转动惯量的测定实验
- 格式:ppt
- 大小:423.50 KB
- 文档页数:18
转动惯量的测定实验报告大家好,今天我要给大家分享一下我们实验室的转动惯量测定实验。
让我来给大家普及一下什么是转动惯量。
转动惯量呢,就是物体在旋转过程中,抵抗突然改变方向的能力。
简单来说,就是一个物体转得越快,停下来就越难。
所以说,转动惯量是一个非常重要的物理量,它关系到我们生活中很多方面的问题。
那么,接下来我就给大家详细介绍一下我们实验的过程和结果吧。
我们需要准备的实验器材有:一个圆盘、一根长杆、一个测力计和一些细线。
还有一个最重要的东西,那就是我们的热情和毅力!(哈哈,开玩笑啦)我们要把圆盘固定在一个平面上,然后用细线把长杆和圆盘连接起来。
这样,当圆盘开始旋转时,长杆就会受到一个扭矩的作用。
接下来,我们要用测力计测量这个扭矩的大小。
具体操作方法是:让圆盘以一定的加速度旋转,然后用测力计测量长杆所受的拉力大小。
通过测量不同加速度下的扭矩,我们就可以得到圆盘的转动惯量了。
在我们的实验过程中,我们发现了一个非常有趣的现象。
那就是随着圆盘旋转速度的增加,长杆所受的扭矩也越来越大。
这说明什么呢?这说明转动惯量越大,物体抵抗突然改变方向的能力就越强。
换句话说,一个物体转得越快,停下来就越难。
这就是转动惯量的神奇之处!在实验过程中,我们还遇到了一些困难。
比如说,有时候圆盘会突然停下来,导致我们无法准确地测量扭矩。
为了解决这个问题,我们想了很多办法。
我们决定在圆盘上加一个小风扇,让它在旋转过程中不断地吹气。
这样一来,即使圆盘突然停下来,气流也会帮助它继续旋转,从而保证我们能够准确地测量扭矩。
经过多次实验和总结,我们终于得出了圆盘的转动惯量为100克·厘米^2/秒^2。
虽然这个数值看起来有点复杂,但是它告诉我们了一个非常重要的信息:这个圆盘在旋转过程中具有很强的抗突然改变方向的能力。
这对于我们在日常生活中遇到的很多问题都是非常有帮助的。
这次转动惯量的测定实验让我们深刻地认识到了转动惯量的重要性。
它不仅关系到物理学的基本原理,还关系到我们生活中很多方面的问题。
刚体转动惯量的测定实验报告实验目的:1.了解刚体转动惯量的概念和定义;2.学习利用旋转法测量刚体转动惯量;3.掌握利用平衡法测量刚体转动惯量的方法。
实验仪器:1.旋转法实验装置:圆盘、转轴、杠杆、螺旋测微器、质量砝码等;2.平衡法实验装置:平衡木、质量砝码、支撑点等。
实验原理:1.旋转法实验原理:设刚体的转动惯量为I,当刚体在转轴上匀加速转动时,在力矩M作用下,刚体产生角加速度α。
根据牛顿第二运动定律和角动量定理可得到:M=Iα(1)在角加速度恒定的情况下,转动惯量I与力矩M成正比。
2.平衡法实验原理:刚体转动惯量测量的基本原理是利用转轴位置的移动来改变刚体的转动惯量,使得转动惯量I和重力力矩Mg达到平衡,即:Mg=Iα(2)在刚体转动平衡的状态下,转动惯量I与重力力矩Mg成正比。
实验步骤:1.旋转法实验步骤:(1)将圆盘固定在转轴上,并将转轴竖直插入转台中央的孔中。
(2)将杠杆固定在圆盘上,使得杠杆能够自由转动。
(3)在杠杆上加上一定的质量砝码,使得圆盘开始匀加速转动。
(4)测量转轴上的螺旋测微器的读数,记录下圆盘旋转一定角度时的螺旋测微器的读数。
(5)记录下圆盘质量与加速度的数值,计算出实验测得的转动惯量。
2.平衡法实验步骤:(1)将平衡木放置在支撑点上,使得平衡木可以自由转动。
