生物化学:第十二章 物质代谢的整合与调节
- 格式:ppt
- 大小:3.20 MB
- 文档页数:80
第九章物质代谢的整合与调节本章要点一、物质代谢的特点1.体内各种物质代谢过程互相联系形成一个整体2.机体物质代谢不断受到精细调节3.各组织、器官物质代谢各具特色4.体内各种代谢物都具有共同的代谢池5.ATP是机体储存能量和消耗能量的共同形式6.NADPH提供合成代谢所需的还原当量二、物质代谢的相互联系1.各种能量物质的代谢相互联系相互制约2.糖、脂和蛋白质代谢通过中间代谢物而相互联系①葡萄糖可转变为脂肪酸②葡萄糖与大部分氨基酸可以相互转变③氨基酸可转变为多种脂质但脂质几乎不能转变为氨基酸④一些氨基酸、磷酸戊糖是合成核苷酸的原料三、肝在物质代谢中的作用1.肝是维持血糖水平相对稳定的重要器官①肝内生成的葡糖-6-磷酸是糖代谢的枢纽②肝是糖异生的主要场所2.肝在脂质代谢中占据中心地位①肝在脂质消化吸收中具有重要功能②肝是甘油三酯和脂肪酸代谢的中枢器官③肝是维持机体胆固醇平衡的主要器官④肝是血浆磷脂的主要来源3.肝的蛋白质合成及分解代谢均非常活跃①肝合成多数血浆蛋白②肝内氨基酸代谢十分活跃③肝是机体解“氨毒”的主要器官4.肝参与多种维生素和辅酶的代谢①肝在脂溶性维生素吸收和血液运输中具有重要作用②肝储存多种维生素③肝参与多数维生素的转化5.肝参与多种激素的灭活四、肝外重要组织器官的物质代谢特点及联系1.心肌优先利用脂肪酸氧化分解供能①心肌可利用多种营养物质及其代谢中间产物为能源②心肌细胞分解营养物质供能方式以有氧氧化为主2.脑主要利用葡萄糖供能且耗氧量大①葡萄糖和酮体是脑的主要能量物质②脑耗氧量高达全身耗氧总量的四分之一③脑具有特异的氨基酸及其代谢调节机制3.骨骼肌主要氧化脂肪酸,强烈运动产生大量乳酸①不同类型骨骼肌产能方式不同②骨骼肌适应不同耗能状态选择不同能源4.糖酵解是成熟红细胞的主要供能途径5.脂肪组织是储存和释放能量的重要场所①机体将从膳食中摄取的能量主要储存于脂肪组织②饥饿时主要靠分解储存于脂肪组织的脂肪供能6.肾能进行糖异生和酮体生成五、物质代谢调节的主要方式(一)、细胞水平的物质代谢调节主要调节关键酶活性②别构效应通过改变酶分子构象改变酶活性③别构调节使一种物质的代谢与相应的代谢需求和相关物质的代谢协调4.化学修饰调节通过酶促共价修饰调节酶活性②酶的化学修饰调节具有级联放大效应▲化学修饰调节的特点:a.绝大多数受化学修饰调节的关键酶都具无活性(或低活性)和有活性(或高活性)两种形式,它们可分别在两种不同酶的催化下发生共价修饰,互相转变。
生物化学与代谢调节生物化学是研究生物学中化学反应及化合物合成与降解的科学。
它涵盖了各种生物分子的结构、功能和相互作用的研究。
而代谢调节是指生物体如何通过调节代谢途径、酶反应和信号传导来维持生命活动的平衡和稳定性。
本文将介绍生物化学与代谢调节的相关概念、机制和应用。
一、生物化学的基础知识生物化学主要研究有机化学在生物体内的应用和作用。
生物体内的化学反应涉及到多种有机化合物,如蛋白质、碳水化合物、核酸和脂质等。
这些分子在细胞内发挥着重要的生物学功能,如催化酶反应、存储和传递遗传信息等。
了解这些分子的结构和功能对于理解生物体的代谢调节至关重要。
二、代谢调节的基本原理代谢调节是通过调节代谢途径和酶活性来实现的。
生物体内的代谢途径是一系列互相关联的化学反应链,包括分解物质的降解途径和合成物质的合成途径。
这些途径的活性受到多个因素的调控,如酶的催化活性、底物浓度和环境条件等。
生物体通过调节这些因素来控制代谢途径的速率,以满足细胞和整个生物体的能量和物质需求。
三、代谢调节的机制代谢调节机制是复杂而精密的。
生物体可以通过多种方式实现代谢的调节,包括底物浓度调节、酶活性调节和基因表达调节等。
底物浓度调节是指生物体通过调节底物的浓度来影响代谢途径的速率。
酶活性调节是指生物体通过调节酶的活性来控制代谢途径的速率。
基因表达调节是指生物体通过调节基因的转录与翻译来调节代谢途径的活性。
四、生物化学与代谢调节的应用生物化学和代谢调节在医药领域、农业生产和环境保护等方面有着广泛的应用。
在医药领域,了解生物化学和代谢调节的原理可以帮助开发新的药物并改善药物疗效。
在农业生产方面,生物化学和代谢调节的研究可以提高作物的产量和质量,并改善耐逆性。
