八年级上册数学单元测试题EWG 第2章 特殊三角形
- 格式:doc
- 大小:362.50 KB
- 文档页数:12
第2章特殊三角形一、选择题1.若等腰三角形的顶角为40°,则它的底角度数为()A.40° B.50° C.60° D.70°2.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为()A.35° B.45° C.55° D.60°3.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35° B.40° C.45° D.50°4.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15° B.17.5°C.20° D.22.5°5.若一个等腰三角形的两边长分别是2和5,则它的周长为()A.12 B.9 C.12或9 D.9或76.若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9 B.12 C.7或9 D.9或127.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或128.如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为()A.80° B.90° C.100°D.105°9.如图,△ABC、△ADE中,C、D两点分别在AE、AB上,BC与DE相交于F点.若BD=CD=CE,∠ADC+∠ACD=114°,则∠DFC的度数为何?()A.114 B.123 C.132 D.14710.已知等腰△ABC的两边长分别为2和3,则等腰△ABC的周长为()A.7 B.8 C.6或8 D.7或811.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或1712.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30° B.40° C.45° D.60°13.已知等腰三角形△ABC中,腰AB=8,底BC=5,则这个三角形的周长为()A.21 B.20 C.19 D.1814.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则∠ABD=()A.30° B.45° C.60° D.90°15.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40° B.45° C.60° D.70°16.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或1717.如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD=()A.36° B.54° C.18° D.64°18.如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为()A.36° B.60° C.72° D.108°19.如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()A.150°B.160°C.130°D.60°20.在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为()A.B.C.D.二、填空题21.等腰三角形的一个外角是60°,则它的顶角的度数是______.22.如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=______度.23.如图,a ∥b ,∠ABC=50°,若△ABC 是等腰三角形,则∠α=______°(填一个即可)24.一个等腰三角形的两边长分别是2cm 、5cm ,则它的周长为______cm .25.若等腰三角形的两条边长分别为7cm 和14cm ,则它的周长为______cm .26.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是______.27.如图,∠BOC=9°,点A 在OB 上,且OA=1,按下列要求画图:以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1;再以A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2;再以A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3;…这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n=______.第2章 特殊三角形参考答案一、选择题1.D ;2.C ;3.A ;4.A ;5.A ;6.B ;7.C ;8.B ;9.B ;10.D ;11.A ;12.B ;13.A ;14.B ;15.A ;16.D ;17.B ;18.C ;19.A ;20.A ;二、填空题21.120°;22.52;23.130;24.12;25.35;26.110°或70°;27.9;。
八年级上册数学单元测试题第2章特殊三角形一、选择题1.如图,在△ABC中,∠BAC=90°,AD⊥BC,则图中与∠B相等的角是()A.∠BAD B.∠C C.∠CAD D.没有这样的角答案:C2.已知等腰三角形的顶角为l00°,则该三角形两腰的垂直平分线的交点位于()A.三角形内部B.三角形的边上C.三角形外部D.无法确定答案:C3.等腰三角形的周长为l8 cm,其中一边长为8 cm,那么它的底边长为()A.2 cm B.8 cm C.2 cm或8 cm D.以上都不对答案:C4.等腰三角形一个角为 40°,则它的顶角是()A.40° B.70° C. 100°D. 40°或 100°答案:D5.如果△ABC是等腰三角形,那么∠A,∠B的度数可以是()A.∠A=60°,∠B=50°B.∠A=70°,∠B=40°C.∠A=80°,∠B=60°D.∠A=90°,∠B=30°答案:B6.如图,在下列三角形中,若AB=AC,则不能被一条直线分成两个小等腰三角形的是()A.B.C.D.答案:B7.如图,在等边△ABC中,点D是边BC上的点,DE⊥AC于E,则∠CDE的度数为()A.90°B.60°C.45°D.30°答案:D8.要组成一个等边三角形,三条线段的长度可取()A.1,2,3 B.4,6,11 C.1,1,5 D.3.5,3.5,3.5答案:D9.连结等边三角形各边的中点所得到的三角形是()A.等边三角形B.直角三角形C.非等边三角形D.无法确定答案:A10.如图,在△ABC中,∠BAC=90°,点D是AB的中点,BC=14 cm,则AD的长是()A.6 cm B.7 cm C.8 cm D.9 cm答案:B11.如图所示,在△ABC中,AB=AC,∠B=14∠BAC,AD⊥AB垂足为A,AD=1,则BD=()A.1 B C.2 D.3答案:C12.下列轴对称图形中,对称轴条数最少的是()A.等腰直角三角形B.长方形C.正方形D.圆答案:A13.满足下列条件的△ABC,不是直角三角形的是()A.222=-B.∠C=∠A一∠Bb a cC.∠A:∠B:∠C=3:4:5 D.a:b: c=12:13:5答案:C14.有四个三角形,分别满足下列条件:(1)一个内角的的度等于另两个内角的度数之和;(2)三个内角的度数之比为 3:4:5;(3)三边长之比为3:4:5;(4)三边长分别为 7、24、25. 其中直角三角形有()A. 1个B.2个C.3个D.4个答案:C15.下列图形中,一定是轴对称图形的是()A.直角三角形B.平行四边形C.梯形D.等腰三角形答案:D16.如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕A逆时针旋转后,能够与△ACP′重合,如果AP=3,那么2PP'等于()A.9 B.12 C.15 D.l8答案:D17.我们知道,等腰三角形是轴对称图形,下列说法中,正确的是()A.等腰三角形顶角的平分线所在的直线是它的对称轴B.等腰三角形底边上的中线所在的直线是它的对称轴C.等腰三角形底边上的高线所在的直线是它的对称轴D.以上都对答案:D18.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点0,过点O作EF∥BC,交AB于点E,交AC于点F,△ABC的周长是24cm ,BC=10cm,则△AEF的周长是()A.10 cm B.12cm C.14 cm D.34 cm答案:C19.下列说法错误的是()A.三个角都相等的三角形是等边三角形B.有两个角是60。
单元测试(二)特殊三角形题号一二三总分合分人复分人得分一.1.(泰安中考)下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是( C )A.1B.2C.3D.42.(荆门中考)已知一个等腰三角形的两边长分别2和4,则该等腰三角形的周长为( C )A.8或10B.8C.10D.6或123.下列说法中,正确的是( A )A.每个命题都有逆命题B.假命题的逆命题一定是假命题C.每个定理都有逆定理D.假命题没有逆命题4.如图,字母B所代表的正方形的面积是( C )A.12B.13C.144D.194第4题图第5题图第7题图第8题图5.(内江中考)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB 的延长线于点E,若∠E=35°,则∠BAC的度数为( A )A.40°B.45°C.60°D.70°6.下列说法中,正确的个数是( C )①斜边和一直角边对应相等的两个直角三角形全等;②有两边和它们的夹角对应相等的两个直角全角形全等;③一锐角和斜边对应相等的两个直角三角形全等;④两个锐角对应相等的两个直角三角形全等.A.1B.2C.3D.47.(萧山区期中)如图,已知△ABC是等边三角形,点D.E分别在A C.BC边上,且AD=CE,AE与BD交于点F,则∠AFD的度数为( A )A.60°B.45°C.75°D.70°8.如图,在△ABC中,∠ACB=90°,AC=40,CB=9,点M,N在AB上,且AM=AC,BN=BC,则MN的长为( C )A.6B.7C.8D.99.如图,在△ABC中,∠B=∠C,点D在BC上,∠BAD=50°,AD=AE,则∠EDC的度数为( B )A.15°B.25°C.30°D.50°第9题图第10题图10.(下城区校级期中)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D.E为BC边上的两点,且∠DAE=45°,连结EF.BF,则下列结论:①△AED≌△AEF;②△AED为等腰三角形;③BE+DC>DE;④BE2+DC2=DE2,其中正确的有( B )A.4个B.3个C.2个D.1个二.填空题(每小题4分,共24分)11.若等腰三角形的顶角为50°,则它的一个底角为65°.12.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为96.13.如图,已知∠BAC=130°,AB=AC,AC的垂直平分线交BC于点D,则∠ADB=50°.14.小明想测量教学楼的高度.他用一根绳子从楼顶垂下,发现绳子垂到地面后还多了2 m,当他把绳子的下端拉开6 m后,发现绳子下端刚好接触地面,则教学楼的高为8m.15.(萧山区期中)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=9.16.做如下操作:在等腰△ABC中,AB=AC,AD平分∠BAC,交BC于点D.将△ABD作关于直线AD的轴对称变换,所得的像与△ACD重合.对于下列结论:①在同一个三角形中,等角对等边;②在同一个三角形中,等边对等角;③等腰三角形的顶角平分线.底边上的中线和高互相重合.由上述操作可得出的是②③(将正确结论的序号都填上).三.解答题(共66分)17.(6分)如图,请思考怎样把每个三角形纸片只剪一次,将它分成两个等腰三角形,试一试,在图中画出裁剪的痕迹.(1)(2)解:(1)如图所示:或(2)如图所示:18.