各句横线上的词语,最恰当..的一项是()⑴虽然他尽了最大的努力,还是没能住对方凌厉的攻势,痛失奖杯。
⑵那些见利忘义,损人利己的人,不仅为正人君子所,还很可能滑向犯罪的深渊。
⑶我认为,真正的阅读有灵魂的参与,它是一种个人化的精神行为。
A.遏制不耻必需B.遏止不耻必需C.遏制不齿必须D.遏止不齿必须4、下列句中加点的成语,使用恰当的一句是()A、故宫博物院的珍宝馆里,陈列着各种奇珍异宝、古玩文物,令人应接不暇。
B、任何研究工作都必须从积累资料做起,如果不掌握第一手资料,研究工作只能是空中楼阁....。
C、电影中几处看来是闲笔,实际上却是独树一帜之处。
D、这部精彩的电视剧播出时,几乎万人空巷,人们在家里守着荧屏,街上显得静悄悄的。
5、下列句子中,没有语病的一项是()A 大学毕业选择工作那年,我瞒着父母和姑姑毅然去了西藏支援边疆教育。
B北京奥运会火炬接力的主题是‚和谐之旅‛,它向世界表达了中国人民对内致力于构建和谐社会,对外努力建设和平繁荣的美好世界。
C他不仅是社会的一员,同时还是宇宙的一员。
他是社会组织的公民,同时还是孟子所说的‚天民‛。
河北省邯郸市数学中考一模试卷一、单选题1.下列各数中,比-1小的数是()A.0B.0.5C.-0.5D.-2【答案】D【考点】有理数大小比较【解析】【解答】正数一定大于负数,排除A,D项;故答案为:D.【分析】根据正数大于0,0大于负数,两个负数比大小,绝对值大的反而小即可得出答案。
2.如图,“中国天眼”即500米口径球面射电望远镜(FAST),是具有我国自主知识产权、世界最大单口径、最灵敏的射电望远镜,由4600个反射单元组成一个球面,把4600表示成(其中,1≤a<10,n为整数)的形式,则n为()A.-1B.2C.3D.4【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】4600表示成(其中,1≤a<10,n为整数)的形式为:故答案为:C.【分析】科学记数法表示绝对值较大的数,一般表示成a ×10n,的形式,其中1 ≤∣a ∣<10, n是原数的整数位数减一。
3.如图,若∠1=50°,则∠2的度数为()A.30°B.40°C.50°D.90°【答案】B【考点】对顶角、邻补角【解析】【解答】根据平角的概念可知:故答案为:B.【分析】根据平角的定义即可得出答案。
4.下列运算中,正确的是()A. B. C. D.【答案】A【考点】整式的加减运算,同底数幂的乘法,幂的乘方与积的乘方【解析】【解答】A.符合题意.B. 故不符合题意.C.不是同类项,不能合并.故不符合题意.D. 故不符合题意.故答案为:A.【分析】根据幂的乘方,底数不变,指数相乘;同底数的幂相乘,底数不变,指数相加;整式加减的实质就是合并同类项,只有字母相同,相同字母的指数也相同的项才是同类项;积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;根据法则一一判断即可。
5.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,则Rt△ABC的中线CD的长为()A.5B.6C.8D.10【答案】A【考点】直角三角形斜边上的中线,勾股定理【解析】【解答】在Rt△ABC中,CD是斜边的中线,故答案为:A.【分析】在Rt△ABC中,根据勾股定理得出AB的长,再根据直角三角形斜边上的中线等于斜边的一半即可得出答案。
河北省邯郸市2021年数学中考一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·揭西模拟) ﹣的倒数是()A . ﹣5B . 5C . ﹣D .2. (2分)(2018·长春模拟) 计算(x2y)3的结果是()A . x6y3B . x5y3C . x5yD . x2y33. (2分) (2020八下·建湖月考) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (2分)下面四个立体图形中,三视图完全相同的是()A .B .C .D .5. (2分) (2019九下·南宁月考) 如图,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()A . 80°B . 50°C . 30°D . 20°6. (2分)(2017·北京模拟) 转基因作物是利用基因工程将原有作物基因加入其它生物的遗传物质,并将不良基因移除,从而造成品质更好的作物.