膜技术在工业废水处理中的应用研究进展
- 格式:doc
- 大小:52.51 KB
- 文档页数:5
膜技术在水处理中的应用与发展一、膜技术在水处理中的应用情况膜技术是利用半透膜对水进行过滤和分离的一种水处理技术。
它具有高效、节能、无化学品添加等优点,所以在水处理领域得到了广泛的应用。
目前,膜技术在水处理中主要包括以下几个方面的应用:1. 海水淡化:随着人口的增长和工业的发展,供水紧张问题日益严重。
海水淡化技术通过膜技术可以将海水中的盐分和杂质去除,得到符合饮用水标准的淡水。
在一些水资源紧缺的地区,海水淡化技术成为了解决供水问题的重要手段。
2. 污水处理:城市污水处理是保障城市环境卫生的重要措施。
膜技术在污水处理中可以用于去除污水中的有机物和微生物等有害物质,生产出清洁的再生水。
3. 饮用水处理:膜技术可以应用于自来水、地下水等饮用水源的处理,去除其中的细菌、微生物、重金属等有害物质,提高水质,保障居民的健康。
4. 工业废水处理:工业生产中产生的废水中往往含有大量的有机物质、重金属和化工原料等有害物质。
膜技术可以有效去除这些有害物质,达到排放标准,防止对环境造成污染。
5. 压力驱动与电动式反渗透膜除盐技术:电动反渗透技术是近年来膜技术的新发展趋势,它利用电能来提高膜的去除盐效率,成为一种极具潜力的技术。
膜技术在水处理中的应用正在不断发展和完善,未来的发展趋势主要包括以下几个方面:1. 技术革新:随着科技的不断进步,新型的膜材料、膜结构、膜模块等不断涌现,使得膜技术在水处理中的应用范围更加广泛、性能更加优越。
2. 集成化发展:膜技术在水处理中将逐渐向集成化方向发展,即与生物反应器、化学氧化等其他水处理技术结合,形成多种技术协同作用,提高水处理效率。
3. 绿色环保发展:传统水处理工艺往往需要大量的化学药剂,而膜技术在水处理中不需要外加化学品,且能有效地减少二次污染,因此将是绿色环保水处理技术的重要组成部分。
4. 智能化应用:随着自动化技术和人工智能技术的不断发展,膜技术在水处理中将更加智能化,例如通过智能控制系统实现膜设备的自动运行和故障检测等功能,提高设备运行效率。
《膜技术在工业废水处理中的应用研究进展》篇一一、引言随着工业化的快速发展,工业废水处理成为环境保护和可持续发展的关键问题。
传统的废水处理方法在处理复杂、高浓度的工业废水时,往往存在效率低、效果差等问题。
近年来,膜技术作为一种新型的分离技术,在工业废水处理领域得到了广泛应用。
本文旨在研究膜技术在工业废水处理中的应用及其进展。
二、膜技术概述膜技术是一种基于物理、化学或机械手段,利用半透膜实现物质分离的技术。
膜技术的核心是利用膜的选透性,通过不同孔径的膜对废水中的物质进行选择性分离和去除。
常见的膜技术包括微滤、超滤、纳滤和反渗透等。
三、膜技术在工业废水处理中的应用1. 微滤在工业废水处理中的应用:微滤主要去除废水中的悬浮物、胶体等大分子物质,如重金属、悬浮颗粒等。
其孔径一般在微米级别,可有效去除废水中的杂质,为后续处理提供便利。
2. 超滤在工业废水处理中的应用:超滤的孔径介于微滤和纳滤之间,可有效去除废水中的有机物、病毒、细菌等。
在染料、制药等行业的废水处理中,超滤技术得到了广泛应用。
3. 纳滤和反渗透在工业废水处理中的应用:纳滤和反渗透的孔径较小,主要用于去除离子态物质、溶解性有机物等。
在电镀、化工等行业的废水处理中,纳滤和反渗透技术发挥着重要作用。