(8分)(杭州中考)如图,在△ABC 中,AB =AC ,点E ,F 分别在AB ,AC 上,AE =AF ,BF 与CE 相交于点P .求证:PB =PC .并直接写出图中其他相等的线段.证明:在△ABF 和△ACE 中,⎩⎨⎧AB =AC ,∠BAF =∠CAE ,AF =AE ,∴△ABF ≌△ACE (SAS ). ∴∠ABF =∠ACE . ∵AB =AC ,∴∠ABC =∠ACB .∴∠ABC -∠ABF =∠ACB -∠ACE ,即∠PBC =∠PCB .∴PB =PC .图中相等的线段还有:PE =PF ,BF =CE ,BE =CF .19.(8分)(丽水中考)如图,已知△ABC ,∠C =90°,AC <BC ,D 为BC 上一点,且到A ,B 两点的距离相等.(1)用直尺和圆规,作出点D 的位置(不写作法,保留作图痕迹); (2)连结AD ,若∠B =37°,求∠CAD 的度数.解:(1)点D 的位置如图所示(D 为AB 中垂线与BC 的交点). (2)∵在Rt △ABC 中,∠B =37°, ∴∠CAB =53°.∵AD =BD ,∴∠BAD =∠B =37°.∴∠CAD =53°-37°=16°.20.(10分)如图,在等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,B ,P ,Q 三点在一条直线上,且∠ABP =∠ACQ ,BP =CQ ,问△APQ 是什么形状的三角形?试证明你的结论.解:△APQ 是等边三角形.证明: ∵△ABC 为等边三角形, ∴AB =AC .又∵∠ABP =∠ACQ ,BP =CQ , ∴△ABP ≌△ACQ (SAS ).∴AP =AQ ,∠BAP =∠CAQ .∵∠BAC =∠BAP +∠P AC =60°,∴∠P AQ =∠CAQ +∠P AC =∠BAP +∠P AC =∠BAC =60°. ∴△APQ 是等边三角形.21.(10分)如图,AB =AC ,∠BAC =90°,BD ⊥AE 于D ,CE ⊥AE 于E ,且BD >CE .求证:BD =EC +ED .证明:∵∠BAC =90°,CE ⊥AE ,BD ⊥AE ,∴∠ABD +∠BAD =90°,∠BAD +∠EAC =90°,∠BDA =∠E =90°. ∴∠ABD =∠EAC .在△ABD 和△CAE 中,⎩⎨⎧∠ABD =∠EAC ,∠BDA =∠E ,AB =AC ,∴△ABD ≌△CAE (AAS ). ∴BD =AE ,AD =EC . ∵AE =AD +DE ,∴BD =EC +ED .22.(12分)如图1所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图2所示.已知展开图中每个正方形的边长为1.(1)求在该展开图中可画出最长线段的长度?这样的线段可画几条?(2)试比较立体图中∠BAC 与平面展开图中∠B ′A ′C ′的大小关系? 解:(1)在平面展开图中可画出最长的线段长为10.如图2中的A ′C ′,在Rt △A ′C ′D ′中,∵C ′D ′=1,A ′D ′=3,由勾股定理得A ′C ′=C′D′2+A′D′2=1+9=10.这样的线段可画4条.(2)∵立体图中∠BAC 为等腰直角三角形的一锐角,∴∠BAC =45°.在平面展开图中,连结B′C′,由勾股定理可得A′B′=5,B′C′= 5.又∵A′B′2+B′C′2=A′C′2,由勾股定理的逆定理可得△A′B′C′为直角三角形.又∵A′B′=B′C′,∴△A′B′C′为等腰直角三角形.∴∠B′A′C′=45°.∴∠BAC与∠B′A′C′相等.23.(12分)在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,AD=AE,∠DAE=∠BAC,连结CE.(1)如图1,当点D在线段BC上时,若∠BAC=90°,则∠BCE=90°.(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由.②当点D在直线BC上移动时,α,β之间有怎样的数量关系?请直接写出你的结论.图1图2解:(2)①α+β=180°.理由:∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△ABD≌△ACE.∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB=∠BCE=β.∵α+∠B+∠ACB=180°,∴α+β=180°.②当点D在射线BC上时,α+β=180°;当点D在CB延长线上时,α=β.第二章特殊三角形单元测试一.单选题(共10题;共30分)1.已知,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.35海里D.40海里2.如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为()A.(1,2)B.(2,2)C.(3,2)D.(4,2)3.如图,Rt△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,DE⊥AB于E,若BC=9,CD=3,则△ADB的面积是()A.27B.18C.18D.94.如图所示,∠C=∠D=90°添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是()A.AC=ADB.AB=ABC.∠ABC=∠ABDD.∠BAC=∠BAD5.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()A.75°B.60°C.45°D.30°6.对于命题“如果a>b>0,那么a2>b2 . ”用反证法证明,应假设()A.a2>b2B.a2<b2C.a2≥b2D.a2≤b27.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A.B在围成的正方体中的距离是()A.0B.1C.D.8.用反证法证明命题:“如图,如果AB∥CD,AB∥EF,那么CD∥EF”,证明的第一个步骤是()A.假定CD∥EFB.已知AB∥EFC.假定CD不平行于EFD.假定AB不平行于EF9.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.10.在△ABC中,∠B=90°,若BC=a,AC=b,AB=c,则下列等式中成立的是()A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.c2﹣a2=b2二.填空题(共8题;共24分)11.用反证法证明“一个三角形中至多有一个钝角”时,应假设 ________12.在△ABC和△MNP中,已知AB=MN,∠A=∠M=90°,要使△ABC≌△MNP,应添加的条件是 ________ . (只添加一个)13.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是________14.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行________ 米.15.如图是一段楼梯,高BC是3米,斜边AC是5米,如果在楼梯上铺地毯,那么至少需要地毯________米.16.如图所示的一块地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为________ m2 .17.在如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形的边长为7cm,则正方形a,b,c,d的面积之和是________ cm2 .18.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和38,则△EDF的面积为________.三.解答题(共5题;共40分)19.已知直线m.n是相交线,且直线l1⊥m,直线l2⊥n.求证:直线l1与l2必相交.20.在一个直角三角形中,如果有一个锐角为30度,且斜边与较小直角边的和为18cm,求斜边的长.21.如图,在B港有甲.乙两艘渔船,若甲船沿北偏东30°的方向以每小时8海里速度前进,乙船沿南偏东60°的方向以每小时6海里速度前进,两小时后,甲船到M岛,乙船到N岛,求M岛到N岛的距离.22.如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于多少cm?23.如图所示,△ABC中,D为BC边上一点,若AB=13cm,BD=5cm,AD=12cm,BC=14cm,求AC的长.四.综合题(共1题;共6分)24.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,AB=16,BC=12.(1)△ABD与△CBD的面积之比为________;(2)若△ABC的面积为70,求DE的长.答案解析一.单选题1.【答案】D【考点】勾股定理的应用【解析】【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,得两条船分别走了32,24.再根据勾股定理,即可求得两条船之间的距离。
第2章特殊三角形一、选择题1.若等腰三角形的顶角为40°,则它的底角度数为()A.40° B.50° C.60° D.70°2.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为()A.35° B.45° C.55° D.60°3.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35° B.40° C.45° D.50°4.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15° B.17.5°C.20° D.22.5°5.若一个等腰三角形的两边长分别是2和5,则它的周长为()A.12 B.9 C.12或9 D.9或76.若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9 B.12 C.7或9 D.9或127.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或128.如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为()A.80° B.90° C.100°D.105°9.如图,△ABC、△ADE中,C、D两点分别在AE、AB上,BC与DE相交于F点.若BD=CD=CE,∠ADC+∠ACD=114°,则∠DFC的度数为何?()A.114 B.123 C.132 D.14710.已知等腰△ABC的两边长分别为2和3,则等腰△ABC的周长为()A.7 B.8 C.6或8 D.7或811.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或1712.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30° B.40° C.45° D.60°13.已知等腰三角形△ABC中,腰AB=8,底BC=5,则这个三角形的周长为()A.21 B.20 C.19 D.1814.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则∠ABD=()A.30° B.45° C.60° D.90°15.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40° B.45° C.60° D.70°16.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或1717.如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD=()A.36° B.54° C.18° D.64°18.如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为()A.36° B.60° C.72° D.108°19.