正交试验怎么做?-不会的进来看看
- 格式:ppt
- 大小:5.08 MB
- 文档页数:10
正交实验流程
嘿,各位朋友,今天咱们来摆摆龙门阵,说说这个正交实验流程的事儿。
说起正交实验,那可是个科学的东西,得讲究个流程,不能乱来。
咱们先从四川话开始说起。
正交实验,说白了,就是要找出一个实验的最佳条件。
就像咱们四川人吃火锅,得找对那个最辣的底料,最香的辣椒,最麻的花椒,才能吃出那个味儿来。
正交实验也是这样,得把各种因素都考虑进去,看看哪个组合最好。
然后咱们再聊聊贵州话。
在贵州,人们常说“一物降一物”,这正交实验里头,也就是一个因素克制一个因素。
你得把所有因素都摆出来,看它们怎么相互作用,最后才能找到那个最合适的条件。
再来说说陕西方言。
在陕西,人们讲究个“实实在在”,做实验也是这样,得实实在在地去试,不能马马虎虎。
正交实验就是让你实实在在地去试各种条件,看哪个最好。
最后咱们来点儿北京味儿。
在北京,人们说话直接,喜欢“一针见血”。
正交实验也是这样,直接找出影响实验的关键因素,然后调整它,让实验效果达到最好。
所以呀,正交实验流程,说简单也简单,说复杂也复杂。
你得先把所有因素都考虑进去,然后设计实验,再去做实验,最后分析结果。
就像咱们做饭一样,得先把材料准备好,然后按照菜谱来,最后才能做出好吃的饭菜。
正交实验也是这样,得按照流程来,才能找出最佳的实验条件。
好了,今天咱们就聊到这儿,希望大家都能明白这个正交实验流程是怎么回事儿。
要是还有啥不明白的,咱们下次再聊!。
多因素优化试验设计—正交试验法上一章我们介绍了单因素优化试验设计方法。
但是在实际生产和科学试验中,往往有多个因素同时影响结果,在这种情况下采用单因素试验方法就难以满足要求。
本章将介绍在多因素寻优试验中,用尽量少的试验尽快获得最优结果的科学试验方法。
第一节正交试验设计正交试验法,就是在多因素优化试验中,利用数理统计学与正交性原理,从大量的试验点中挑选有代表性和典型性的试验点,应用“正交表”科学合理地安排试验,从而用尽量少的试验得到最优的试验结果的一种试验设计方法。
例3-2-1 已知碳、硅、锰含量影响铸铁的力学性能,我们把这三种元素分别用A、B、C表示。
我们根据生产经验将三种元素分别选两种含量(见表3-2-1),分别表示为A1、A2、B1、B2、C1、C2。
现在我们研究这三种元素两种含量如何组合,铸铁的性能最优。
表3-2-1 铸铁性能试验参数在例3-2-1中,我们称碳硅锰含量为因素,其两种含量称为水平,这个试验就是三因素二水平试验。
如果按照普通的方法将三个因素的两个水平分别搭配进行试验,需要进行8次试验,如图3-2-1长方体的8个顶点所示。
显然这是十分繁琐的。
如果试验的因素和水平更多,那么试验量将更加惊人。
但是在正交试验中,如果三个因素之间没有交互作用,我们只要选择其中的以下4个试验(图3-2-1中红点所示)A1B1C1、A1B2C2、A2B1C2、A2B2C1就可以代替全部8个试验。
图3-2-1 正交试验点示意图这是为什么呢?仔细观察图3-2-1可以发现,在长方体的六个面上,每个面都有两个试验点。
而在长方体的12个边上,每个边上都有1个试验点。
进一步观察4个试验点,可以发现,每个因素的各个水平参加试验的次数一样多,都是二次。
各个数据对,如(A1,B1)、(A1,B2)、(A2,B1)、(A2,B2)、(B1,C1)、(B2,C2)、(B1,C2)、(B2,C1)、(A1,C1)、…、(A2,C1)出现的次数也一样多,都是1次。
正交试验设计法一、定义:正交试验设计法就是利用正交表来合理安排多因素试验的一种方法。
二、常用术语1、指标:指标就是试验要考察的效果。
常用X、Y、Z……来表示。
▼定量指标:能够用数量来表示的试验指标,如重量、尺寸、温度。
▼定性指标:不能用数量来表示的试验指标,如颜色、味道、外观。
●定性指标量化:可用打分法、分等法。
2、因素:因素是指对试验指标可能产生影响的原因。
因素是在试验中应当加以考察的重点内容。