四、膜技术在工业废水处理中的研究进展1. 膜材料的研究:为了提高膜的性能,研究者们开发了各种新型膜材料,如无机膜材料、复合膜材料等。
这些新材料具有更高的抗污染性能、更长的使用寿命和更好的分离效果。
2. 膜工艺的优化:针对不同行业、不同特性的废水,研究者们不断优化膜工艺,如复合膜的组合方式、运行参数等。
这些优化措施提高了处理效率,降低了运行成本。
3. 膜技术的应用研究:随着对膜技术研究的深入,其在工业废水处理中的应用范围不断扩大。
例如,将膜技术与生物反应器结合,形成膜生物反应器(MBR),在污水处理中取得了良好的效果。
五、结论膜技术在工业废水处理中发挥着越来越重要的作用。
膜分离技术在水处理中的研究热点与进展膜分离技术是一种基于膜作为过滤媒介的分离方法,随着近年来环境保护和水资源管理的重要性不断提升,膜分离技术在水处理中的研究热点与进展也越来越受到关注。
本文将从膜分离技术的基本原理、膜材料的研究与发展、膜分离技术在水处理中的应用等方面进行深入探讨。
1. 膜分离技术的基本原理膜分离技术是一种通过膜的选择性通透性,将混合物中的溶质分离出来的方法。
基本原理是利用膜的微孔、多孔或半透膜特性,通过溶质在膜上的分配差异,使溶质实现传递或吸附从而分离出来。
膜的通透性决定了它能够与哪些溶质有效交互,因此膜材料的研究与发展是膜分离技术进展的基础。
2. 膜材料的研究与发展膜材料的选择对膜分离技术的性能至关重要。
目前主要有有机膜、无机膜和复合膜三种类型的膜材料。
有机膜分为聚合物膜、纤维素膜、磺化膜等;无机膜分为陶瓷膜、金属膜和无机有机复合膜等。
近年来,多孔材料、纳米材料和功能化材料等新材料引起了研究人员的极大关注。
(1)多孔材料:多孔材料具有良好的通透性和高选择性,可以通过调节孔隙的大小和形状来实现对不同溶质的有效分离,如炭材料、炭纳米管等。
多孔材料的发展有助于提高膜的通透性、分离效率和抗污染性能。
(2)纳米材料:纳米材料具有独特的大小效应和表面效应,可以调控溶质在膜上的传递和吸附行为,提高分离的效果和选择性。
研究者正在研究纳米孔道膜、纳米复合膜等新型纳米材料的制备方法和性能。
(3)功能化材料:功能化材料通过改性和修饰膜材料表面,增强膜的亲水性、抗污染性和抗菌性能。
例如,添加活性炭、纳米银等抗菌材料可以抑制膜表面的生物污染。
3. 膜分离技术在水处理中的应用膜分离技术在水处理中具有广泛的应用前景,主要包括反渗透、超滤、微滤和气体分离等。
在反渗透技术中,通过膜的选择性通透性将溶质和溶剂分离开来,可以有效去除水中的无机盐、有机物和微生物。
在超滤和微滤技术中,通过调节膜的孔径,可以去除水中的悬浮物、胶体和大分子有机物。
膜技术在水处理领域中的应用研究随着人口的增加和工业化的发展,水资源的短缺和水质的恶化已成为全球关注的热点问题。
为了解决水资源短缺和水污染问题,水处理技术不断发展,膜技术作为一种高效可行的水处理方法,逐渐成为水处理领域的重要技术手段。
一、膜技术的基本原理和分类膜技术是利用介于微滤过程和离子交换过程之间的膜分离原理进行水处理的技术。
其基本原理是通过膜的选择性渗透性,将水中的溶质分离出来。
根据膜的材质和分离机制的不同,膜技术可以分为微滤膜、超滤膜、纳滤膜和反渗透膜四种类型。
微滤膜和超滤膜主要是通过筛选的机制分离物质,纳滤膜则是通过孔径大小和电荷的区别分离物质,而反渗透膜则是通过逆渗透的原理分离物质。