如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()A.150°B.160°C.130°D.60°20.在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为()A .B .C .D .二、填空题21.等腰三角形的一个外角是60°,则它的顶角的度数是______.22.如图,△ABC 中,D 是BC 上一点,AC=AD=DB ,∠BAC=102°,则∠ADC=______度.23.如图,a ∥b ,∠ABC=50°,若△ABC 是等腰三角形,则∠α=______°(填一个即可)24.一个等腰三角形的两边长分别是2cm 、5cm ,则它的周长为______cm .25.若等腰三角形的两条边长分别为7cm 和14cm ,则它的周长为______cm .26.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是______.27.如图,∠BOC=9°,点A 在OB 上,且OA=1,按下列要求画图:以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1;再以A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2;再以A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3;…这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n=______.第2章特殊三角形参考答案一、选择题1.D;2.C;3.A;4.A;5.A;6.B;7.C;8.B;9.B;10.D;11.A;12.B;13.A;14.B;15.A;16.D;17.B;18.C;19.A;20.A;二、填空题21.120°;22.52;23.130;24.12;25.35;26.110°或70°;27.9;。
第二章特殊三角形单元测试一•单选题(共10题;共30分)1•已知,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.35海里D.40海里2•如图,在平面直角坐标系中,点P (- 1, 2)关于直线x=1的对称点的坐标为()・■ ■ ■ 1IX=12-10 1 ?A. (1, 2)B. (2, 2)C. (3, 2)D. ( 4, 2) 3•如图,Rt A ABC 中,/ C=90 ° / B=30 ° AD 平分/ CAB, DE 丄AB 于E,若BC=9, CD=3,则厶ADB 的面积是( )A.27B.18C.18D.94•如图所示,/ C= / D=90。
添加一个条件,可使用HL”判定Rt A ABC与Rt^ABD全等•以下给出的条件适合的是()A.AC=ADB.AB=ABC./ ABC= / ABDD. / BAC= / BAD5.在一个直角三角形中,有一个锐角等于 60 °则另一个锐角的度数是(A.75 °B.60 °C.45 °D.30 °6.对于命题 如果a >b > 0,那么a 2> b 2 . ”用反证法证明,应假设()A. a 2> b 2B.a 2 < b 2C.a 2 纬2D.a 2<b 27.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点 A. B 在围成的正方体中的距离是(8. 用反证法证明命题:如图,如果 AB // CD , AB // EF ,那么CD // EF ”证明的第一个步骤是( )AB C D EF9. 如图,已知 OP 平分/ AOB ,/ AOB=60 ° CP=2 , CP // OA , PD 丄OA 于点D , PE 丄OB 于点E.如果点MA.09 in :A.假定 CD // EFB.已知 AB // EFC.假定CD 不平行于EFD.假定AB 不平行于EF是OP 的中点,贝U DM 的长是(A.210.在厶 ABC 中,/ B=90° 若 BC=a ,AC=b , AB=c ,则下列等式中成立的是(A. a 2+b 2=c 2B.b 2+c 2=a 2C.a 2+c 2=b 2D.c 2- a 2=b 2C.)填空题(共8题;共24 分)11.用反证法证明一个三角形中至多有一个钝角时,应假设_________为7cm ,则正方形a , b , c , d 的面积之和是cm 2 .12. 在厶ABC 和厶MNP 中,已知 AB=MN ,/ A= / M=90 °要使△ ABC ◎△ MNP ,应添加的条件是 __________ .(只添加一个)13•如图,将一根长 24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形茶杯中,设筷子露在杯子外面的长为acm (茶杯装满水),则 a 的取值范围是 __________14•如图,有两棵树,一棵高 12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行 _________ 米•15•如图是一段楼梯,高 BC 是3米,斜边AC 是5米,如果在楼梯上铺地毯,那么至少需要地毯 _______________m 2C17.在如图所示的图形中, 所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形的边长16.如图所示的一块地,已知/BC=20m ,则这块地的面积为18•如图,AD 是厶ABC 的角平分线,DF 丄AB ,垂足为F , DE=DG , △ ADG 和厶AED 的面积分别为 60和38,则厶EDF 的面积为 _________三•解答题(共5题;共40 分)19.已知直线 m.n 是相交线,且直线l i 丄m ,直线|2丄n.求证:直线l i 与12必相交.30度,且斜边与较小直角边的和为 18cm ,求斜边的长21.如图,在B 港有甲.乙两艘渔船,若甲船沿北偏东 30的方向以每小时 8海里速度前进,乙船沿南偏东60。
八年级上册数学单元测试题第2章特殊三角形一、选择题1.在全等三角形的判定方法中,一般三角形不具有,而直角三形形具有的判定方法是()A.SSS B.SAS C.ASA D.HL答案:D2.下列图形:①线段;②角;③数字7;④圆;⑤等腰三角形;⑥直角三角形.其中轴对称图形是()A.①②③④B.①③④⑤⑥C.①②④⑤D.①②⑤答案:C3.如果△ABC是等腰三角形,那么它的边长可以是()A.AB=AC=5,BC=11 B.AB=AC=4,BC=8 C.AB=AC=4,BC=5 D.AB=AC=6,BC=12答案:C4.我们知道,等腰三角形是轴对称图形,下列说法中,正确的是()A.等腰三角形顶角的平分线所在的直线是它的对称轴B.等腰三角形底边上的中线所在的直线是它的对称轴C.等腰三角形底边上的高线所在的直线是它的对称轴D.以上都对答案:D5.在△ABC 中,AB = BC,∠A =80°,则∠B 的度数是()A.100°B.80°C. 20 D. 80°或 20°答案:C6.已知一个三角形的周长为39 cm,一边长为12 cm,另一边长为l5 cm,则该三角形是()A.直角三角形B.钝角三角形C.等腰三角形D.无法确定答案:C7.如图,图中等腰三角形的个数为()A.2个B.3个C.4个D.5个答案:D8.根据下列条件,能判断△ABC是等腰三角形的是()A.∠A=50°,∠B=70°B.∠A=48°,∠B=84°C.∠A=30°,∠B=90°D.∠A=80°,∠B=60°答案:B9.下列说法错误的是()A.三个角都相等的三角形是等边三角形B.有两个角是60°的三角形是等边三角形C.有一个角是60°的等腰三角形是等边三角形D.有两个角相等的等腰三角形是等边三角形答案:D10.把等边三角形ABC一边AB延长一倍到D,则∠ADC是()A.等腰三角形B.直角三角形C.等边三角形D.不能确定答案:B11.如图,EA⊥AB,BC⊥AB,AB=AE=2BC,D为AB的中点,有以下判断:(1)DE=AC;(2)DE⊥AC;(3)∠CAB=30°;(4)∠EAF=∠ADE,其中不正确结论的个数有()A.0个B.l个C.2个D.以上选项均错误答案:B12.在下列几个说法中:①有一边相等的两个等腰三角形全等;②有一边相等的两个直角三角形全等;③有一边和锐角对应相等的两个直角形全等;④有一边相等的两个等腰直角三角形全等;⑤有两直角边对应相等的两个直角三角形全等.其中正确的个数是()A.1个B.2个C.3个D.4个答案:B13.将直角三角形的三边都扩大3倍后,得到的三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.无法确定答案:A14.如图,在ΔABC中,AC=DC=DB,∠ACD=100°,则∠B等于()A.50°B.40°C.25°D.20°答案:D15.下列条件中,不能判定两个直角三角形全等的是()A.一条直角边和一个锐角分别相等B.两条直角边对应相等C.斜边和一条直角边对应相等D.斜边和一个锐角对应相等答案:A16.如图,在等边△ABC中,BD、CE分别是AC、AB上的高,它们相交于点0,则∠BOC等于()A.100°B.ll0°C.120°D.130°答案:C17.我们知道,等腰三角形是轴对称图形,下列说法中,正确的是()A.等腰三角形顶角的平分线所在的直线是它的对称轴B.等腰三角形底边上的中线所在的直线是它的对称轴C.等腰三角形底边上的高线所在的直线是它的对称轴D.以上都对答案:D18.三角形的三边长a、b、c满足等式22+-=,则此三角形是()a b c ab()2A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形答案:B19.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GHC.AB、CD、GH D.AB、CD、EF答案:B20.如图,△ABC 中,AB=AC ,过AC 上一点作DE ⊥AC ,EF ⊥BC ,若∠BDE=140°,则∠DEF= ( )A .55°B .60C .65°D .70°答案:C21.在△ABC 中,∠A :∠B :∠C=1:2:3,CD ⊥AB 于D ,AB=a ,则DB 等于( )A .2a B .3a C .4a D .以上结果都不对 答案:C 22.若直角三角形的一条直角边长为 5,斜边上的中线长为 6.5,则另一条直角边长等于( )A . 3B .12C . 7D . 4答案:B23.如图 ,在 Rt △ABC 中,∠B = 90°,ED 垂直平分AC ,交AC 边于点D ,交BC 边于E. ∠C= 35°,则∠BAE 为( )A . 10°B .15°C .20°D .25°答案:C24.一个三角形的周长为30cm ,且其中两条边长都等于第三条边长的2倍,那么这个三角形的最短边长为( )A . 4cmB . 5cmC . 6cmD .10cm答案:C25.如图,点A 的坐标是(2,0),若点B在y轴上,且△ABO是等腰三角形,则点B 的坐标是()A.(-2,0)B.(0,-2)C.(0,2)D.(0,-2)或(0,2)答案:D26.如图所示,在△ABC中,AB=AC,∠B=14∠BAC,AD⊥AB垂足为A,AD=1,则BD=()A.1 B C.2 D.3答案:C二、填空题27.如图,在△ABC中,AB=BC=2,∠ABC=900,D是BC的中点,且它关于AC的对称点是D′,则BD′= .解析:答案:528.在△ABC中,∠A=48°,∠B=66°,AB=2.7 cm,则AC= cm.解析:2.729.如图,∠A=36°,∠DBC=36°,∠C=72°,则图中的等腰三角形分别是.解析:△ABD,△CBD,△ABC30.正三角形是轴对称图形,对称轴有条.解析:331.如图所示,在Rt△ABC中,∠ACB=90°,且CD⊥AB于点D.(1)若∠B=50°,则∠A= ;(2)若∠B—∠A=50°,则∠A= .解析:(1)40°;(2)20°32.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7 cm ,则正方形A、B、C、D的面积的和为 cm2.解析:4933.等腰三角形的周长是l0,腰比底边长2,则腰长为.解析:434.