一般用大写字母A、B、C……来表示。
3、水平(位级):位级是指因素在试验中所处的状态或条件。
常用阿拉伯数字1、2、3……来表示。
如: A1、A2、A3、B1、B2、B3。
三、正交表 (已设计好的标准化表格,是进行正试验法的基本工具)1、日本型正交表:由日本质量管理专家田口玄一博士创立。
该正交试验设计法,除需试验的因素外,还要研究分析因素与因素之间的交互作用,一起上列,对试验结果的分析用方差分析等方法,过程较复杂。
2、中国型正交表是由以我国张千里教授为首的中国专家所创立。
它不考虑因素之间的交互作用,而将其交互作用融于试验之中,对试验结果的分析采用极差分析法,简单的用“看一看”与“算一算”相结合的分析、简单、易行、同样能得到满意的结论,是一种实用的试验方法,很适合现场应用。
四、正交表的特点:1、均衡分散性:每一列中各种字码出现的次数相同,保证试验条件均衡地分散在配合完全的位级组合之中,因而代表性强,容易出现好条件。
2、整齐可比性:任意两列中全部有序数字对出现次数都是相同的。
保证了在各个位级的效果之中,最大限度地排除了其他因素的干扰,能最有效地进行比较,作出展望。
五、用中国型正交表安排试验的步骤 1、明确试验目的 2、确定考察指标 3、挑因素、选位级,制定因素位级表 ①挑因素的原则: ▼分析影响指标的各种因素,排除: 不可控因素 对指标影响不大的因素 已掌握得好的因素(让其固定在适当位置上) ▼选对指标可能影响大,又无把握的因素。
正交试验设计方法讲义及举例正交试验设计方法是一种多因素试验设计方法,它能够有效地减少试验所需的样本数量,提高试验结果的精确性和可靠性。
正交试验设计方法是在已知因素水平的情况下选择对试验结果影响最大的因素进行研究的一种方法。
以下是正交试验设计方法的讲义及举例:一、正交试验设计方法的原理及步骤:1.原理:正交试验设计方法通过选择适当的正交表,将多个因素的不同水平组合进行排列,使各因素的变化对试验结果影响均匀化,从而获得准确可靠的试验结果。
2.步骤:a.确定试验因素及其水平:根据试验目的确定需要研究的因素及其水平。
b.选择正交表:根据试验因素的个数和水平确定适用的正交表,正交表能够保证试验结果的均匀性和可靠性。
c.设计试验方案:根据选择的正交表,将试验因素的水平进行组合,获得试验方案。
d.进行试验:按照试验方案进行实际试验。
e.分析试验结果:对试验结果进行统计分析,获得对试验因素的影响程度及其交互作用等信息。
f.微调试验方案:根据试验结果微调试验方案,迭代优化试验过程。
二、正交试验设计方法的优点:1.降低样本数量:正交试验设计方法能够通过对试验水平的排列组合,使试验因素的水平均匀分布,从而减少试验所需的样本数量。
2.提高试验效率:正交试验设计方法能够在有限样本量下获得更多的试验信息,提高试验效率。
3.确保结果可靠:正交试验设计方法通过保证试验因素的均匀分布,减少人为因素的干扰,从而保证试验结果的可靠性和准确性。
4.揭示因素交互作用:正交试验设计方法能够揭示因素之间的交互作用,进一步优化设计过程。
三、正交试验设计方法的举例:例如,公司要研究一种新的洗发水对头发柔顺度的影响,试验主要包括3个因素:洗发水品牌(A、B、C)、洗发水用量(X、Y、Z)和洗发水停留时间(T1、T2、T3)。
根据正交试验设计方法,按照以下步骤进行设计:1.选择正交表:根据3个因素和各因素的水平,选择适用的正交表,如L9正交表。
2.设计试验方案:根据L9正交表,将3个因素的水平进行组合,得到9个试验方案,每个方案分别测试一种组合情况。
正交试验设计的流程正交试验设计是一种有效的统计方法,用于确定影响某个过程或系统的多个因素的最佳组合。
它可以帮助研究人员在有限的实验次数中获得尽可能多的信息,从而优化产品或过程的性能。
在本文中,我们将介绍正交试验设计的流程,以帮助读者更好地理解和应用这一方法。
第一步:确定实验目标和因素在进行正交试验设计之前,首先需要明确实验的目标和需要研究的因素。
实验目标可以是改进产品的性能、降低生产成本、提高工艺效率等。