我国现有转基因作物种植面积约为4 200 000公顷,将4 200 000用科学记数法表示为()A . 4.2×106B . 4.2×105C . 42×105D . 0.42×1077. (2分)在一个口袋中有3个完全相同的小球,把它们分别标号为1,2,3,随机地摸取一个小球然后放回,再随机地摸出一个小球.则两次取的小球的标号相同的概率为()A .B .C .D .8. (2分)如图,⊙O是△ABC的外接圆,⊙O的半径为3,∠A=45°,则的长是()A . πB . πC . πD . π9. (2分) (2020九上·潮南期末) 抛物线y=﹣ x2的顶点坐标是()A . (0,)B . (0,)C . (0,0)D . (1,﹣)10. (2分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为()A .B .C .D . 6二、填空题 (共6题;共6分)11. (1分)在函数中,自变量x的取值范围是________.12. (1分)(2016·龙东) 如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件________,使四边形DBCE是矩形.13. (1分) (2019九上·襄阳期末) 方程(x+3)(x+2)=x+3的解是________.14. (1分) (2020九上·潮南期末) 如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为________.15. (1分)(2018·莱芜) 如图,正三角形和矩形具有一条公共边,矩形内有一个正方形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是2 和2,则图中阴影部分的面积是________.16. (1分) (2019七上·海南月考) 一组数据:x,-2x2 , 3x3 ,-4x4…观察其规律,推断第n个数据应为________.三、解答题 (共9题;共89分)17. (5分) (2019八上·武汉月考) 化简,再求值:[(2x+y)2-(2x+y)(2x-y)]÷2y- y,其中x=,y=118. (5分)(2018·连云港) 解方程:.19. (15分) (2019九下·润州期中) 如图,,,、、、四点共圆,且 .(1)确定圆的位置,圆心记为点(要求:尺规作图,保留作图痕迹)(2)求证:与相切于点:(3)若,,,求半径的长.20. (7分)(2017·潮安模拟) 为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1﹣5月新注册小型企业一共有________家.请将折线统计图补充完整________;(2)该镇今年4月新注册的小型企业中,只有2家是餐饮企业,现从4月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.21. (5分)某中学七年级三班共有57人,成立了语文、英语、科学三个兴趣小组,每一位同学至少参加了其中的一个,参加语文、英语、科学兴趣小组的人数分别是29、31、31人,同时参加语文英语兴趣小组的人数是13人,同时参加英语科学兴趣小组的人数是12人,同时参加语文科学兴趣小组的人数是14人.问班里只参加了一个兴趣小组的是几人?22. (15分)(2017·思茅模拟) 如图,已知抛物线y=x2+bx+c经过A(﹣1,0)、B(3,0)两点,且与y轴相交于点C,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点C的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为直角三角形,请直接写出所有符合条件的点M的坐标.23. (10分)小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲、乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7 500元,则甲种服装最多购进多少件?(2)在(1)的条件下,该服装店在6月21日“父亲节”当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?24. (15分)(2017·邵东模拟) 在如图所示的平面直角坐标系中,点C在y轴的正半轴上,四边形OABC为平行四边形,OA=2,∠AOC=60°,以OA为直径的⊙P经过点C,交BC于点D,DE⊥AB,交AB于E.