如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C= .解析:25°35.已知等腰三角形的两边长x、y满足2+-++-=,且底边比腰长,则7(4222)0x y x y它的一腰上的高于 .36.在Rt△ABC中,∠C=Rt∠,∠A=3∠B+10°,则∠B= .解析:20°37.现用火柴棒摆一个直角三角形,两直角边分别用了7根、24根长度相同的火柴棒,则斜边需要用根相同的火柴棒.解析:2538.如图是一个长方形公园,如果要从A景点走到B景点,至少要走米.39.在△ABC 中,AB = AC,∠A 的外角等于 150°,则∠B的外角等于 .解析:105°40.在△ABC中,∠A = 60°,若要使它为等边三角形,则需补充条件: (只需写出一个条件).解析:答案不唯一,如∠B=60°41.如图,AB⊥BC,BC⊥CD,当时,Rt△ABC≌Rt△DCB(只需写出一个条件).解析:答案不唯一,如AB=CD42.如图,在△ABC中,AD⊥BC于D,AD与BE相交于H,且BH=AC,DH=DC.那么∠ABC=度.解析:45三、解答题43.如图,在△ABC中,AB =AC,D 为 BC边上的一点,∠BAD = ∠CAD,BD = 6cm,求BC的长.解析:∵∠BAD=∠CAD ,∴AD 是∠BAC 的平分线.∵AB=AC ,∴△ABC 是等腰三角形.∴AD 是△ABC 的BC 边上的中线,∴BD=CD=12BC . ∵BD=6cm ,∴BC=12(cm)44..有一块菜地,地形如图,试求它的面积s(单位:m).解析:24m 245.仅用一块没有刻度的直角三角板能画出任意角的平分线吗?(1)小明想出了这样的方法:如图所示,先将三角板的一个顶点和角的顶点0重合,一条直角边与OA 重合,沿另一条直角边画出直线1l ,再将三角板的同一顶点与0重合,同一条直角边与0B 重合,又沿另一条直角边画出直线2l ,1l 与2l 交于点P ,连结OP ,则0P 为∠AOB 的平分线,你认为小明的方法正确吗?为什么?(2)你还有别的方法吗?请叙述过程并说明理由.解析:(1)正确,理由略;(2)略46.如图所示,正方形ABCD中,E是AD的中点,点F在DC上且DF=14DC,试判断BE与EF的关系,并作出说明.解析:BE⊥EF.说明BE2+EP2=BF247.一个寻宝探险小队,从A处出发探寻宝藏,他们向东行走4 km到达C点,然后又向正北行走2.5 km到达D点,接着他们又向正东继续行走2 km到达E点,最后他们又向正北前进了5.5 km,才找到了宝藏,你能准确地求出宝藏藏匿点到出发点的距离吗?解析:10 km48.如图,Rt△ABC中,∠ACB=90°,D是AB的中点,过点D作DE⊥BC于E点,F 是BD的中点,连结EF.说明:CD=2EF.解析:说明EF=12BD=12CD49.如图,P、Q是△ABC边BC上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.解析:120°50.如图,在等边△ABC中,D、E分别是AB、AC上的一点,AD=CE,CD、BE交于点F.(1)试说明∠CBE=∠ACD;(2)求∠CFE的度数.解析:(1)说明△ACD≌△CBE;(2)60°51.如图,在△ABC中,∠BAC=60°,AE是△ABC中与∠BAC相邻的外角的平分线,且AE∥BC,则△ABC是等边三角形吗?为什么?解析:△ABC是等边三角形.说明三个内角都是60°52.如图,△ABC 中,AB=AC,D、E、F分别在 AB、BC,AC上,且BD=CE,∠DEF=∠B,图中是否存在和△BDE全等的三角形?说明理由.解析:△BDE≌△CEF(ASA)53.如图,在△ABC 中,AB=AC,若AD∥BC,则 AD 平分∠C,请说明理由.解析:说明∠l=∠254.如图,已知∠1=∠2,∠3=∠4,说明:△ABC是等腰三角形.解析:说明△ABD≌△△ACD55.在如图的网格上,找出4个格点(小方格的顶点),使每一个格点与A、B两点构造等腰三角形,并画出这4个等腰三角形.解析:略。
《第2章特殊三角形》一、选择题1.下列图形不是轴对称图形的是()A.线段B.等腰三角形C.角D.有一个内角为60°的直角三角形2.下列命题的逆命题正确的是()A.全等三角形的面积相等B.全等三角形的周长相等C.等腰三角形的两个底角相等D.直角都相等3.等腰三角形两边长为3和6,则周长为()A.12 B.15 C.12或15 D.无法确定4.如图,在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,点E、F、M、N是AD上的四点,则图中阴影部分的总面积是()A.6 B.8 C.4 D.125.有一个角是36°的等腰三角形,其它两个角的度数是()A.36°,108°B.36°,72°C.72°,72°D.36°,108°或72°,72°6.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D.若BC=4cm,BD=5cm,则点D到AB的距离是()A.5cm B.4cm C.3cm D.2cm7.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3 B.1,1,C.1,1,D.1,2,8.如图,△ABC的顶点都在正方形网格的格点上,若小方格的边长为1,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形9.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A 1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.6410.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,连结CE交AD于点F,连结BD交CE于点G,连结BE.下列结论中,正确的结论有()①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;=BD•CE;④S四边形BCDE⑤BC2+DE2=BE2+CD2.A.1个B.2个C.3个D.4个二、填空题11.命题“角平分线上的点到角的两边的距离相等”的逆命题是.12.如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,则BD= .13.如图,在Rt△ABC中,CD是斜边AB上的中线,若∠A=20°,则∠BDC= .14.如图,直线上有三个正方形a,b.c,若a,c的面积分别为5和12,则b的面积为.15.如图,在等边△ABC中,AB=6,D是BC的中点,将△ABD绕点A旋转后得到△ACE,那么线段DE的长度为.16.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于.17.如图,折叠长方形的一边AD,使点D落在BC边上的F点处,若AB=8cm,BC=10cm,则EC 长为.18.如图,在△ABC中,∠BAC=90°,AB=AC,AE是经过A点的一条直线,且B、C在AE的两侧,BD⊥AE于D,CE⊥AE于E,CE=2,BD=6,则DE的长为.19.如图,在Rt△ABC中,∠C=90°,AC=BC,将其绕点A逆时针旋转15°得到Rt△AB′C′,B′C′交AB于E,若图中阴影部分面积为,则B′E的长为.20.在Rt△ABC中,∠C=90°,BC=8cm,AC=4cm,在射线BC上一动点D,从点B出发,以厘米每秒的速度匀速运动,若点D运动t秒时,以A、D、B为顶点的三角形恰为等腰三角形,则所用时间t为秒.(结果可含根号).三、解答题(共50分)21.如图,在Rt△ABC中,∠B=90°,分别以点A、C为圆心,大于AC长为半径画弧,两弧相交于点M、N,连接MN,与AC、BC分别交于点D、E,连接AE.(1)求∠ADE;(直接写出结果)(2)当AB=3,AC=5时,求△ABE的周长.22.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.23.现在给出两个三角形,请你把图(1)分割成两个等腰三角形,把图(2)分割成三个等腰三角形.要求:在图(1)、(2)上分割:标出分割后的三角形的各内角的度数.24.如图,在△ABC中,D是BC边上一点,且BA=BD,∠DAC=∠B,∠C=50°.求∠BAC的度数.25.已知:如图,在△ABC中,AD是△ABC的高,作∠DCE=∠ACD,交AD的延长线于点E,点F是点C关于直线AE的对称点,连接AF.(1)求证:CE=AF;(2)若CD=1,AD=,且∠B=20°,求∠BAF的度数.26.在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连结CE.(1)如图1,当点D在线段BC上时,如果∠BAC=90°,则∠BCE= °.(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由.②当点D在直线BC上移动时,α,β之间有怎样的数量关系?请你在备用图上画出图形,并直接写出你的结论.《第2章特殊三角形》参考答案与试题解析一、选择题1.下列图形不是轴对称图形的是()A.线段B.等腰三角形C.角D.有一个内角为60°的直角三角形【考点】轴对称图形.【分析】根据轴对称图形的概念结合各图形的特点求解.【解答】解:A、是轴对称图形,不符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、不是轴对称图形,符合题意.故选:D.【点评】本题考查了中心对称图形的概念.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列命题的逆命题正确的是()A.全等三角形的面积相等B.全等三角形的周长相等C.等腰三角形的两个底角相等D.直角都相等【考点】命题与定理.【分析】先写出各命题的逆命题,然后根据全等三角形的判定、等腰三角形的判定定理和直角的定义分别对各逆命题进行判断.【解答】解:A、全等三角形的面积相等的逆命题为面积相等的三角形为全等三角形,所以A 选项错误;B、全等三角形的周长相等的逆命题为周长相等的三角形为全等三角形,所以B选项错误;C、等腰三角形的两个底角相等的逆命题为有两个角相等的三角形为等腰三角形,所以C选项正确;D、直角都相等的逆命题为相等的角为直角,所以D选项错误.故选C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.3.等腰三角形两边长为3和6,则周长为()A.12 B.15 C.12或15 D.无法确定【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为3和6,而没有明确腰是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:∵三角形中任意两边之和大于第三边∴当另一边为3时3+3=6不符,∴另一边必须为6,∴周长为3+6+6=15.故选B.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键4.如图,在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,点E、F、M、N是AD上的四点,则图中阴影部分的总面积是()A.6 B.8 C.4 D.12【考点】轴对称的性质;等腰三角形的性质;勾股定理.【分析】先根据等腰三角形的性质得出AD⊥BC,根据勾股定理求出AD的长,再根据同底等高的三角形面积相等可知S△EFC =S△EFB,S△MNC=S△MNB,故可得出S阴影=S△ABD,由此即可得出结论.【解答】解:∵在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,∴BD=BC=3,AD⊥BC,∴BD===4,∵同底等高的三角形面积相等,∴S△EFC =S△EFB,S△MNC=S△MNB,∴S阴影=S△ABD=BD•AD=×3×4=6.故选A.【点评】本题考查的是轴对称的性质,熟知同底等高的三角形面积相等是解答此题的关键.5.有一个角是36°的等腰三角形,其它两个角的度数是()A.36°,108°B.36°,72°C.72°,72°D.36°,108°或72°,72°【考点】等腰三角形的性质.