二、膜技术在水处理中的应用1. 膜分离技术在饮用水处理中的应用膜技术在饮用水处理中的应用主要包括微滤膜和超滤膜的使用,通过过滤工艺去除水中的悬浮固体、胶体颗粒和微生物等杂质,使其满足饮用水质量标准。
微滤膜和超滤膜具有较高的过滤效率和较好的水质稳定性,能够有效去除水中的颗粒物和微生物,在夺取基本饮用水进行处理的同时能保留水中的矿物质等对人体有益的成分,提高了饮用水的整体品质。
2. 膜反应器在废水处理中的应用膜反应器(MBR)是一种将膜技术与生物反应器技术相结合的废水处理技术。
MBR将生物反应器和微滤或超滤膜结合在一起,实现了废水污染物的生物降解和膜分离的一体化。
MBR技术具有接触时间长、降解效果好、排泥量小等优点。
由于MBR 技术能够有效去除有机物、氮、磷等污染物,并且产生的清水可直接回用,因此被广泛应用于工业废水和城市污水处理领域。
3. 膜处理技术在海水淡化中的应用海水淡化是一种将海水转变为淡水的过程,膜技术在海水淡化中起到了重要的作用。
反渗透膜是海水淡化工艺中常用的膜技术。
通过将海水压力驱动通过反渗透膜,能够有效去除海水中的盐分和其他溶解物质,获得高质量的淡水。
膜技术在海水淡化中具有能耗低、占地面积小、操作简单等优点,成为满足水资源短缺地区淡水需求的重要手段。
膜技术处理含重金属废水研究进展膜技术处理含重金属废水研究进展摘要:随着工业化的发展,重金属废水对环境和人类健康造成了严重的威胁。
传统的物理化学方法无法完全去除重金属离子,因此研究人员开始致力于开发高效、低成本的废水处理技术。
膜技术因其卓越的性能,在重金属废水处理中引起了广泛关注。
本文将综述膜技术在重金属废水处理领域的研究进展,包括重金属废水的膜分离、膜吸附、膜生物反应器等方面,同时总结了该技术的优点、不足之处以及未来的发展方向。
一、引言废水中的重金属污染源广泛存在于工业生产中,由于其毒性、可蓄积性和不可降解性,对环境和人类健康造成了巨大的危害。
传统的物理化学方法存在着处理周期长、处理效果差等问题,因此迫切需要开发新型高效的废水处理技术。
二、膜技术在重金属废水处理中的应用膜技术因其分离效果好、操作简单等特点,成为处理含重金属废水的重要方法。
根据应用的不同,膜技术主要可以分为膜分离、膜吸附和膜生物反应器三个方面。
1. 膜分离膜分离是将废水中的重金属离子通过选择性透过或截留的方式进行分离。
常见的膜分离技术包括纳滤、超滤、反渗透等。
这些膜技术具有孔径小、筛选效果好、操作简单等优点,可以高效去除废水中的重金属离子。
2. 膜吸附膜吸附是通过膜材料表面的吸附活性位点吸附重金属离子。
膜吸附技术具有大吸着量、高吸附速度等优点,在处理含重金属废水中显示出广阔的应用前景。
3. 膜生物反应器膜生物反应器是将膜技术与生物反应器相结合的一种处理废水的方法。
通过在膜表面固定特定的微生物菌群,利用其对重金属离子的吸附作用和代谢能力进行废水处理。
膜生物反应器既能去除重金属离子,又能减少废水中的有机物负荷。
三、膜技术的优点与不足膜技术在处理含重金属废水中具有以下优点:1. 高效性:膜技术具有良好的分离效果,能够高效去除废水中的重金属离子。
2. 选择性:膜技术能够根据离子的大小和电荷来选择性地去除重金属离子。
3. 操作简单:膜技术相对于传统的物理化学方法,操作简单,不需要添加过多的药剂。
废液处理中的膜蒸馏技术研究进展及应用实例废液处理是环境保护领域面临的重要课题之一。