在环境保护方面,生物化学和代谢调节的理解有助于开发新的生物技术来处理废水和污染物。
综上所述,生物化学与代谢调节是生物学领域中重要的研究方向。
通过学习生物化学的基础知识和了解代谢调节的机制,我们可以更好地理解生物体的生命活动及其调控方式。
物质代谢的联系与调节第一节物质代谢的特点(一)整体性体内各种物质包括糖、脂、蛋白质、水、无机盐、维生素等的代谢不是彼此孤立各自为政,而是同时进行的,而且彼此互相联系,或相互转变,或相互依存,构成统一的整体。
(二)代谢调节机体存在精细的调节机制,不断调节各种物质代谢的强度、方向和速度以适应内外环境的变化。
代谢调节普遍存在于生物界,是生物的重要特征。
(三)各组织、器官物质代谢各具特色由于各组织、器官的结构不同,所含有酶系的种类和含量各不相同,因而代谢途径及功能各异,各具特色。
例如肝在糖、脂、蛋白质代谢上具有特殊重要的作用,是人体物质代谢的枢纽。
(四)各种代谢物均具有各自共同的代谢池无论是体外摄人的营养物或体内各组织细胞的代谢物,只要是同一化学结构的物质在进行中间代谢时,不分彼此,参加到共同的代谢池中参与代谢。
(五)ATP是机体能量利用的共同形式糖、脂及蛋白质在体内分解氧化释出的能量,均储存在ATP的高能磷酸键中。
(六)NADPH是合成代谢所需的还原当量参与还原合成代谢的还原酶则多以NADPH为辅酶,提供还原当量。
如糖经戊糖磷酸途径生成的NADPH既可为乙酰辅酶A合成脂酸,又可为乙酰辅酶A 合成固醇提供还原当量。
第二节物质代谢的相互联系一、在能量代谢上的相互联系乙酰辅酶A是三大营养物共同的中间代谢物,三羧酸循环是糖、脂、蛋白质最后分解的共同代谢途径,释出的能量均以ATP形式储存。
从能量供应的角度看,这三大营养素可以互相代替,并互相制约。
二、糖、脂和蛋白质代谢之间的联系体内糖、脂、蛋白质和核酸等的代谢不是彼此独立,而是相互关联。
它们通过共同的中间代谢物,即两种代谢途径汇合时的中间产物,三羧酸循环和生物氧化等联成整体。
(一)糖代谢与脂代谢的相互联系当摄人的糖量超过体内能量消耗时,除合成少量糖原储存在肝及肌肉外,生成的柠檬酸及ATP可变构激活乙酰辅酶A竣化酶,使由糖代谢源源而来的大量乙酰辅酶A得以羧化成丙二酰辅酶A,进而合成脂酸及脂肪在脂肪组织中储存,即糖可以转变为脂肪。
13第十二章-物质代谢的整合与调节第十二章物质代谢的整合与调节框12-1代谢整体性认识的形成和发展1941年F. Lipmann提出ATP循环学说,1948年E. Kennedy和A. Lehninger发现电子传递链,确立了物质代谢与能量代谢的联系。
20世纪上叶,科学家在解析物质分解、合成代谢途径时,结合酶促反应机制,揭示了底物、代谢产物对代谢的调节作用。
1922年F. G. Banting发现胰岛素,其他激素也陆续被发现。
1939年A. V. Schally发明放射免疫分析技术,该技术及其他相关技术的应用促进了激素作用机制研究,揭示了神经一激素在物质代谢调节中的核心地位。
1963年Monod等提出的别构调节和1979年E. G. Krebs 和J. A. Beavo提出的化学修饰调节理论将酶活性调节与激素等的信号转导途径相联系。
至20世纪80-90年代,大量的科学研究发现将机体内外环境刺激、神经内分泌改变、细胞信号转导、酶/蛋白质结构变化、基因表达改变、物质及能量代谢变化联系在一起,形成复杂的代谢及其调节网络。
随着当代“组学”研究的开展,将会更加深入地认识机体组织器官之间、各种物质代谢之间的联系和协调及其随内外环境变化而变化的规律。
第一节物质代谢的特点一、体内各种物质代谢过程互相联系形成一个整体在体内进行代谢的物质各种各样,不仅有糖、脂、蛋白质这样的大分子营养物质,也有维生素这样的小分子物质,还有无机盐、甚至水。
它们的代谢不是孤立进行的,同一时间机体有多种物质代谢在进行,需要彼此间相互协调,以确保细胞乃至机体的正常功能。
事实上,人类摄取的食物,无论动物性或植物性食物均同时含有蛋白质、脂类、糖类、水、无机盐及维生素等,从消化吸收开始、经过中间代谢、到排泄,这些物质的代谢都是同时进行的,且互有联系、相互依存。
如糖、脂在体内氧化释出的能量可用于核酸、蛋白质等的生物合成,各种酶蛋白合成后又催化糖、脂、蛋白质等物质代谢按机体的需要顺利进行。