【专题】分类讨论.【分析】因为等腰三角形的一个内角为36°,没明确是底角还是顶角,所以有两种情况,需要分类讨论.【解答】解:①当36°为顶角时,其它两角都为×(180°﹣36°)=72°;②当36°为底角时,其它两角分别为36°,108°.故选D.【点评】本题考查了等腰三角形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪个角是底角哪个角是顶角时,应分类讨论.6.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D.若BC=4cm,BD=5cm,则点D到AB的距离是()A.5cm B.4cm C.3cm D.2cm【考点】角平分线的性质;勾股定理.【分析】先根据勾股定理求出CD的长,再过D作DE⊥AB于E,由已知条件,根据角平分线上的点到角的两边的距离相等解答.【解答】解:∵Rt△BCD中,BC=4cm,BD=5cm,∴CD===3cm,过D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,DE⊥AB,∴DE=CD,∵CD=3cm,∴DE=3cm.故选C.【点评】本题主要考查角平分线的性质,根据题意作出辅助线是正确解答本题的关键.7.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3 B.1,1,C.1,1,D.1,2,【考点】解直角三角形.【专题】新定义.【分析】A、根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.【解答】解:A、∵1+2=3,不能构成三角形,故选项错误;B、∵12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是=,可知是顶角120°,底角30°的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选:D.【点评】考查了解直角三角形,涉及三角形三边关系,勾股定理的逆定理,等腰直角三角形的判定,“智慧三角形”的概念.8.如图,△ABC的顶点都在正方形网格的格点上,若小方格的边长为1,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形【考点】勾股定理的逆定理;勾股定理.【专题】网格型.【分析】先根据勾股定理求出△ABC各边的长,再根据勾股定理的逆定理判断出△ABC的形状即可.【解答】解:由图形可知:AB==2,AC==,BC==5,∵AB2+AC2=(2)2+()2=25,BC2=25,∴AB2+AC2=BC2,∴△ABC是直角三角形.故选B.【点评】本题考查的是勾股定理及其逆定理,比较简单.9.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A 1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A .6B .12C .32D .64【考点】等边三角形的性质;含30度角的直角三角形. 【专题】压轴题;规律型.【分析】根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及A 2B 2=2B 1A 2,得出A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2…进而得出答案. 【解答】解:∵△A 1B 1A 2是等边三角形, ∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°, ∴∠2=120°, ∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°, 又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°, ∵∠MON=∠1=30°, ∴OA 1=A 1B 1=1, ∴A 2B 1=1,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形, ∴∠11=∠10=60°,∠13=60°, ∵∠4=∠12=60°,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3, ∴∠1=∠6=∠7=30°,∠5=∠8=90°, ∴A 2B 2=2B 1A 2,B 3A 3=2B 2A 3, ∴A 3B 3=4B 1A 2=4, A 4B 4=8B 1A 2=8, A 5B 5=16B 1A 2=16,以此类推:A 6B 6=32B 1A 2=32.故选:C.【点评】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A 3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.10.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,连结CE交AD于点F,连结BD交CE于点G,连结BE.下列结论中,正确的结论有()①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④S四边形BCDE=BD•CE;⑤BC2+DE2=BE2+CD2.A.1个B.2个C.3个D.4个【考点】三角形综合题.【分析】根据等腰直角三角形的性质可得AB=AC,AD=AE,然后求出∠BAD=∠CAE,再利用“边角边”证明△ABD和△ACE全等,根据全等三角形对应边相等可得CE=BD,判断①正确;根据全等三角形对应角相等可得∠ABD=∠ACE,从而求出∠BCG+∠CBG=∠ACB+∠ABC=90°,再求出∠BGC=90°,从而得到BD⊥CE,根据四边形的面积判断出④正确;根据勾股定理表示出BC2+DE2,BE2+CD2,得到⑤正确;再求出AE∥CD时,∠ADC=90°,判断出②错误;∠AEC与∠BAE不一定相等判断出③错误.【解答】解:∵,△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∵∠BAD=∠BAC+∠CAD=90°+∠CAD,∠CAE=∠DAE+∠CAD=90°+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴CE=BD,故①正确;∠ABD=∠ACE,∴∠BCG+∠CBG=∠ACB+∠ABC=90°,在△BCG中,∠BGC=180°﹣(∠BCG+∠CBG)=180°﹣90°=90°,∴BD⊥CE,=BD•CE,故④正确;∴S四边形BCDE由勾股定理,在Rt△BCG中,BC2=BG2+CG2,在Rt△DEG中,DE2=DG2+EG2,∴BC2+DE2=BG2+CG2+DG2+EG2,在Rt△BGE中,BE2=BG2+EG2,在Rt△CDG中,CD2=CG2+DG2,∴BE2+CD2=BG2+CG2+DG2+EG2,∴BC2+DE2=BE2+CD2,故⑤正确;只有AE∥CD时,∠AEC=∠DCE,∠ADC=∠ADB+∠BDC=90°,无法说明AE∥CD,故②错误;∵△ABD≌△ACE,∴∠ADB=∠AEC,∵∠AEC与∠AEB相等无法证明,∴∠ADB=∠AEB不一定成立,故③错误;综上所述,正确的结论有①④⑤共3个.故选C【点评】此题是三角形综合题,主要考查了全等三角形的判定与性质,等腰直角三角形的性质,勾股定理的应用,对角线互相垂直的四边形的面积等于对角线乘积的一半的性质,熟记各性质是解题的关键.二、填空题11.命题“角平分线上的点到角的两边的距离相等”的逆命题是到角的两边的距离相等的是角平分线上的点.【考点】命题与定理.【分析】把一个命题的题设和结论互换即可得到其逆命题,“角平分线上的点到角的两边的距离相等”的条件是“到角两边距离相等的点”,结论是“角平分线上的点”.【解答】解:“角平分线上的点到角的两边的距离相等”的逆命题是“到角的两边的距离相等的是角平分线上的点”.故答案为:到角的两边的距离相等的是角平分线上的点.【点评】根据逆命题的定义来回答,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.12.如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,则BD= 3 .【考点】等腰三角形的性质.【专题】探究型.【分析】直接根据等腰三角形“三线合一”的性质进行解答即可.【解答】解:∵△ABC中,AB=AC,BC=6,AD⊥BC于D,∴BD=BC=×6=3.故答案为:3.【点评】本题考查的是等腰三角形的性质,即等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.13.如图,在Rt△ABC中,CD是斜边AB上的中线,若∠A=20°,则∠BDC= 40°.【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半,可得△ACD是等腰三角形,然后根据等边对等角以及三角形的外角的性质求解.【解答】解:∵D是斜边AB的中线,∴CD==AD,∴∠DCA=∠A=20°,∴∠BDC=∠DCA+∠A=20°+20°=40°.故答案是:40°.【点评】本题考查了直角三角形的性质:直角三角形斜边上的中线等于斜边的一半以及等腰三角形的性质,理解直角三角形的性质是关键.14.如图,直线上有三个正方形a,b.c,若a,c的面积分别为5和12,则b的面积为17 .【考点】全等三角形的判定与性质;勾股定理;正方形的性质.【分析】运用正方形边长相等,结合全等三角形和勾股定理来求解即可.【解答】解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,∠ABC=∠CED=90°,AC=CD,∴△ACB≌△DCE,∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即Sb =Sa+Sc=12+5=17.故答案为:17.【点评】此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.15.如图,在等边△ABC中,AB=6,D是BC的中点,将△ABD绕点A旋转后得到△ACE,那么线段DE的长度为3.【考点】旋转的性质;等边三角形的判定与性质.【专题】几何图形问题.【分析】首先,利用等边三角形的性质求得AD=3;然后根据旋转的性质、等边三角形的性质推知△ADE为等边三角形,则DE=AD.【解答】解:如图,∵在等边△ABC中,∠B=60°,AB=6,D是BC的中点,∴AD⊥BD,∠BAD=∠CAD=30°,∴AD=ABcos30°=6×=3.根据旋转的性质知,∠EAC=∠DAB=30°,AD=AE,∴∠DAE=∠EAC+∠CAD=60°,∴△ADE的等边三角形,∴DE=AD=3,即线段DE的长度为3.故答案为:3.【点评】本题考查了旋转的性质、等边三角形的性质.旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.16.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于8 .【考点】勾股定理;直角三角形斜边上的中线.【专题】计算题.【分析】由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=10;然后在直角△ACD 中,利用勾股定理来求线段CD的长度即可.【解答】解:如图,∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=AC=5,∴AC=10.在直角△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得CD===8.故答案是:8.【点评】本题考查了勾股定理,直角三角形斜边上的中线.利用直角三角形斜边上的中线等于斜边的一半求得AC的长度是解题的难点.17.如图,折叠长方形的一边AD,使点D落在BC边上的F点处,若AB=8cm,BC=10cm,则EC 长为3cm .【考点】翻折变换(折叠问题).