(2)在平衡木上加上一定的质量砝码,使得平衡木保持平衡。
(3)移动转轴的位置,直到平衡木重新平衡。
(4)记录下转轴位置与加在平衡木上的质量的数值,计算出实验测得的转动惯量。
实验数据处理:1.旋转法实验数据处理:(1)根据螺旋测微器的读数,计算出圆盘旋转的角度。
(2)根据实验测得的圆盘质量和加速度的数值,计算出实验测得的转动惯量。
2.平衡法实验数据处理:(1)根据转轴位置的变化,计算出实验测得的转动惯量。
实验结果分析:根据实验测得的数据,通过旋转法和平衡法两种方法测得的刚体转动惯量进行比较和分析。
分析实验数据的偏差和不确定度,讨论实验结果的可靠性。
转动惯量的测定实验报告转动惯量的测定实验报告引言:转动惯量是物体在转动过程中抵抗改变其转动状态的性质。
在物理学中,转动惯量是描述物体转动惯性大小的物理量。
本实验旨在通过测量不同物体的转动惯量,探究物体的形状、质量分布对转动惯量的影响,并验证转动惯量的计算公式。
实验装置和方法:1. 实验装置:转动惯量测量装置、计时器、质量秤、直尺、物体样品。
2. 实验方法:a. 将转动惯量测量装置固定在水平台上。
b. 选择不同形状的物体样品,如圆柱体、长方体和球体,并测量其质量和尺寸。
c. 将物体样品放置在转动惯量测量装置的转轴上,并使其旋转。
d. 通过计时器测量物体样品旋转一定圈数所需的时间。
e. 根据测量结果计算物体样品的转动惯量。
实验结果与分析:1. 圆柱体样品:a. 质量:m = 100gb. 高度:h = 10cmc. 半径:r = 3cmd. 转动惯量:I = 1/2 * m * r^2 = 1/2 * 0.1kg * (0.03m)^2 = 4.5 * 10^-5kg·m^22. 长方体样品:a. 质量:m = 150gb. 长度:l = 15cmc. 宽度:w = 5cmd. 高度:h = 2cme. 转动惯量:I = 1/12 * m * (l^2 + w^2) = 1/12 * 0.15kg * ((0.15m)^2 +(0.05m)^2) = 4.375 * 10^-4 kg·m^23. 球体样品:a. 质量:m = 200gb. 半径:r = 4cmc. 转动惯量:I = 2/5 * m * r^2 = 2/5 * 0.2kg * (0.04m)^2 = 2.56 * 10^-4 kg·m^2通过实验测量得到的转动惯量结果显示,不同形状的物体样品具有不同的转动惯量。
圆柱体样品的转动惯量最小,长方体样品的转动惯量次之,球体样品的转动惯量最大。
这是因为转动惯量与物体的质量分布和形状有关。
转动惯量的测定一、实验内容:1)测量圆盘的转动惯量; 2)测量圆环的转动惯量; 3)验证平行轴定理。
二、实验仪器:ZKY-ZS 转动惯量实验仪 ZKY-J1通用记时器实验装置图三、实验原理:图1 转动惯量实验仪试样实验台光电门m1. 空实验台的转动惯量1J 为:1221)(βββ--=R g mR J (1)式中m 、R 分别为砝码的质量、塔轮半径,1β、2β分别为实验台加砝码前匀减速、加砝码后匀加速运动的角加速度。
2. 加试样后实验台的转动惯量2J 为:3442)(βββ--=R g mR J (2)3β、4β分别为加砝码前、后实验台的角加速度。
3. 试样的转动惯量为:12J J J -= (3)4. 角加速度的测量表达式: nm m n n m m n t t t t t k t k 22)(2--=πβ (4)式中k 、t 为计数器遮挡的次数和相应的时间。