(1)求点A和B的坐标;(2)求证:DE是⊙P的切线;(3)小明在解答本题时,发现连结DA并延长,交x轴于点N,则△AON是等腰三角形.由此,他断定:“x 轴上一定存在除点N以外的点Q,使△AOQ也是等腰三角形,且点Q一定在⊙P外”.你同意他的看法吗?请充分说明理由.25. (12分)(2018·肇庆模拟) 将边长OA=8,OC=10的矩形OABC放在平面直角坐标系中,顶点O为原点,顶点C、A分别在轴和y轴上.在OA边上选取适当的点E,连接CE,将△EOC沿CE折叠。
河北省邯郸市2024年数学(高考)统编版模拟(自测卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题设函数的定义域为,满足,且当时,.若存在,使得,则的最小值是A.B.C.D.第(2)题已知对任意的,总存在唯一的,使得成立(为自然对数的底数),则实数的取值范围是A.B.C.D.第(3)题已知点、,是直线上任意一点,以A、B为焦点的椭圆过点P.记椭圆离心率关于的函数为,那么下列结论正确的是A.与一一对应B.函数是增函数C.函数无最小值,有最大值D.函数有最小值,无最大值第(4)题如图,在中,,,,是斜边的中点,将沿直线翻折,若在翻折过程中存在某个位置,使得,则的取值范围是A.B.C.D.第(5)题设函数,对于实数a、b,给出以下命题:命题;命题;命题.下列选项中正确的是()A.中仅是的充分条件B.中仅是的充分条件C.都不是的充分条件D.都是的充分条件第(6)题在正项等比数列中,若,则()A.5B.7C.9D.11第(7)题已知函数恒有零点,则实数k的取值范围是()A.B.C.D.第(8)题定义在上的函数满足:①的图象关于直线对称;②对任意的,当时,不等式成立.令,,,则下列不等式成立的是A.B.C.D.二、多项选择题(本题包含3小题,每小题6分,共18分。
在每小题给出的四个选项中,至少有两个选项正确。
全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题已知不相等的实数,满足,则下列四个数,,,经过适当排序后()A.可能是等差数列B.不可能是等差数列C.可能是等比数列D.不可能是等比数列第(2)题如果有限数列满足,则称其为“对称数列”,设是项数为的“对称数列”,其中是首项为50,公差为的等差数列,则()A.若,则B.若,则所有项的和为590C.当时,所有项的和最大D.所有项的和可能为0第(3)题已知向量,,则()A.B.向量在向量上的投影为C.与的夹角余弦值为D.若,则三、填空(本题包含3个小题,每小题5分,共15分。
第一套:满分150分2020-2021年邯郸市第一中学初升高自主招生数学模拟卷一.选择题(共8小题,满分48分)1.(6分)如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM=()A.3:2:1 B.5:3:1C.25:12:5 D.51:24:102.(6分)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3;②1> ;m4③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是【】A.0B.1C.2D.33.(6分)已知长方形的面积为20cm2,设该长方形一边长为ycm,另一边的长为xcm,则y与x之间的函数图象大致是()A. B. C. D.4.(6分)如图,在平面直角坐标系中,⊙O 的半径为1,则直线y x 2=-与⊙O 的位置关系是( )A .相离B .相切C .相交D .以上三种情况都有可能 5.(6分)若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A .B .C .D .6.(6分)如图,Rt △ABC 中,BC=,∠ACB=90°,∠A=30°,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点E 4、E 5、…、E 2013,分别记△BCE 1、△BCE 2、△BCE 3、…、△BCE 2013的面积为S 1、S 2、S 3、…、S 2013.则S 2013的大小为( ) A.31003 B.320136 C.310073 D.67147.