因素则是影响实验结果的各种变量,例如材料的种类、温度、压力等。
在确定因素时,需要考虑到可能的相互作用效应,以确保实验结果的准确性。
第二步:选择正交表正交表是正交试验设计的基础,用于确定实验的运行次数和因素的水平。
根据实验因素的个数和水平数,可以选择合适的正交表。
常用的正交表有Taguchi L9、L12、L16等。
选择正交表时,需要考虑因素个数和水平数的平衡性,以及实验次数的可行性。
第三步:确定试验方案在确定了正交表之后,需要根据具体的实验目标和因素,确定试验方案。
试验方案包括确定实验的次数、因素的水平和实验的顺序。
通常情况下,每个因素的水平应该均匀分布在正交表的各个列中,以保证各个因素的效应能够被准确估计。
第四步:进行实验在正交试验设计中,实验次数通常是有限的,因此需要合理安排实验的顺序。
一般来说,应该先进行主要因素的实验,然后再进行次要因素的实验。
在实验过程中,需要记录每次实验的结果和观察值,以便后续的数据分析和结果解释。
第五步:数据分析和结果解释在完成实验后,需要对实验数据进行统计分析和结果解释。
常用的分析方法包括方差分析、回归分析和假设检验等。
通过分析实验数据,可以确定各个因素对实验结果的影响程度,并找出最佳的因素组合。
第六步:优化和验证根据实验结果,可以进行产品或过程的优化。
通过调整因素的水平和组合,可以进一步改进产品的性能或降低生产成本。
此外,还需要进行实验结果的验证,以确保实验结果的可靠性和稳定性。
测试用例设计方法--正交试验法详解正交试验法介绍正交试验法是研究多因素、多水平的一种试验法,它是利用正交表来对试验进行设计,通过少数的试验替代全面试验,根据正交表的正交性从全面试验中挑选适量的、有代表性的点进行试验,这些有代表性的点具备了“均匀分散,整齐可比”的特点。
正交表是一种特制的表格,一般用L n (m k)表示,L 代表是正交表,n 代表试验次数或正交表的行数,k 代表最多可安排影响指标因素的个数或正交表的列数,m 表示每个因素水平数,且有n=k*(m-1)+1。
正交表的特点正交表具有以下两个特点。
正交表必须满足这两个特点,有一条不满足,就不是正交表。
每列中不同数字出现的次数相等。
这一特点表明每个因素的每个水平与其它因素的每个水平参与试验的几率是完全相同的,从而保证了在各个水平中最大限度地排除了其它因素水平的干扰,能有效地比较试验结果并找出最优的试验条件。
在任意2列其横向组成的数字对中,每种数字对出现的次数相等。
这个特点保证了试验点均匀地分散在因素与水平的完全组合之中,因此具有很强的代表性。
使用正交试验法的原因对于单因素或两因素试验,因其因素少,试验的设计、实施与分析都比较简单。
但在实际工作中,常常需要同时考察3个或3个以上的试验因素,若进行全面试验,试验的规模很大,由于时间和成本的限制我们不可能进行全面试验,但是具体挑其中的哪些测试用例进行测试我们心里拿不准,总担心不做不挑选的那些测试用例会遗漏一些严重缺陷。
为了有效的、合理地减少测试的工时与费用,我们利用正交试验法来设计测试用例。
正交试验法就是安排多因素试验、寻求最优水平组合的一种高效率的试验设计方法。
我们用测试实例来进行说明使用正交试验法设计测试用例的好处。
测试需求:某所大学通信系共2个班级,刚考完某一门课程,想通过“性别”、“班级”和“成绩”这三个查询条件对通信系这门课程的成绩分布,男女比例或班级比例进行人员查询: 根据“性别”=“男,女”进行查询 根据“班级”=“1班,2班”查询 根据“成绩”=“及格,不及格”查询按照传统设计——全部测试分析上述测试需求,有3个被测元素,被测元素我们称为因素,每个因素有两个取值,我们称之为水平值,所以全部测试用例个数是2*2*2=8,参见下表序号性别班级成绩1女1班及格2女1班不及格3女2班及格4女2班不及格5男1班及格6男1班不及格7男2班及格8男2班不及格利用正交表设计测试用例,我们得到的测试用例个数是n=3*(2-1)+1=4,对于三因素两水平的刚好有L4(23)的正交表可以套用,于是用正交表试验法得出4个测试用例如下:序号性别班级成绩1女1班及格2女2班不及格3男1班不及格4男2班及格根据实际需要可以在用正交试验法设计用例的基础上补充一些测试用例。