四、实验步骤:1. 实验准备在桌面上放置ZKY-ZS 转动惯量实验仪,并利用基座上的三颗调平螺钉,将仪器调平。
将滑轮支架固定在实验台面边缘,调整滑轮高度及方位,使滑轮槽与选取的绕线塔轮槽等高,且其方位相互垂直,如图1所示。
通用电脑计时器上2路光电门的开关应1路接通,另1路断开作备用。
当用于本实验时,建议设置1个光电脉记数1次,1次测量记录大约8组数2. 测量并计算实验台的转动惯量 1) 测量β1接通电脑计时器电源开关(或按“复位”键),进入设置状态,不用改变默认值;用手拨动载物台,使实验台有一初始转速并在摩擦阻力矩作用下作匀减速运动;按“待测/+”键后仪器开始测量光电脉冲次数(正比于角位移)及相应的时间;显示8组测量数据后再次按“待测/+”键,仪器进入查阅状态,将查阅到的数据记入表1中。
采用逐差法处理数据,将第1和第5组,第2和第6组……,分别组成4组,用(4)式计算对应各组的β1值,然后求其平均值作为β1的测量值。
2) 测量β2选择塔轮半径R 及砝码质量,将1端打结的细线沿塔轮上开的细缝塞入,并且不重叠的密绕于所选定半径的轮上,细线另1通过滑轮扣连接砝码托上的挂钩,用于将载物台稳住;按“复位”键,进入设置状态后再按“待测/+”键,使计时器进入工作等待状态;释放载物台,砝码重力产生的恒力矩使实验台产生匀加速转动;电脑计时器记录8组数据后停止测量。
转动惯量测量实验报告(共7篇)20页实验名称:转动惯量测量实验实验目的:通过实验测量旋转物体的转动惯量,并了解柿子童的定理以及有效质量的概念。
实验仪器:旋转定量装置、摩擦转台、测高仪、微型计算机、数据采集卡实验原理:转动惯量是物体绕特定轴旋转时的惯性系数,表示物体的旋转固有性质。
旋转定量装置把物体固定在转轴上,悬挂一个对应于物体重量的质量,在物体减速旋转时通过计算得出物体的转动惯量。
设物体以角速度ω绕某一定轴转动。
质处于离该轴r处,质量为m,则质点的角动量L=mvr,转动惯量为I=mr 2,单位是kg·m2。
转动定量装置有相应的计算公式:I=C·m·(h+d/2)2/T2,其中I为物体的转动惯量,C为常数(由仪器提供),m为质量,h为重心高度,d为转轴的直径,T为物体1圈的时间。
有效质量的概念是指在转动过程中受到外力作用的物体的质量是原来物体质量的一部分。
它的大小可以计算为(C+K)m。
其中,C是转动定量装置的常数,K是校正因数,m是物体的质量。
实验步骤:1.安装转动定量装置,将待测物体固定在转轴上2.测量转轴的直径d和质心的高度h3.测量悬挂质量的质量m和悬挂高度h’4.使物体绕转轴旋转1圈,记录用时T5.多次测量,求平均值,计算转动惯量I=C·m·(h+d/2)2/T26.重复以上实验,修改悬挂质量的质量或质心位置,测量I的变化,比较偏差7.探究有效质量的概念,计算(C+K)m的大小,并进行比较实验结果:将物体的质量m不变,改变质心高度h和转轴直径d大小,观察对转动惯量I的影响。
可以发现,两者对I的影响都是与大小成正比的,即h、d越大,I越大;越小,I越小。
误差主要来自于读数仪器和实验操作技巧。
有效质量的计算结果与实际质量相比,误差范围较小。
通过转动惯量的测量,我们可以对旋转物体的惯性的了解更加多样化,并深入理解惯性的作用与其应用场景。
同时,实验结论可以帮助我们在实际应用场景中更加科学地设计实验方案,并更加深入地理解转动相关的物理知识点。
篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
转动惯量的测定一、实验目的:1、测定圆台的转动惯量。
2、测定圆盘的转动惯量。
3、验证平行轴定理。
二、实验原理:1.转动系统所受合外力矩合M 与角加速度β的关系根据刚体转动定律,刚体绕某一定轴转动得角加速度β与所受的合外力矩合M 成正比, 与刚体的定轴转动惯量I 成反比,即M I β=合 (16-1)其中I 为该系统对回转轴的转动惯量。
合外力矩M 合主要由引线的张力矩M 和轴承的摩擦力力矩M 阻构成,则M M I β-=阻摩擦力矩是未知的,但是它主要来源于接触磨擦,可 以认为是恒定的,因而将上式改为M I M β=+阻 (16-2)在此实验中要研究引线的张力矩M 与角加速度β之间是否满足式(16-2)的关系,即测量在不同力矩M 作用下的β值。
(1)关于引线张力矩M设引线的张力为T ,绕线轴半径为R ,则 M TR =又设滑轮半径为r ,质量为m ',其转动惯量为I ',塔轮转动时砝码下落的加速度为a ,参照图16-2可以得出mg T maa T r Tr I r '-=⎧⎪⎨''-=⎪⎩从上述二式中消去T ',同时取212I m r ''=,得出在此实验中保持0.3%2m a a g m'+≤,则mg T ≈,此时: mgR M ≈ (16-3)可见在实验中是由塔轮R 来改变M 的值。
(2)角加速度β的测量测出砝码从静止位置开始下落到地面上的时间为t ,路程为s ,则平均速度/υS t =,落到地板前瞬间的速度2υυ=,下落加速度/aυt =,角加速度R a /=β,即 22sR tβ=(16-4) 此方法一般是使用停表来测量砝码落地时间t ,由于t 较小,故测量误差比较大。
我们采用另外的方法:3131(6/2/)/(/2/2)t t t t βππ=+-三、实验内容:1.考察张力矩与角加速度的关系(1)用水准器将回转台调成水平,即调节轴铅直。
理论力学转动惯量实验报告【实验目的】1.了解多功能计数计时毫秒仪实时测量(时间)的基本方法2.用刚体转动法测定物体的转动惯量3.验证刚体转动的平行轴定理4.验证刚体的转动惯量与外力矩无关【实验原理】1.转动力矩、转动惯量和角加速度关系系统在外力矩作用下的运动方程T×r+Mμ=Jβ2(1)由牛顿第二定律可知,砝码下落时的运动方程为:mg-T=ma即绳子的张力T=m(g-rβ2)砝码与系统脱离后的运动方程Mμ=Jβ1(2)由方程(1)(2)可得J=mr(g-rβ2)/(β2-β1) (3)2.角加速度的测量θ=ω0t+½βt²(4)若在t1、t2时刻测得角位移θ1、θ2则θ1=ω0 t1+½βt²(5)θ2=ω0 t2+½βt²(6)所以,由方程(5)、(6)可得β=2(θ2 t1-θ1 t2)/ t1 t2(t2- t1)【实验仪器】1、IM-2刚体转动惯量实验仪(含霍尔开关传感器、计数计时多功能毫秒仪、一根细绳、一个质量为100g的砝码等,塔轮直径从下至上分别为30mm、40mm、50mm、60mm,载物台上的孔中心与圆盘中心的距离分别为40mm、80mm、120mm)2、一个钢质圆环(内径为175mm,外径为215mm,质量为995g)3、两个钢质圆柱(直径为38mm,质量为400g)【实验步骤】1.实验准备在桌面上放置IM-2转动惯量实验仪,并利用基座上的三颗调平螺钉,将仪器调平。
将滑轮支架固定在实验台面边缘,调整滑轮高度及方位,使滑轮槽与选取的绕线塔轮槽等高,且其方位相互垂直。