(6分)抛物线y=ax 2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a 的取值范围是( )A .≤a ≤1B .≤a ≤2C .≤a ≤1D .≤a ≤28.(6分)如图,矩形ABCD 的面积为5,它的两条对角线交于点O 1,以AB ,AO 1为两邻边作平行四边形ABC 1O 1,平行四边形ABC 1O 1的对角线交BD 于点02,同样以AB ,AO 2为两邻边作平行四边形ABC 2O 2.…,依此类推,则平行四边形ABC 2009O 2009的面积为( )A.n 25 B.n 22 C.n 31 D.n 23二.填空题:(每题7分,满分42分)9.(7分)方程组的解是 .10.(7分)若对任意实数x 不等式ax >b 都成立,那么a ,b 的取值范围为 .11.(7分)如图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是 .12.(7分)有一张矩形纸片ABCD ,AD=9,AB=12,将纸片折叠使A 、C 两点重合,那么折痕长是 .13.(7分)设﹣1≤x ≤2,则|x ﹣2|﹣|x|+|x+2|的最大值与最小值之差为 .14.(7分)两个反比例函数y=,y=在第一象限内的图象如图所示.点P 1,P 2,P 3、…、P 2007在反比例函数y=上,它们的横坐标分别为x 1、x 2、x 3、…、x 2007,纵坐标分别是1,3,5…共2007个连续奇数,过P 1,P 2,P 3、…、P 2007分别作y 轴的平行线,与y=的图象交点依次为Q 1(x 1′,y 1′)、Q 1(x 2′,y 2′)、…、Q 2(x 2007′,y 2007′),则|P 2007Q 2007|= .三.解答题:(每天12分,满分60分)15.(12分).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= .(1) 求111xy yz zx++的值. (2) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.16.(12分)如图,ABC △是等腰直角三角形,CA CB =,点N 在线段AB 上(与A 、B 不重合),点M 在射线BA 上,且45NCM ∠=︒。
求证:222MN AM BN =+。
17.(12分)在0与21之间插入n 个正整数1a ,2a ,…,n a ,使其满足12021n a a a <<<<<。
若1,2,3,…,21这21个正整数都可以表示为0,1a ,2a ,…,n a ,21这2n +个数中某两个数的差。
求n 的最小值。
18.(12分)如图,已知BC 是半圆O 的直径,BC=8,过线段BO 上一动点D ,作AD ⊥BC 交半圆O 于点A ,联结AO ,过点B 作BH ⊥AO ,垂足为点H ,BH 的延长线交半圆O 于点F . (1)求证:AH=BD ;(2)设BD=x ,BE •BF=y ,求y 关于x 的函数关系式;(3)如图2,若联结FA 并延长交CB 的延长线于点G ,当△FAE 与△FBG 相似时,求BD 的长度.19.(12分)如图,在平面直角坐标系xOy中,直线AB过点A(3,0)、B(0,m)(m>0),tan∠BAO=2.(1)求直线AB的表达式;(2)反比例函数y=的图象与直线AB交于第一象限内的C、D两点(BD<BC),当AD=2DB时,求k1的值;(3)设线段AB的中点为E,过点E作x轴的垂线,垂足为点M,交反比例函数y=的图象于点F,分别联结OE、OF,当△OEF∽△OBE 时,请直接写出满足条件的所有k2的值.第一套:满分150分2020-2021年邯郸市第一中学初升高自主招生数学模拟卷参考答案一.选择题:1.【解答】解:连接EM,CE:CD=CM:CA=1:3∴EM平行于AD∴△BHD∽△BME,△CEM∽△CDA∴HD:ME=BD:BE=3:5,ME:AD=CM:AC=1:3∴AH=(3﹣)ME,∴AH:ME=12:5∴HG:GM=AH:EM=12:5设GM=5k,GH=12k,∵BH:HM=3:2=BH:17k∴BH=K,∴BH:HG:GM=k:12k:5k=51:24:10故选D.2.【答案】C 。
解答:①∵一元二次方程实数根分别为x 1、x 2,∴x 1=2,x 2=3,只有在m=0时才能成立,故结论①错误。