【分析】如图,根据勾股定理求出BF的长;进而求出FC的长度;由题意得EF=DE;利用勾股定理列出关于EC的方程,解方程即可解决问题.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8cm;∠B=∠C=90°;由题意得:AF=AD=10cm,EF=DE=λcm,EC=(8﹣λ)cm;由勾股定理得:BF2=102﹣82,∴BF=6cm,∴CF=10﹣6=4cm;在△EFC中,由勾股定理得:λ2=42+(8﹣λ)2,解得:λ=5,EC=8﹣5=3cm.故答案为:3cm.【点评】主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答.18.如图,在△ABC中,∠BAC=90°,AB=AC,AE是经过A点的一条直线,且B、C在AE的两侧,BD⊥AE于D,CE⊥AE于E,CE=2,BD=6,则DE的长为 4 .【考点】全等三角形的判定与性质;等腰直角三角形.【分析】求出∠ADB=∠AEC,∠DBA=∠CAE,根据AAS证△ABD≌△CAE,推出BD=AE,AD=CE求出AE和AD即可.【解答】解:∵BD⊥AE,CE⊥AE,∠BAC=90°,∴∠ADB=∠AEC=∠BAC=90°,∴∠ABD+∠BAD=90°,∠BAD+∠CAE=90°,∴∠DBA=∠CAE,在△ABD和△CAE中,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵CE=2,BD=6,∴AE=6,AD=2,∴DE=AE﹣AD=4,故答案为:4.【点评】本题考查了全等三角形的性质和判定,等腰直角三角形,关键是求出AE=BD,CE=AD.19.如图,在Rt△ABC中,∠C=90°,AC=BC,将其绕点A逆时针旋转15°得到Rt△AB′C′,B′C′交AB于E,若图中阴影部分面积为,则B′E的长为2﹣2 .【考点】旋转的性质.【分析】求出∠C′AE=30°,推出AE=2C′E,AC′=C′E,根据阴影部分面积为得出×C′E×C′E=2,求出C′E=2,即可求出C′B′,即可求出答案.【解答】解:∵将Rt△ACB绕点A逆时针旋转15°得到Rt△AB′C′,∴△ACB≌△AC′B′,∴AC=AC′,CB=C′B′,∠CAB=∠C′AB′,∵在Rt△ABC中,∠C=90°,AC=BC,∴∠CAB=45°,∵∠CAC′=15°,∴∠C′AE=30°,∴AE=2C′E,AC′=C′E,∵阴影部分面积为,∴×C′E×C′E=2,C′E=2,∴AC=BC=C′B′=C′E=2,∴B′E=2﹣2,故答案为:2﹣2.【点评】本题考查了旋转的性质,含30度角的直角三角形性质,勾股定理,等腰三角形的性质的应用,主要考查学生的推理和计算能力.20.在Rt△ABC中,∠C=90°,BC=8cm,AC=4cm,在射线BC上一动点D,从点B出发,以厘米每秒的速度匀速运动,若点D运动t秒时,以A、D、B为顶点的三角形恰为等腰三角形,则所用时间t为秒.(结果可含根号).【考点】等腰三角形的判定.【专题】分类讨论.【分析】当△BCD为等腰三角形时应分当D是顶角顶点,当B是顶角顶点,当A是顶角的顶点三种情况进行讨论,利用勾股定理求得BD的长,从而求解.【解答】解:①如图1,当AD=BD时,在Rt△ACD中,根据勾股定理得到:AD2=AC2+CD2,即BD2=(8﹣BD)2+42,解得,BD=5(cm),则t==(秒);②如图2,当AB=BD时.在Rt△ABC中,根据勾股定理得到:AB===4,则t==4(秒);③如图3,当AD=AB时,BD=2BC=16,则t==(秒);综上所述,t的值可以是:;故答案是:【点评】本题考查了等腰三角形的判定.注意要分类讨论,以防漏解.三、解答题(共50分)21.如图,在Rt△ABC中,∠B=90°,分别以点A、C为圆心,大于AC长为半径画弧,两弧相交于点M、N,连接MN,与AC、BC分别交于点D、E,连接AE.(1)求∠ADE;(直接写出结果)(2)当AB=3,AC=5时,求△ABE的周长.【考点】作图—基本作图;线段垂直平分线的性质;勾股定理的应用.【分析】(1)根据题意可知MN是线段AC的垂直平分线,由此可得出结论;(2)先根据勾股定理求出BC的长,再根据线段垂直平分线的性质即可得出结论.【解答】解:(1)∵由题意可知MN是线段AC的垂直平分线,∴∠ADE=90°;(2)∵在Rt△ABC中,∠B=90°,AB=3,AC=5,∴BC==4,∵MN是线段AC的垂直平分线,∴AE=CE,∴△ABE的周长=AB+(AE+BE)=AB+BC=3+4=7.【点评】本题考查的是作图﹣基本作图,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.22.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.【考点】等边三角形的判定与性质;含30度角的直角三角形.【专题】几何图形问题.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.23.现在给出两个三角形,请你把图(1)分割成两个等腰三角形,把图(2)分割成三个等腰三角形.要求:在图(1)、(2)上分割:标出分割后的三角形的各内角的度数.【考点】作图—应用与设计作图.【分析】(1)将图中75°的角分成35°和40°的两个角,则可将图1分割成两个等腰三角形;(2)作其中一个底角的角平分线即可.【解答】解:如图所示:【点评】此题主要考查学生对等腰三角形的判定与性质的理解和掌握.主要利用两角相等来求证三角形是等腰三角形.因此作底角的平分线即可.24.如图,在△ABC中,D是BC边上一点,且BA=BD,∠DAC=∠B,∠C=50°.求∠BAC的度数.【考点】等腰三角形的性质.【分析】设∠DAC=x°,则∠B=2x°,∠BDA=∠C+∠DAC=50°+x°.根据等腰三角形的性质得到∠BAD=∠BDA=50°+x°,根据三角形的内角和列方程即可得到结论.【解答】解:设∠DAC=x°,则∠B=2x°,∠BDA=∠C+∠DAC=50°+x°.∵BD=BA,∴∠BAD=∠BDA=50°+x°,∵∠B+∠BAD+∠BDA=180°,即2x+50+x+50+x=180,解得x=20.∴∠BAD=∠BDA=50°+20°=70°,∴∠BAC=∠BAD+∠DAC=70°+20°=90°.【点评】本题考查了等腰三角形的性质,三角形的内角和,熟练掌握等腰三角形的性质是解题的关键.25.已知:如图,在△ABC中,AD是△ABC的高,作∠DCE=∠ACD,交AD的延长线于点E,点F是点C关于直线AE的对称点,连接AF.(1)求证:CE=AF;(2)若CD=1,AD=,且∠B=20°,求∠BAF的度数.【考点】勾股定理;轴对称的性质.【分析】(1)由于∠ADC=∠EDC=90°,∠DCE=∠ACD,根据等腰三角形的判定方法得到△ACE 为等腰三角形,则AC=CE,由点F是点C关于AE的对称点,根据对称的性质得到AD垂直平分FC,则AF=AC,则CE=AF;(2)在Rt△ACD中,根据勾股定理得到:AC==2,所以CD=AC,故∠DAC=30°;同理可得∠DAF=30°,所以∠BAF=90°﹣∠B﹣∠DAF=40°.【解答】(1)证明:∵AD是△ABC的高,∴∠ADC=∠EDC=90°,∠DCE=∠ACD,∴△ACE为等腰三角形,∴AC=CE,又∵点F是点C关于AE的对称点,∴AF=AC,∴CE=AF;(2)解:在Rt△ACD中,CD=1,AD=,根据勾股定理得到:AC==2,∴CD=AC,∴∠DAC=30°.同理可得∠DAF=30°,在Rt△ABD中,∠B=20°,∴∠BAF=90°﹣∠B﹣∠DAF=40°.【点评】本题考查了勾股定理,轴对称的性质.如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.26.(10分)在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连结CE.(1)如图1,当点D在线段BC上时,如果∠BAC=90°,则∠BCE= 90°°.(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由.②当点D在直线BC上移动时,α,β之间有怎样的数量关系?请你在备用图上画出图形,并直接写出你的结论.【考点】作图—复杂作图;全等三角形的判定与性质;等腰三角形的性质.【分析】(1)先用等式的性质得出∠CAE=∠BAD,进而得出△ABD≌△ACE,有∠B=∠ACE,最后用等式的性质即可得出结论;(2)①由(1)的结论即可得出α+β=180°;②同(1)的方法即可得出结论.【解答】解:(1)∵∠DAE=∠BAC,∠BAC=∠BAD+∠DAC=∠EAC+∠DAC;∴∠CAE=∠BAD;在△ABD和△ACE中,∴△ABD≌△ACE(SAS);∴∠B=∠ACE;∴∠BCE=∠BCA+∠ACE=∠BCA+∠B=180°﹣∠BAC=90°;故答案为90°;(2)①由(1)中可知β=180°﹣α,∴α、β存在的数量关系为α+β=180°;②当点D在射线BC上时,如图1,同(1)的方法即可得出,△ABD≌△ACE(SAS);∴∠ABD=∠ACE,∴β=∠BCE=∠ACB+∠ACE=∠ACB+∠ABD=180°﹣∠BAC=180°﹣α,∴α+β=180°;当点D在射线BC的反向延长线上时,如图2,同(1)的方法即可得出,△ABD≌△ACE(SAS);∴∠ABD=∠ACE,∴β=∠BCE=∠ACE﹣∠ACB=∠ABD﹣∠ACB=∠BAC=α,∴α=β.【点评】此题是作图﹣﹣﹣复杂作图,主要考查了等式的性质,全等三角形的判定,解本题的关键是得出△ABD≌△ACE.。
2022-2023学年浙教版八年级数学上册《第2章特殊三角形》单元综合测试题(附答案)一.选择题(共10小题,满分40分)1.下面说法错误的个数有()(1)全等三角形对应边上的中线相等.(2)有两条边对应相等的等腰直角三角形全等.(3)一条斜边对应相等的两个直角三角形全等.(4)两边及其一边上的高也对应相等的两个三角形全等.A.1个B.2个C.3个D.4个2.观察下面A,B,C,D四幅图,其中与如图成轴对称的是()A.B.C.D.3.如图,∠BAC=110°,若A,B关于直线MP对称,A,C关于直线NQ对称,则∠P AQ 的大小是()A.70°B.55°C.40°D.30°4.如图案分别表示“福”“禄”“寿”“喜”,其中不是轴对称图形的是()A.B.C.D.5.如图,分别以△ABC的边AB,AC所在直线为对称轴作△ABC的对称图形△ABD和△ACE,∠BAC=150°,线段BD与CE相交于点O,连接BE、ED、DC、OA.有如下结论:①∠EAD=90°;②∠BOE=60°;③OA平分∠BOC;④EA=ED;⑤BP=EQ.其中正确的结论个数是()A.4个B.3个C.2个D.1个6.如图,在△ABC中,AD是△ABC的角平分线,点E、F分别是AD、AB上的动点,若∠BAC=50°,当BE+EF的值最小时,∠AEB的度数为()A.105°B.115°C.120°D.130°7.如图,在△ABC中,AB=AC,以点B为圆心,BC的长为半径画弧交AC于点C、E,再分别以点C与点E为圆心,大于CE长的一半为半径画弧,两弧交于点F,连接BF交AC于点D,若∠A=50°,则∠CBD的大小是()A.25°B.40°C.50°D.65°8.已知射线OC平分∠AOB,点P、M、N分别在射线OC、OA、OB上,且PM=PN,PE ⊥OA于点E,若∠PNO=110°,则∠EPM的度数为()A.20°B.35°C.55°D.70°9.如图,△ABC中,AB=AC,∠B=40°,D为线段BC上一动点(不与点B,C重合),连接AD,作∠ADE=40°,DE交线段AC于E,以下四个结论:①∠CDE=∠BAD;②当D为BC中点时,DE⊥AC;③当△ADE为等腰三角形时,∠BAD=20°;④当∠BAD =30°时,BD=CE.其中正确的结论的个数是()A.1B.2C.3D.410.如图,等腰△ABC中,AB=AC,点D是BC边中点,则下列结论不正确的是()A.∠B=∠C B.AD⊥BC C.∠BAD=∠CAD D.AB=2BC二.填空题(共6小题,满分24分)11.如图,△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD和CE交于O,AO的延长线交BC于F,则图中全等的直角三角形有对.12.