通用电脑计时器上光电门的开关应接通,另一路断开作备用。
当用于本实验时,设置1个光电脉冲记数1次,1次测量记录大约20组数。
2.测量并计算实验台的转动惯量1)放置仪器,滑轮置于实验台外3-4cm处,调节仪器水平。
设置毫秒仪计数次数为20。
2)连接传感器与计数计时毫秒仪,调节霍尔开关与磁钢间距为0.4-0.6cm,转离磁钢,复位毫秒仪,转动到磁钢与霍尔开关相对时,毫秒仪低电平指示灯亮,开始计时和计数。
篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
测量转动惯量实验报告
正文:
一、实验目的
本实验旨在测量一个转动惯量,以观测它如何变化,影响及改变转动性能。
二、实验原理
惯量是物体转动运动的一项重要物理量,它反映了物体在受到外力作用时,其转动速度和转动角速度之间的变化,即它反映了物体转动惯性的大小。
它与质量和它的形状、尺寸及分布有关,惯量的大小越大,对外力的反应就越慢。
三、实验原理
1. 设备准备:
(1)实验台;
(2)转子;
(3)拉力传感器;
(4)电磁传动装置;
(5)陀螺仪;
(6)数据采集卡;
(7)PC机;
2.实验步骤:
(1)将转子安装在实验台上;
(2)将拉力传感器安装在实验台上;
(3)将电磁传动装置安装在转子上;
(4)将陀螺仪安装在转子上;
(5)将数据采集卡连接到PC机;
(6)启动电磁传动装置,并调节转子的转速;
(7)通过陀螺仪记录转子的角速度;
(8)将拉力传感器的值记录下来,用来计算转子的惯量。
四、实验结果
拉力传感器的数值:
1. 角速度:20°/S
拉力:2N
2. 角速度:50°/S
拉力:7N
3. 角速度:100°/S
拉力:14N
根据实验数据,可以求出转子的惯量为:0.12 kg·m2。
五、结论
本实验测量的转动惯量为0.12 kg·m2。
实验结果表明,转动惯量受物理实体的质量及其形状尺寸分布的影响较大,因此,在设计或制造转动物体时,应注意转动惯量相关的影响因素,以改善物体的转动性能。
刚体转动惯量的测定实验报告一、实验目的1、学习用三线摆法测定刚体的转动惯量。
2、加深对转动惯量概念的理解。
3、掌握使用秒表、游标卡尺、米尺等测量工具。
二、实验原理三线摆是通过三条等长的摆线将一匀质圆盘悬挂在一个水平固定的圆盘上。
当摆盘绕中心轴作微小扭转摆动时,其运动可近似看作简谐振动。
根据能量守恒定律和刚体转动定律,可推导出刚体绕中心轴的转动惯量:\J_0 =\frac{m_0gRr^2T_0^2}{4\pi^2H}\其中,\(J_0\)为下盘(刚体)的转动惯量,\(m_0\)为下盘质量,\(g\)为重力加速度,\(R\)和\(r\)分别为上下圆盘悬点到中心的距离,\(T_0\)为下盘的摆动周期,\(H\)为上下圆盘间的垂直距离。
三、实验仪器三线摆实验仪、游标卡尺、米尺、秒表、待测圆环。
四、实验步骤1、调节三线摆底座水平,使上、下圆盘处于水平状态。
2、用米尺测量上下圆盘之间的距离\(H\),测量多次取平均值。
3、用游标卡尺测量上下圆盘悬点到中心的距离\(R\)和\(r\),各测量多次取平均值。
4、测量下盘质量\(m_0\)。
5、轻轻转动下盘,使其作微小扭转摆动,用秒表测量下盘摆动\(50\)次的时间,重复测量多次,计算平均摆动周期\(T_0\)。
6、将待测圆环置于下盘上,使两者中心重合,再次测量摆动周期\(T_1\)。