②一元二次方程(x -2)(x -3)=m 化为一般形式得:x 2-5x +6-m=0,∵方程有两个不相等的实数根x 1、x 2,∴△=b 2-4ac=(-5)2-4(6-m )=4m +1>0,解得:1m 4>-。
故结论②正确。
③∵一元二次方程x 2-5x +6-m=0实数根分别为x 1、x 2,∴x 1+x 2=5,x 1x 2=6-m ∴二次函数y=(x -x 1)(x -x 2)+m=x 2-(x 1+x 2)x +x 1x 2+m=x 2-5x +(6-m )+m=x 2-5x +6=(x -2)(x -3)。
令y=0,即(x -2)(x -3)=0,解得:x=2或3。
∴抛物线与x 轴的交点为(2,0)或(3,0),故结论③正确。
综上所述,正确的结论有2个:②③。
故选C 。
3.【答案】B 。
【分析】∵根据题意,得xy=20,∴()20y=x>0,y>0x。
故选B 。
4.【答案】B 。
【分析】如图,在y x 2=-中,令x=0,则y=-2 ;令y=0,则x=2 ,∴A (0,-2),B (2,0)。
∴OA=OB= 2 。
∴△AOB是等腰直角三角形。
∴AB=2,过点O作OD⊥AB,则OD=BD=12AB=12×2=1。
又∵⊙O的半径为1,∴圆心到直线的距离等于半径。
∴直线y=x- 2 与⊙O相切。
故选B。
5.【分析】连接内心和直角三角形的各个顶点,设直角三角形的两条直角边是a,b.则直角三角形的面积是;又直角三角形内切圆的半径r=,则a+b=2r+c,所以直角三角形的面积是r(r+c);因为内切圆的面积是πr2,则它们的比是.【解答】解:设直角三角形的两条直角边是a,b,则有:S=,又∵r=,∴a+b=2r+c,将a+b=2r+c代入S=得:S=r=r(r+c).又∵内切圆的面积是πr2,∴它们的比是.故选B.【点评】此题要熟悉直角三角形的内切圆半径等于两条直角边的和与斜边的差的一半,能够把直角三角形的面积分割成三部分,用内切圆的半径进行表示,是解题的关键.6.解答:解:∵Rt△ABC中,BC=,∠ACB=90°,∠A=30°,∴AC==BC=6,∴S△ABC=AC•BC=6,∵D1E1⊥AC,∴D1E1∥BC,∴△BD1E1与△CD1E1同底同高,面积相等,∵D1是斜边AB的中点,∴D1E1=BC,CE1=AC,∴S1=BC•CE1=BC×AC=×AC•BC=S△ABC;∴在△ACB中,D2为其重心,∴D2E1=BE1,∴D2E2=BC,CE2=AC,S2=××AC•BC=S△ABC,∴D3E3=BC,CE2=AC,S3=S△ABC…;∴S n=S△ABC;∴S2013=×6=.故选C.7.【分析】此题主要考数形结合,画出图形找出范围,问题就好解决【解答】解:由右图知:A(1,2),B(2,1),再根据抛物线的性质,|a|越大开口越小,把A点代入y=ax2得a=2,把B点代入y=ax2得a=,则a的范围介于这两点之间,故≤a≤2.故选D.【点评】此题考查学生的观察能力,把函数性质与正方形连接起来,要学会数形结合.8.解答:解:∵矩形ABCD的对角线互相平分,面积为5,∴平行四边形ABC1O1的面积为,∵平行四边形ABC1O1的对角线互相平分,∴平行四边形ABC2O2的面积为×=,…,依此类推,平行四边形ABC2009O2009的面积为.故选B.二、填空题9.【分析】根据式子特点,设x+1=a,y﹣1=b,然后利用换元法将原方程组转化为关于a、b的方程组,再换元为关于x、y的方程组解答.【解答】解:设x+1=a,y﹣1=b,则原方程可变为,由②式又可变化为=26,把①式代入得=13,这又可以变形为(+)2﹣3 =13,再代入又得﹣3=9,解得ab=﹣27,又因为a+b=26,所以解这个方程组得或,于是(1),解得;(2),解得.故答案为和.【点评】本题主要考查解无理方程的知识点,去掉根号把无理式化成有理方程是解题的关键,需要同学们仔细掌握.10.【分析】分a=0,a≠0两种情况分析.【解答】解:∵如果a≠0,不论a大于还是小于0,对任意实数x不等式ax>b都成立是不可能的,∴a=0,则左边式子ax=0,∴b<0一定成立,∴a,b的取值范围为a=0,b<0.【点评】本题是利用了反证法的思想11.【分析】先根据﹣1≤x≤2,确定x﹣2与x+2的符号,在对x的符号进行讨论即可.【解答】解:∵﹣1≤x≤2,∴x﹣2≤0,x+2>0,∴当2≥x≥0时,|x﹣2|﹣|x|+|x+2|=2﹣x﹣x+x+2=4﹣x;当﹣1≤x<0时,|x﹣2|﹣|x|+|x+2|=2﹣x+x+x+2=4+x,当x=0时,取得最大值为4,x=2时取得最小值,最小值为3,则最大值与最小值之差为1.