如图,在△ABC中,∠BAC=90°,AB=4,AC=3,点D是BC上一动点(点D与点B不重合),连接AD,作B关于直线AD的对称点E,当点E在BC的下方时,连接BE、CE,则CE的取值范围是;△BEC面积的最大值为.13.如图,△APT与△CPT关于直线PT对称,∠A=∠APT,延长AT交PC于点F,当∠A =°时,∠FTC=∠C.14.如图,已知AB=CB,要使四边形ABCD成为一个轴对称图形,还需添加一个条件,你添加的条件是.(只需写一个,不添加辅助线)15.如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的△ABC为格点三角形,在图中最多能画出个格点三角形与△ABC成轴对称.16.如图,∠A=∠C=90°,且AB=AC=4,D,E分别为射线AC和射线CF上两动点,且AD=CE,当BD+BE有最小值时,则△BDE的面积为.三.解答题(共7小题,满分56分)17.如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O.(1)求证:△ABC≌△DCB;(2)△OBC是何种三角形?证明你的结论.18.如图,直线l1∥l2,直线l3交直线l1于点B,交直线l2于点D,O是线段BD的中点.过点B作BA⊥l2于点A,过点D作DC⊥l1于点C,E是线段BD上一动点(不与点B,D 重合),点E关于直线AB,AD的对称点分别为P,Q,射线PO与射线QD相交于点N,连接PQ.(1)求证:点A是PQ的中点;(2)请判断线段QN与线段BD是否相等,并说明理由.19.如图,△ABC中,∠ABC=45°,点A关于直线BC的对称点为P,连接PB并延长.过点C作CD⊥AC,交射线PB于点D.(1)如图①,∠ACB为钝角时,补全图形,判断AC与CD的数量关系:;(2)如图②,∠ACB为锐角时,(1)中结论是否仍成立,并说明理由.20.如图,直线a⊥b,请你设计两个不同的轴对称图形,使a、b都是它的对称轴.21.如图,△ABC在正方形网格中,已知网格的单位长度为1,点A,B,C均在格点上,按要求回答下列问题:(1)分别写出点A,B,C的坐标;(2)求△ABC的面积;(3)请在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于y轴对称.22.在△ABC中,AB=AC,D是直线BC上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠BCE=β.(1)如图(1),点D在线段BC上移动时,①角α与β之间的数量关系是;②若线段BC=2,点A到直线BC的距离是3,则四边形ADCE周长的最小值是;(2)如图(2),点D在线段BC的延长线上移动时,①请问(1)中α与β之间的数量关系还成立吗?如果成立,请说明理由;②线段BC、DC、CE之间的数量是.23.如图,在△ABC中,AB=AC,∠A=2∠ABD,当△BDC是等腰三角形时,求:∠DBC 的度数.参考答案一.选择题(共10小题,满分40分)1.解:(1)全等三角形对应边上的中线相等.正确;(2)有两条边对应相等的等腰直角三角形一定全等.正确;(3)一条斜边对应相等的两个直角三角形不一定全等.错误;(4)两边及其一边上的高也对应相等的两个三角形一定全等.错误;故选:B.2.解:与已知图形成轴对称的图形是选项C:.故选:C.3.解:∵∠BAC=110°,∴∠B+∠C=70°,∵A,B关于直线MP对称,A,C关于直线NQ对称,又∵MP,NQ为AB,AC的垂直平分线,∴∠BAP=∠B,∠QAC=∠C,∴∠BAP+∠CAQ=70°,∴∠P AQ=∠BAC﹣∠BAP﹣∠CAQ=110°﹣70°=40°故选:C.4.解:第一个图形不是轴对称图形,第二、三、四个图形是轴对称图形,故选:A.5.解:∵△ABD和△ACE是△ABC的轴对称图形,∴∠BAD=∠CAE=∠BAC,AB=AE,AC=AD,∴∠EAD=3∠BAC﹣360°=3×150°﹣360°=90°,故①正确;∴∠BAE=∠CAD=(360°﹣90°﹣150°)=60°,由翻折的性质得,∠AEC=∠ABD=∠ABC,又∵∠EPO=∠BP A,∴∠BOE=∠BAE=60°,故②正确;∵△ACE≌△ADB,∴S△ACE=S△ADB,BD=CE,∴BD边上的高与CE边上的高相等,即点A到∠BOC两边的距离相等,∴OA平分∠BOC,故③正确;只有当AC=AB时,∠ADE=30°,才有EA=ED,故④错误;在△ABP和△AEQ中,∠ABD=∠AEC,AB=AE,∠BAE=60°,∠EAQ=90°,∴BP<EQ,故⑤错误;综上所述,结论正确的是①②③共3个.故选:B.6.解:过点B作BB′⊥AD于点G,交AC于点B′,过点B′作B′F′⊥AB于点F′,与AD交于点E′,连接BE′,如图,此时BE+EF最小.∵AD是△ABC的角平分线,∴∠BAD=∠B′AD=25°,∴∠AE′F′=65°,∵BB′⊥AD,∴∠AGB=∠AGB′=90°,∵AG=AG,∴△ABG≌△AB′G(ASA),∴BG=B′G,∠ABG=∠AB′G,∴AD垂直平分BB′,∴BE=BE′,∴∠E′B′G=∠E′BG,∵∠BAC=50°,∴∠AB′F′=40°,∴∠ABE=40°,∴∠BE′F′=50°,∴∠AE′B=115°.故选:B.7.解:∵AB=AC,∠A=50°,∴∠ACB=(180°﹣50°)÷2=65°,由题意可知,BC=BE,∴∠BEC=∠ACB=65°,∴∠CBE=180°﹣65°×2=50°,∴∠CBD=∠CBE=25°.故选:A.8.解:连接MN,∵射线OC平分∠AOB,PM=PN,∴OP⊥MN,∠MOP=∠NOP,∴∠MPO=∠NPO,在△MOP与△NOP中,,∴△MOP≌△NOP(ASA),∴∠OMP=∠PNO=110°,∴∠EPM=∠OMP﹣∠OEP=110°﹣90°=20°.故选:A.9.解:①∵AB=AC,∴∠B=∠C=40°,∴∠BAD=180°﹣40°﹣∠ADB,∠CDE=180°﹣40°﹣∠ADB,∴∠BAD=∠CDE;故①正确;②∵D为BC中点,AB=AC,∴AD⊥BC,∴∠ADC=90°,∴∠CDE=50°,∵∠C=40°,∴∠DEC=90°,∴DE⊥AC,故②正确;③∵∠C=40°,∴∠AED>40°,∴∠ADE≠∠AED,∵△ADE为等腰三角形,∴AE=DE,∴∠DAE=∠ADE=40°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=60°,或∵△ADE为等腰三角形,∴AD=DE,∴∠DAE=∠AED=70°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=30°,故③错误,④∵∠BAD=30°,∴∠CDE=30°,∴∠ADC=70°,∴∠CAD=180°﹣70°﹣40°=70°,∴∠DAC=∠ADC,∴CD=AC,∵AB=AC,∴CD=AB,∴△ABD≌△DCE(ASA),∴BD=CE;故④正确;故选:C.10.解:A.∵AB=AC,∴∠B=∠C,故A不符合题意;B.∵AB=AC,点D是BC边中点,∴AD⊥BC,故B不符合题意;C.∵AB=AC,点D是BC边中点,∴∠BAD=∠CAD,故C不符合题意;所以排除A,B,C,故选:D.二.填空题(共6小题,满分24分)11.解:∵BD⊥AC,CE⊥AB,∴∠ADB=∠AEC=90°,∵AC=AB,∵∠CAE=∠BAD,∴△AEC≌△ADB(AAS);∴CE=BD,∵AC=AB,∴∠CBE=∠BCD,∵∠BEC=∠CDB=90°,∴△BCE≌△CBD(AAS);∴BE=CD,∴AD=AE,∵AO=AO,∴Rt△AOD≌Rt△AOE(HL);∵∠DOC=∠EOB,∴△COD≌△BOE(AAS);∴OB=OC,∵AB=AC,∴CF=BF,AF⊥BC,∴△ACF≌△ABF(SSS),△COF≌△BOF(SSS),综上所述,共有6对全等的直角三角形.故答案是:6.12.解:∵B、E关于AD对称,∴AE=AB=4,则可知E点在以A点为圆心、AE为半径的圆上,如图,在Rt△ABC中,AB=4,AC=3,则BC=5,当E点与B点重合时,有CE最长,即为5;又∵B、E不重合,∴CE<5,当E点移动到F点时,使得A、C、F三点共线,此时CF最短,且为CF=AF﹣AC=4﹣3=l,即CE最短为l,即CE的取值范围为:1≤CE<5;当点E移动到使得AE⊥BC时,A点到BC的距离最短,则E点到BC的距离最大,则此时△BCE的面积最大,设AE交BC于点G点,利用面积可知AB×AC=BC×AG,∴AG=2.4,∵AE=AB=4,∴EG=4﹣2.4=1.6,∴△BCE的面积最大值为:1.6×5×=4,∴△BCE的面积的最大值为4;故答案为:1≤CE<5;4.13.解:∵△APT与△CPT关于直线PT对称,∴∠A=∠C,TA=TC,∠APT=∠CPT,∵∠A=∠APT,∴∠A=∠C=∠APT=∠CPT,∵∠FTC=∠C,∴∠AFP=∠C+∠FTC=2∠C=2∠A,∵∠A+∠APF+∠AFP=180°,∴5∠A=180°,∴∠A=36°,故答案为:36°.14.解:AD=CD,理由:在△ABD与△CBD中,,∴△ABD≌△CBD,∴四边形ABCD是一个轴对称图形,故答案为:AD=CD.15.解:如图,最多能画出6个格点三角形与△ABC成轴对称.故答案为:6.16.解:过点B作BE⊥CF于点N,∵∠A=∠C=90°,且AB=AC=4,∴四边形ACNB是正方形,∴AC=CN,∵AD=CE,∴CD=NE△BEN≌△NDC,∴BE=DN,延长BA到M.使得AM=AB,则B,M关于AC对称,∴BD=MD,∴BD+BE=MD+DN,最小时,M,N,D三点共线,此时D为AC的中点,△BDE的面积为:0.5×(2+4)×4﹣0.5×4×2﹣0.5×2×2=6.故答案为:6.三.解答题(共7小题,满分56分)17.证明:(1)在△ABC和△DCB中,∠A=∠D=90°AC=BD,BC为公共边,∴Rt△ABC≌Rt△DCB(HL);(2)△OBC是等腰三角形,∵Rt△ABC≌Rt△DCB,∴∠ACB=∠DBC,∴OB=OC,∴△OBC是等腰三角形.18.(1)证明:连接AE.∵点E关于直线AB,AD的对称点分别为P,Q,∴AP=AE,AQ=AE,∠1=∠2,∠3=∠4,∴AP=AQ,∵AB⊥l2,∴∠2+∠3=90°,∴∠1+∠2+∠3+∠4=180°,∴P,A,Q三点在同一条直线上,∴点A是PQ的中点.(2)解:结论QN=BD,理由如下:连接PB.∵点E关于直线AB,AD的对称点分别为P,Q,∴BP=BE,DQ=DE,∠5=∠6,∠7=∠8,∵l1∥l2,DC⊥l1,∴DC⊥l2,∴∠7+∠9=90°,∴∠8+∠10=90°,∴∠9=∠10,又∵AB⊥l2,DC⊥l2,∴AB∥CD,∴∠6=∠9,∴∠5+∠6=∠9+∠10,即∠OBP=∠ODN,∵O是线段BD的中点,∴OB=OD,又∠BOP=∠DON,在△BOP和△DON中,∴△BOP≌△DON(AAS),∴BP=DN,∴BE=DN,∴QN=DQ+DN=DE+BE=BD.19.解:(1)结论:AC=CD.理由:如图①中,设AB交CD于O,∵A,P关于BC对称,CA=CP,∴∠A=∠P,∠ABC=∠CBP=45°,∴∠ABP=∠ABD=90°,∵AC⊥CD,∴∠ACO=∠DBO=90°,∵∠AOC=∠DOB,∴∠D=∠A,∴∠D=∠P,∴CD=CP,∴AC=CD.故答案为:AC=CD.(2)(1)中结论不变.理由:如图②中,∵A,P关于BC对称,CA=CP,∴∠A=∠P,∠ABC=∠CBP=45°,∴∠ABP=∠ABD=90°,∵AC⊥CD,∴∠ACD=∠DBA=90°,∴∠ABD+∠ACD=180°,∴∠A+∠BDC=180°,∵∠CDP+∠BDC=180°,∴∠A=∠CDP∴∠CDP=∠P,∴CD=CP,∴AC=CD.20.解:如下图所示:(答案不唯一).21.解:(1)由图知,A(0,3)、B(﹣4,4)、C(﹣2,1);(2)△ABC的面积为3×4﹣×2×2﹣×1×4﹣×2×3=5,答:△ABC的面积为5;(3)如图所示,△A1B1C1即为所求.22.