废液处置的不当会对水体和土壤等自然环境造成严重污染,甚至对人类健康产生潜在风险。
因此,开发高效、可行的废液处理技术成为了亟待解决的问题之一。
膜蒸馏技术作为一种有效的废液处理方法,近年来受到了广泛关注。
它基于蒸馏原理,通过半透膜将废液中的溶质与溶剂分离,实现废液的净化和资源回收。
随着膜蒸馏技术的研究进展,越来越多的应用实例也被提出和验证。
膜蒸馏技术的研究进展主要集中在膜材料的选取和膜结构的优化上。
膜材料的选择对膜蒸馏技术的效果至关重要。
传统的膜材料如聚醚砜(PES)和聚酰胺(PA)等在膜蒸馏中已经得到了广泛应用。
然而,这些材料存在着一些局限性,如温度和酸碱性的限制、脆化等。
为了克服这些问题,研究人员开始开发新型材料,如聚酯醚酮(PEEK)、聚酮膜(PBI)和离子液体膜等。
这些新型材料具有更广泛的应用范围和更良好的稳定性,能够提高膜蒸馏的效果和稳定性。
此外,膜结构的优化也是研究人员关注的焦点。
膜结构的优化主要包括多孔结构、层间距离和表面改性等方面。
多孔结构的膜可以增加膜的通透性和扩散速率,提高蒸馏效果。
层间距离的优化可以控制溶质和溶剂之间的传质速率,并且减少能量消耗。
表面改性可以使膜具有良好的抗污染性能,并且提高膜的寿命和稳定性。
在膜蒸馏技术的应用实例方面,废水处理是其中应用最为广泛的领域之一。
废水中含有各种有机物、无机盐和重金属等污染物,其处理对于环境和人类健康至关重要。
膜蒸馏技术能有效去除废水中的有机物和重金属等污染物,实现废水的净化和重金属的回收利用。
例如,半透膜蒸馏技术被应用于废水中重金属的去除。
研究人员在膜表面修饰了COOH基团,形成了亲酸性膜。
该亲酸性膜具有良好的金属吸附能力,可以高效去除废水中的重金属离子,大大提高了重金属去除的效率。
此外,膜蒸馏技术还可以应用于废水中有机物的处理,如挥发性有机物(VOCs)的去除。
《生物膜法在污水处理中的研究进展》篇一一、引言随着工业化和城市化的快速发展,污水处理成为环境保护领域的重要课题。
生物膜法作为一种高效的污水处理技术,因其处理效果好、操作简便、成本低廉等优点,在污水处理领域得到了广泛的应用和深入的研究。
本文旨在探讨生物膜法在污水处理中的研究进展,分析其技术原理、应用现状及未来发展趋势。
二、生物膜法技术原理生物膜法是一种基于生物膜技术的污水处理方法,利用生物膜上附着的大量微生物来吸附、降解水中的有机污染物。
生物膜主要由附着在载体上的微生物组成,具有巨大的表面积和复杂的生物群落,可以有效地吸附和降解水中的有机物、氮、磷等污染物。
三、生物膜法在污水处理中的应用1. 生活污水处理:生物膜法在生活污水处理中应用广泛,能够有效地去除污水中的有机物、氮、磷等污染物,提高出水水质。
同时,生物膜法对环境条件要求较低,适应性强,因此在家庭、社区等小型污水处理系统中得到广泛应用。
2. 工业废水处理:针对含有重金属、有毒有害物质的工业废水,生物膜法通过特定的生物膜材料和工艺条件,能够有效地去除这些污染物,降低废水对环境的危害。
3. 农村污水处理:在农村地区,由于缺乏集中的污水处理设施,生物膜法因其操作简便、成本低廉等优点,成为农村污水处理的重要选择。
通过建设小型生物膜反应器,可以有效地处理农村生活污水和养殖废水。
四、生物膜法的研究进展1. 生物膜材料研究:随着材料科学的发展,越来越多的新型生物膜材料被应用于污水处理中。