实验设计方法—正交实验法概述正交实验法就是利用排列整齐的表-正交表来对试验进行整体设计、综合比拟、统计分析,实现通过少数的实验次数找到较好的生产条件,以到达最高生产工艺效果。
正交表能够在因素变化范围内均衡抽样,使每次试验都具有较强的代表性,由于正交表具备均衡分散的特点,保证了全面实验的某些要求,这些试验往往能够较好或更好的到达实验的目的。
正交实验设计包括两局部内容:第一,是怎样安排实验;第二,是怎样分析实验结果。
正交试验设计法的根本思想正交试验设计法,就是使用已经造好了的表格--正交表--来安排试验并进行数据分析的一种方法。
它简单易行,计算表格化,使用者能够迅速掌握。
下边通过一个例子来说明正交试验设计法的根本想法。
[例1]为提高某化工产品的转化率,选择了三个有关因素进行条件试验,反响温度(A),反响时间(B),用碱量(C),并确定了它们的试验范围:A:80-90℃B:90-150分钟C:5-7%试验目的是搞清楚因子A、B、C对转化率有什么影响,哪些是主要的,哪些是次要的,从而确定最适生产条件,即温度、时间及用碱量各为多少才能使转化率高。
试制定试验方案。
这里,对因子A,在试验范围内选了三个水平;因子B和C也都取三个水平:A:Al=80℃,A2=85℃,A3=90℃B:Bl=90分,B2=120分,B3=150分C:Cl=5%,C2=6%,C3=7%当然,在正交试验设计中,因子可以是定量的,也可以是定性的。
而定量因子各水平间的距离可以相等,也可以不相等。
这个三因子三水平的条件试验,通常有两种试验进行方法:(Ⅰ)取三因子所有水平之间的组合,即AlBlC1,A1BlC2,A1B2C1,……,A3B3C3,共有33=27次试验。
用图表示就是图1 立方体的27个节点。
这种试验法叫做全面试验法。
全面试验对各因子与指标间的关系剖析得比拟清楚。
但试验次数太多。
特别是当因子数目多,每个因子的水平数目也多时。
试验量大得惊人。
正交试验设计的基本程序和步骤1、前言正交试验设计(Orthogonal experimental design,OED)是一种重要的统计学方法,它可以有效地降低试验次数和成本,并且在较短时间内获得较为全面的试验结果。
在实际的工程应用中,正交试验设计被广泛地应用于产品设计、工艺优化、性能分析等方面。
在本文中,将分析正交试验设计的基本程序和步骤,以便读者更好地了解和应用它。
2、正交试验设计的基本概念和目的正交试验设计是一种实验设计方法,它的核心思想是在尽量少的试验次数内,获得尽量全面的试验结果。
正交试验设计的目的是确定试验因素对试验结果的影响关系,以便在最短的时间内找到最优的试验方案。
在正交试验设计中,试验因素是指影响试验结果的因素,它包括五个要素,即A(B)、B(C)、C(A)、D(E)、E(D),其中ABC是三因素正交设计,DE是两因素正交设计。
试验因素水平是指了试验因素的取值,例如低水平(-1)和高水平(1)。
3、正交试验设计的基本步骤(1)确定试验因素和水平在正交试验设计中,首先需要明确试验的主要因素,以及试验因素的水平。
在实际的试验中,因素的数量和水平的设置应该根据具体试验问题来确定,同时,要注意试验因素个数的控制,以避免试验运行过多。
(2)构建试验方案矩阵试验方案矩阵是正交设计的核心,它是一种特殊的矩阵,将试验因素和水平按照一定的规则排列组合。
在构建试验方案矩阵时,需要考虑多个因素对试验结果的影响,以避免试验设计的偏差。
(3)实施试验方案并收集数据在实际的试验中,需要根据试验方案进行试验并收集数据。
在试验过程中要注意严格的试验控制和数据收集,以避免实验结果的不准确性。
(4)数据分析数据分析是正交试验设计的关键步骤,通过数据分析可以确定试验因素的影响关系,并找到最优的试验方案。
数据分析的过程一般包括方差分析、回归分析等统计学方法。