解:(1)①α+β=180°;理由如下:∵∠DAE=∠BAC,∴∠DAE﹣∠DAC=∠BAC﹣∠DAC∴∠CAE=∠BAD,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠ACB=180°,∴∠BAC+∠ACE+∠ACB=180°,∴∠BAC+∠BCE=180°,即α+β=180°,故答案为:α+β=180°;②由①知,△ABD≌△ACE,∴BD=CE,AD=AE,∴CD+CE=BD+CD=BC=2,当AD⊥BC时,AD最短,即四边形ADCE周长的值最小,∵点A到直线BC的距离是3,∴AD=AE=3,∴四边形ADCE周长的最小值是2+3+3=8,故答案为:8;(2)①成立,理由如下:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠ACD=∠ABD+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∴∠BAC+∠BCE=∠DCE+∠BCE=180°,即α+β=180°;②∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,∵BD=BC+CD,∴CE=BC+CD,故答案为:CE=BC+CD.23.解:∵AB=AC,∴∠ABC=∠C.①当BD=CD时,∠C=∠CBD<∠ABC,故不成立;②当BD=BC时,∠C=∠BDC=∠A+∠ABD,∵∠A+∠ABC+∠C=180°,∴∠A+∠A+∠ABD+∠A+∠ABD=180°,∴3∠A+2∠ABD=180°,4∠A=180°,∴∠A=45°,∴∠ABD=22.5°,∴∠ABC=(180°﹣45°)=67.5°,∴∠DBC=∠ABC﹣∠ACD=45°;③当CB=CD时,∠CBD=∠CDB=∠A+∠ABD,设∠ABD=x,∴∠A=2x,∴∠CBD=∠CDB=3x,∴∠ABC=∠C=4x,∵∠A+∠ABC+∠C=180°,∴2x+4x+4x=180°,∴x=18°,∴∠DBC=54°;综上所述:∠DBC的度数为54°或45°.。
八年级上册数学单元测试题第2章特殊三角形一、选择题1.在一个直角三角形中,有两边长为6和8,下列说法正确的是()A.第三边一定为10 B.三角形周长为25C.三角形面积为48 D.第三边可能为10答案:D2.下列轴对称图形中,对称轴条数最少的是()A.等腰直角三角形B.长方形C.正方形D.圆答案:A3.等腰三角形的周长为l8 cm,其中一边长为8 cm,那么它的底边长为()A.2 cm B.8 cm C.2 cm或8 cm D.以上都不对答案:C4.等腰三角形的“三线合一”是指()A.中线、高、角平分线互相重合B.腰上的中线、腰上的高、底角的平分线互相重合C.顶角的平分线、中线、高线三线互相重合D.顶角的平分线、底边上的高及底边上的中线三线互相重合答案:D5.等腰三角形的一个外角为140°,则顶角的度数为()A.40°B. 40°或 70°C.70°D. 40°或 100°答案:D6.如图,∠A =15°,AB=BC=CD=DE=EF,则∠DEF 等于()A.90°B.75°C.60°D.45°答案:C7.如果△ABC是等腰三角形,那么∠A,∠B的度数可以是()A.∠A=60°,∠B=50°B.∠A=70°,∠B=40°C.∠A=80°,∠B=60°D.∠A=90°,∠B=30°答案:B8.将两个完全一样的有一个角为30°的直角三角形拼成如图所示的图形,其中两条长直角边在同一直线上,则图中等腰三角形的个数有()A.4个B.3个C.2个D.1个答案:B9.如图,在等边△ABC中,点D是边BC上的点,DE⊥AC于E,则∠CDE的度数为()A.90°B.60°C.45°D.30°答案:D10.下列说法错误的是()A.三个角都相等的三角形是等边三角形B.有两个角是60°的三角形是等边三角形C.有一个角是60°的等腰三角形是等边三角形D.有两个角相等的等腰三角形是等边三角形答案:D11.如果△ABC是等腰三角形,那么它的边长可以是()A.AB=AC=5,BC=11 B.AB=AC=4,BC=8 C.AB=AC=4,BC=5 D.AB=AC=6,BC=12答案:C12.在△ABC中,∠A:∠B:∠C=2:3:5,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定答案:C13.已知等腰三角形的周长为 12,一边长为 3、则它的腰长为()A. 3 B. 4.5 C.3或4.5 D.以上都不正确答案:B14.如图AB=AC,DE⊥AB,DF⊥AC,AD⊥BC,则图中的全等三角形有()A .1对B .2对C .3对D .4对答案:C15.如图,在等边△ABC 中,BD 、CE 分别是AC 、AB 上的高,它们相交于点0,则∠BOC 等于( )A .100°B .ll0°C .120°D .130°答案:C16.我们知道,等腰三角形是轴对称图形,下列说法中,正确的是( )A .等腰三角形顶角的平分线所在的直线是它的对称轴B . 等腰三角形底边上的中线所在的直线是它的对称轴C . 等腰三角形底边上的高线所在的直线是它的对称轴D .以上都对答案:D17.某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为( )A .9cmB .12cmC .15cmD .12cm 或15cm 答案:C18.如图,在ABC △中,AC BC AB =>,点P 为ABC △所在平面内一点,且点P 与ABC △的任意两个顶点构成PAB PBC PAC △,△,△均是..等腰三角形,则满足上述条件的所有点P 的个数为( )A .3B .4C .6D .719.已知一个三角形的周长为l5 cm ,且其中两边长都等于第三边的2倍,那么这个三角形的最短边为( )A .1cmB .2cmC .3 cmD .4 cm答案:C20.如图,△ABC中,AB=AC ,过AC 上一点作DE ⊥AC ,EF ⊥BC ,若∠BDE=140°,则∠DEF= ( )C B AA .55°B .60C .65°D .70°答案:C21.在△ABC 中,∠BAC=90°,AD ⊥BC 于D ,若AB=3,BC=5,则DC 的长度是( )A .85B .45C .165D .225 答案:C 22.若直角三角形的一条直角边长为 5,斜边上的中线长为 6.5,则另一条直角边长等于( )A . 3B .12C . 7D . 4答案:B23.如图,△ABC 是等边三角形,CD 是∠ACB 的平分线,过D 作BC 的平行线交AC 于E .已知△ABC 的边长为 a ,则EC 的长是( )A .12a B .a C .32a D .无法确定答案:A二、填空题24. 和 对应相等的两个直角三角形全等,简写成“斜边直角边”或“ ”. 解析:斜边,直角边,HL25. 如图,在△ABC 中,AB=AC ,D 是AC 上的一点,使 BD=BC=AD ,则∠A = .解析:36°26.如图,∠A=36°,∠DBC=36°,∠C=72°,则图中的等腰三角形分别是.解析:△ABD,△CBD,△ABC27.△ABC中,∠A=30°,当∠B= 时,△ABC是等腰三角形.解析:30°或75°28.如图,在△ABC中,∠BAC=90°,∠C=30°, AD⊥BC于D,BC=12,则BD= .解析:329.如图,在Rt △ABC中,∠ACB=90°,CD⊥AB于点D,点M平分AB,已知CD=5 cm,CM6cm,则△ACB的面积是 cm2.解析:3030.如图所示,在△ABC中,∠ACB=90°,BC=5,D是AB的中点,△BCD的周长是l8,则AB的长是.解析:1331.如图,小红和弟弟同时从家中出发,小红以4 km/h的速度向正南方向的学校走去,弟弟以3 km/h的速度向正西方向的公园走去,lh后,小红和弟弟相距 km.解析:532.等腰三角形的腰长与底边长之比为2;3,其周长为28 cm ,则底边长等于 cm.解析:l233.如图,在Rt△ABC中,∠C=Rt∠,AC=6,AB=BC+2,则斜边AB长为.解析:1034.在等腰三角形ABC 中,腰AB的长为l2cm,底边BC的长为6cm,D为BC边的中点,动点P从点B出发,以每钞 lcm 的速度沿B A C→→的方向运动,当动点P重新回到点B位置时,停止运动. 设运动时间为t,那么当t= 秒时,过D、P两点的直线将△ABC的周长分成两个部分,使其中的一部分是另一部分的 2倍.解答题解析:7或l735.如图,∠C=∠D=90°,请你再添加一个条件,使△ABD≌△BAC,并在添加的条件后的( )内写出判定全等的依据.(1) ( );(2) ( );(3) ( );(4) ( ).解析:(1)AD=BC,HL (2)BD=AC,HL (3)∠DAB=∠CBA,AAS (4)∠DBA=∠CAB,AAS36.有一个角等于70°的等腰三角形的另外两个角的度数是.解析:55°,55°或70°,40°37.如图,AB⊥BC,DC⊥BC,当添加一个条件时,Rt△ABC≌△Rt△DCB(KL).解析:AC=BD38.在Rt△ABC中,∠C=90°,∠A=41°,则∠B= .解析:49°39.如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.解析:8中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD= . 40.如图,ABC解析:341.等腰三角形一边长为2 cm,另一边长为5cm,它的周长是 cm.解析:1242.如图,∠ABC = 75°,∠A = 48°,AB的垂直平分线交AC于点D,则∠DBC= .解析:27°43.如图,是一长方形公园,如果要从景点A走到景点C,那么至少要走 m.解析:500三、解答题44.如图,在5×5 的正方形网格中,小正方形的边长为 1,横、纵线的交叉点称为格点,以AB为其中一边作等腰三角形,使得所作三角形的另一个顶点也在格点上,可以作多少个?请一一作出.解析:如图所示.可以作8个45.某农场要建造一个周长为 20m的等腰三角形围栏,若围栏的腰长为 xm,试求腰长x 的取值范围.解析:根据题意,得22022020x xx>-⎧⎨->⎩,解得5<x<10.∴腰长的取值范围是5<x<l0.46.如图,AB=AC,BD=BC. 若∠A = 38°,求∠DBC的度数.解析:在△ABC 中.∵AB=AC ,∠A=38,∴∠ABC=∠C=12×(180°-∠A)=71°. 在△DBC 中,∵BD=BC ,∴∠BDC=∠C=71°.∴∠D8C=180°-∠BDC-∠C=180°-71°-71°=38°.47.如图,在△ABC 中,AB=AC ,点P 是边BC 的中点,PD ⊥AB ,PE ⊥AC ,垂足分别为点D 、E ,说明PD=PE .解析:连接AP .说明AP 是角平分线,再利用角平分上的点到角两边的距离相等48.如图,AB=CD ,DF ⊥AC 于F ,BE ⊥AC 于E ,AE=CF ,则BE=DF ,请你说明理由.解析:说明Rt △ABE ≌Rt △CDF49.仅用一块没有刻度的直角三角板能画出任意角的平分线吗?(1)小明想出了这样的方法:如图所示,先将三角板的一个顶点和角的顶点0重合,一条直角边与OA 重合,沿另一条直角边画出直线1l ,再将三角板的同一顶点与0重合,同一条直角边与0B 重合,又沿另一条直角边画出直线2l ,1l 与2l 交于点P ,连结OP ,则0P 为∠AOB 的平分线,你认为小明的方法正确吗?为什么?(2)你还有别的方法吗?请叙述过程并说明理由.解析:(1)正确,理由略;(2)略50.如图,一根旗杆在离地面9 m处的B点断裂,旗杆顶部落在离旗杆底部12 m处,旗杆折断之前有多高?解析:24 m51.如图,AD、BE分别是△ABC的边BC、AC上的高,F是DE的中点,G是AB的中点,则FG⊥DE,请说明理由.解析:先说明EG=DG.再利用三线合一来说明52.如图所示,D、E分别在等边三角形ABC的边AC、AB的延长线上,且CD=AE,试说明DB=DE.解析:延长AE至F,使EF=AB,连接DF,先证明△ADF为等边三角形,再证明△ABD ≌△FED53.如图,P、Q是△ABC边BC上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.解析:120°54.如图,在△ABC中,D、E分别是AB、AC上的点,且AD=AE,DE∥BC,试说明AB=AC.解析:说明∠B=∠C55.如图,在△ABC中,CA=CB,CD是高,E、F分别是AB、BC上的点,求作点E、F 关于直线CD的对称点(只要求作出图形).解析:略。