故答案为:1【点评】本题重点考查有理数的绝对值和求代数式值.解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简,即可求解.12.【分析】要求出|P2007Q2007|的值,就要先求|Qy2007﹣Py2007|的值,因为纵坐标分别是1,3,5 …,共2007个连续奇数,其中第2007个奇数是2×2007﹣1=4013,所以P2007的坐标是(Px2007,4013),那么可根据P点都在反比例函数y=上,可求出此时Px2007的值,那么就能得出P2007的坐标,然后将P2007的横坐标代入y=中即可求出Qy2007的值.那么|P2007Q2007|=|Qy2007﹣Py2007|,由此可得出结果.【解答】解:由题意可知:P2007的坐标是(Px2007,4013),又∵P2007在y=上,∴Px2007=.而Qx2007(即Px2007)在y=上,所以Qy2007===,∴|P2007Q2007|=|Py2007﹣Qy2007|=|4013﹣|=.故答案为:.【点评】本题的关键是找出P点纵坐标的规律,以这个规律为基础求出P2007的横坐标,进而求出Q2007的值,从而可得出所求的结果.13.【分析】圆锥的侧面展开图是扇形,从A点出发绕侧面一周,再回到A点的最短的路线即展开得到的扇形的弧所对弦,转化为求弦的长的问题.【解答】解:∵图中扇形的弧长是2π,根据弧长公式得到2π=∴n=120°即扇形的圆心角是120°∴弧所对的弦长是2×3sin60°=3【点评】正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.14.【分析】首先由勾股定理求出AC的长,设AC的中点为E,折线与AB交于F.然后求证△AEF∽△ABC求出EF的长.【解答】解:如图,由勾股定理易得AC=15,设AC的中点为E,折线FG与AB交于F,(折线垂直平分对角线AC),AE=7.5.∵∠AEF=∠B=90°,∠EAF是公共角,∴△AEF∽△ABC,∴==.∴EF=.∴折线长=2EF=.故答案为.【点评】本题综合考查了矩形的性质,勾股定理,相似,全等等知识点.三、解答题15.【解析】(1)解:由等式222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++=, 去分母得222222(1)(1)(1((1)(1)(1)4z x y x y z y z x xyz --+--+--=,222222222222()()()3()0,x y z xy z x yz x y z y z x z x y xyz x y z xyz ⎡⎤++-+++++++++-=⎣⎦()()()()0xyz xy yz zx x y z xy yz zx x y z xyz ++-+++++++-=, ∴[()](1)0xyz x y z xy yz zx -++++-=,1,10xy yz zx xy yz zx ++≠∴++-≠,()0,xyz x y z ∴-++=xyz x y z ∴=++,∴原式=1.x y zxyz++= (2)证明:由(1)得计算过程知xyz x y z ∴=++,又,,x y z 为正实数,9()()()8()x y y z z x xyz xy yz zx ∴+++-++ 9()()()8()()x y y z z x x y z xy yz zx =+++-++++ 222222()()()6x y z y z x z x y xyz =+++++- 222()()()0.x y z y z x z x y =-+-+-≥∴9()()()8()x y y z z x xyz xy yz zx +++≥++.【注:222222()()()2x y y z z x x y xy y z yz z x zx xyz +++=++++++222222()()()2x y z y z x z x y xyz =++++++222222()()3x y z xy yz zx x y xy y z yz z x zx xyz ++++=++++++222222()()()3x y z y z x z x y xyz =++++++】16.【答案】如图,作点A 关于直线MC 的对称点D ,连结DA 、DM 、DC ,DN ,则MDC MAC △≌△。