(5)确定优化方案根据数据分析结果,确定试验因素的优化方案,找到最优的试验方案。
谈如何进行正交试验设计刘先龙2013年7月16日现今,面对企业对产品要求的愈发提高,产品的创新与改进成为企业在行业内竞争的一把亮剑。
如何从行业内上数家企业中抢占先机,如何尽快的完善产品质量,如何减少实验过程中人材物的投入,这就需要通过试验设计来完成。
一个产品的产生与完善,是工作者投入大量的精力,不断的徘徊于成败间最终完成的,而这一过程中往往遇到试验次数太多的问题,一个非常自然的想法就是从析因设计的水平组合中,选择一部分有代表性水平组合进行试验,因此就出现了分式析因设计,但是对于试验设计知识较少的实际工作者来说,选择适当的分式析因设计还是比较困难的。
由此,日本著名统计学家田口玄一将正交试验设计引入企业,并将水平组合制成正交表,方便了该方法在企业中的广泛运用。
正交试验设计是分式析因设计的主要方法,是一种高效率、快速、经济的实验设计方法。
它是根据正交性从多因素多水平的全面试验中挑选出部分有代表性的点进行试验,这些点需具备“均匀分散,齐整可比”的特点。
与独立重复试验(全面性试验)不同,正交试验设计通过理论计算、系统分析合理安排试验而大大简化试验,解决了全面性试验盲目性大、耗时耗力、操作性差等缺点。
在正交试验过程中,最关键的就是正交表的使用。
正交表是一整套规则的设计表格,是正交试验设计用来安排试验因素和水平数并分析试验结果的基本工具,符号为Ln(r m):L为正交符号(latin的缩写),n代表总试验数,r代表水平数(同一因素考察量),m代表列数(试验考察因素)。
为方便试验人员使用,统计学家已构造了部分常用正交表,试验者只需根据试验相关考虑因素选择适当的正交表即可。
正交表选择原则包括第一:观察水平数:各因素水平数相同则选用Ln(rm),若各因素水平数不同,则选用混合水平表Ln(s×rm)。
第二:每一个交互作用在正交表中应占一列或二列。
要看所选的正交表是否足够大,能否容纳得下所考虑的因素和交互作用。
正交实验法的由来一、正交表的由来拉丁方名称的由来古希腊是一个多民族的国家,国王在检阅臣民时要求每个方队中每行有一个民族代表,每列也要有一个民族的代表。
数学家在设计方阵时,以每一个拉丁字母表示一个民族,所以设计的方阵称为拉丁方。
什么是n阶拉丁方?用n个不同的拉丁字母排成一个n阶方阵(n<26 ),如果每行的n个字母均不相同,每列的n个字母均不相同,则称这种方阵为n*n拉丁方或n阶拉丁方。
每个字母在任一行、任一列中只出现一次。
什么是正交拉丁方?设有两个n阶的拉丁方,如果将它们叠合在一起,恰好出现n2个不同的有序数对,则称为这两个拉丁方为互相正交的拉丁方,简称正交拉丁方。
例如:3阶拉丁方(图1)用数字替代拉丁字母:(图2)二、正交实验法正交试验设计(Orthogonal experimental design)是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分式析因设计的主要方法。
是一种高效率、快速、经济的实验设计方法。
日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。
例如作一个三因素三水平的实验,按全面实验要求,须进行33=27种组合的实验,且尚未考虑每一组合的重复数。
若按L9(33) 正交表按排实验,只需作9次,按L18(37) 正交表进行18次实验,显然大大减少了工作量。
因而正交实验设计在很多领域的研究中已经得到广泛应用。
利用因果图来设计测试用例时, 作为输入条件的原因与输出结果之间的因果关系,有时很难从软件需求规格说明中得到。
往往因果关系非常庞大,以至于据此因果图而得到的测试用例数目多的惊人,给软件测试带来沉重的负担,为了有效地,合理地减少测试的工时与费用,可利用正交实验设计方法进行测试用例的设计。
正交实验设计方法:依据Galois理论,从大量的(实验)数据(测试例)中挑选适量的、有代表性的点(例),从而合理地安排实验(测试)的一种科学实验设计方法。