五、实验数据记录与处理1、实验数据记录|测量物理量|测量值|平均值||||||上圆盘悬点到中心的距离\(R\)(mm)|_____|_____||下圆盘悬点到中心的距离\(r\)(mm)|_____|_____||上下圆盘之间的距离\(H\)(mm)|_____|_____||下盘质量\(m_0\)(g)|_____|_____||下盘摆动\(50\)次的时间\(t_0\)(s)|_____|_____||放上圆环后下盘摆动\(50\)次的时间\(t_1\)(s)|_____|_____|2、数据处理(1)计算下盘的摆动周期:下盘摆动周期\(T_0 =\frac{t_0}{50}\)(2)计算下盘的转动惯量:\J_0 =\frac{m_0gRr^2T_0^2}{4\pi^2H}\(3)计算圆环与下盘共同的转动惯量:\J_1 =\frac{(m_0 + m)gRr^2T_1^2}{4\pi^2H}\其中,\(m\)为圆环的质量。
转动惯量的测定实验报告一、实验目的1、学习用三线摆法测定物体的转动惯量。
2、验证转动惯量的平行轴定理。
二、实验原理三线摆是将一个匀质圆盘,以三条等长的摆线对称地悬挂在一个水平的圆盘上。
当圆盘绕垂直于盘面的中心轴作微小扭转摆动时,圆盘的运动可以看作是一种简谐振动。
根据能量守恒定律和刚体转动定律,可以推导出三线摆测量转动惯量的公式:\(J_0 =\frac{m_0gRr^2}{4\pi^2H}T_0^2\)其中,\(J_0\)为下圆盘的转动惯量,\(m_0\)为下圆盘的质量,\(g\)为重力加速度,\(R\)和\(r\)分别为下圆盘和上圆盘的悬点到各自圆心的距离,\(H\)为上下圆盘之间的距离,\(T_0\)为下圆盘的摆动周期。
对于质量为\(m\)、转动惯量为\(J\)的待测物体放在下圆盘上时,系统的转动惯量为\(J_0 + J\),摆动周期为\(T\),则有:\(J =\frac{m_0gRr^2}{4\pi^2H}(T^2 T_0^2)\)若质量为\(m\)的待测物体的质心轴到下圆盘中心轴的距离为\(d\),根据平行轴定理,其转动惯量为\(J = J_c + md^2\),其中\(J_c\)为通过质心轴的转动惯量。
三、实验仪器三线摆实验仪、游标卡尺、米尺、电子秒表、待测圆环、圆柱体等。
四、实验步骤1、调节三线摆底座水平,使上圆盘和下圆盘处于平行状态。
2、用米尺测量上下圆盘之间的距离\(H\),测量六次取平均值。
3、用游标卡尺测量上下圆盘的悬点到各自圆心的距离\(R\)和\(r\),各测量六次取平均值。
4、测量下圆盘的质量\(m_0\)和半径\(R_0\)。
5、轻轻转动下圆盘,使其做小角度摆动,用电子秒表测量下圆盘摆动\(50\)次的时间,重复测量六次,计算平均周期\(T_0\)。
6、将待测圆环放在下圆盘上,使圆环的中心与下圆盘的中心重合,测量系统的摆动周期\(T\),重复测量六次。
7、用游标卡尺测量圆环的内、外直径,计算圆环的质量和转动惯量。
转动惯量的测量实验报告实验目的:通过实验测量旋转物体的转动惯量,并验证转动惯量与物体质量和几何形状之间的关系。
实验仪器:1. 转动惯量测量装置:包括一个转轴、一个平行于转轴的刚性杆、挂在杆上的各种不同形状的质量挂物和一个提供扭矩的弹簧秤。
2. 实验秤:用于测量质量。
实验原理:转动惯量是描述物体对旋转运动抵抗的物理量,通常用I表示。
对于轴对称的物体,其转动惯量可以通过简单的公式得到;对于非轴对称的物体,一般需要通过实验来测量。
对于一个质量m离转轴距离r处的转动惯量可以表示为I =m*r^2。
根据这个公式,我们可以推导出在实验装置中扭矩(τ)和转动惯量(I)之间的关系:τ = k*I,其中k为比例常数。
实验步骤:1. 将实验装置准备妥当,确保转动轴和质量挂物是垂直的。
2. 用实验秤测量每个质量挂物的质量,并记录下来。
3. 在转动轴上选择一个合适位置固定一个质量挂物,用弹簧秤提供扭矩,记录弹簧秤的示数,并加上一个负号(因为扭矩和转动方向相反)。
4. 重复步骤3,选取不同的质量挂物,并记录下弹簧秤的示数。
5. 分别计算每个质量挂物的转动惯量,即I = τ/k,并记录结果。
实验数据处理与分析:根据实验记录的数据,可以计算出每个质量挂物的转动惯量。
然后,我们可以分析转动惯量与物体质量和几何形状之间的关系。
具体分析步骤如下:1. 绘制一个转动惯量随质量的变化曲线图,横轴为质量,纵轴为转动惯量,以观察它们的关系。
2. 然后,绘制一个转动惯量与质量平方的关系曲线图,横轴为质量的平方,纵轴为转动惯量,以观察它们之间是否存在线性关系。
3. 根据实验数据拟合出转动惯量与质量平方的函数关系,并计算出比例常数k。
根据实验结果分析,我们可以得出转动惯量与物体质量和几何形状之间的关系,并与理论预期进行对比。
结论:通过该实验,我们成功测量了不同形状和质量挂物的转动惯量,并验证了转动惯量与物体质量和几何形状之间的关系。
实验结果与理论预期相吻合,证明了转动惯量的测量方法的可靠性。
刚体转动惯量的测定实验报告实验目的本实验旨在通过测定不同几何形状的刚体的转动惯量,探究不同形状对刚体转动惯量的影响,并验证理论公式。
实验仪器1.大杠杆2.小杠杆3.固定测量装置4.微秤5.螺丝刀实验原理根据刚体的转动定律,刚体转动惯量的定义公式为:I = Σmi 某 ri^2其中,I为刚体的转动惯量,mi为刚体上每个质点的质量,ri为质点到转轴的距离。
实验步骤1.将大杠杆和小杠杆固定在测量装置上,并调整位置使其垂直。
2.将待测刚体固定在小杠杆的一端,使其可以自由转动。
3.在大杠杆上固定一个小质量,并记下杠杆的质量m0。
4.用螺丝刀将待测刚体固定在小杠杆的另一端。
5.将质量m0放在待测刚体上方,使其时刻保持垂直。
6.用微秤测量质量m0的重量,并记录下来。
7.测量并记录待测刚体与转轴之间的距离r0。
8.重复多次实验,改变质量m0的位置,分别记录质量和距离的值。
实验数据处理根据实验步骤7和6的数据,计算质量m0乘以重力加速度的值,即m0g,在每组实验中,根据位置的不同,计算出刚体与转轴的距离ri和乘积m0gri的值。
然后,使用公式I = Σmi 某 ri^2计算刚体的转动惯量。
实验结果与讨论根据实验数据和处理结果,可以绘制出刚体转动惯量与位置的变化关系图表。
从图表中可以看出,转动惯量随着位置的变化而变化。
不同形状的刚体转动惯量也不同,验证了理论公式。
实验结论刚体的转动惯量随着位置和形状的变化而变化。
测量得到的数据与理论预测的结果相符,证明了刚体转动惯量的定义公式的准确性。
实验中所使用的装置和方法可以用于测量不同形状刚体的转动惯量,具有一定的实用性和可操作性。
实验中存在的不确定因素和误差1.实验中可能存在材料制造误差,如刚体的质量分布不均匀等。
2.实验中测量的距离和质量可能存在一定程度的误差。
3.实验中的测量装置和仪器也可能存在一定的误差。
改进措施1.可以增加实验的重复次数,提高实验数据的可靠性和准确性。