这些材料具有较高的比表面积、良好的生物相容性和稳定性,能够为微生物提供更好的生长环境和吸附性能。
2. 工艺优化研究:针对不同的污水处理需求,研究人员不断优化生物膜法的工艺条件,如调整载体类型、改变水流速度、控制温度等,以提高生物膜的吸附和降解效率。
3. 复合生物膜技术研究:为了提高生物膜法的处理效果和适应性,研究人员将不同种类的微生物、生物膜材料和其他技术进行复合,形成复合生物膜技术。
《膜技术在工业废水处理中的应用研究进展》篇一一、引言随着工业化的快速发展,工业废水排放量日益增加,其中含有大量有毒有害物质,对环境和人类健康构成了严重威胁。
因此,寻找一种高效、环保的废水处理方法成为了当务之急。
膜技术因其高效、节能、环保等优点,在工业废水处理中得到了广泛应用。
本文将就膜技术在工业废水处理中的应用研究进展进行详细阐述。
二、膜技术概述膜技术是一种利用特殊材料制成的薄膜对溶液进行分离、纯化、浓缩的技术。
根据不同的分离机制,膜技术主要包括微滤、超滤、纳滤和反渗透等。
这些技术通过物理筛分、化学吸附等方式,实现对废水中各种污染物的有效去除。
三、膜技术在工业废水处理中的应用1. 微滤和超滤在工业废水处理中的应用微滤和超滤技术主要应用于对废水中悬浮物、胶体物质等进行去除。
通过使用不同孔径的微滤和超滤膜,可以有效截留废水中的颗粒物、细菌、病毒等,从而达到净化废水的目的。
此外,微滤和超滤技术还可以与其他工艺相结合,如与生物反应器联用,提高废水处理的效率。
2. 纳滤和反渗透在工业废水处理中的应用纳滤和反渗透技术主要应用于对废水中溶解性物质进行去除。
纳滤膜的孔径介于微滤和超滤之间,可以有效截留离子、小分子有机物等。
反渗透技术则是一种高效、低能耗的分离技术,可以实现对废水中盐类、重金属等污染物的去除。
这两种技术广泛应用于电镀、化工、造纸等行业的废水处理。
四、膜技术应用研究进展1. 膜材料的研究与改进为了提高膜技术的性能和寿命,研究者们不断对膜材料进行研究和改进。
新型的膜材料具有更高的通量、更低的能耗、更好的抗污染性能和更长的使用寿命,为膜技术在工业废水处理中的应用提供了更好的支持。
2. 组合工艺的研究与应用为了进一步提高废水处理的效率,研究者们不断探索将膜技术与其他工艺进行组合。
如将膜技术与生物反应器、活性炭吸附、光催化等技术进行联用,形成组合工艺,实现对废水的深度处理和资源化利用。
3. 自动化和智能化控制随着工业自动化和智能化技术的不断发展,膜技术在工业废水处理中的应用也逐渐实现了自动化和智能化控制。
膜分离技术的应用现状及研究进展膜分离技术在水处理领域的应用日趋广泛。
例如,膜分离技术可以用于海水淡化,通过反渗透膜将海水中的盐分和其他杂质去除,从而得到纯净的淡水。
此外,膜分离技术还可以用于污水处理,通过微孔过滤膜和超滤膜去除污水中的悬浮物、蛋白质和细菌等。
此外,膜分离技术还可以用于处理工业废水,通过特殊的膜进行分离和浓缩,从而实现废水的回用和资源化。
膜分离技术在生物医药领域的应用也日益增多。
膜在生物分离和纯化中起着重要作用,可以用于分离蛋白质、酶、抗体等生物大分子。
膜分离技术可以通过调节膜孔径、表面性质等来实现对生物大分子的分离和纯化,具有高效、可控性强的特点。
此外,膜分离技术还在气体分离、有机物分离等领域有着广泛的应用。
例如,膜分离技术可以用于天然气中的CO2回收和H2的制备,通过选择性透过不同气体的膜进行分离,实现对气体混合物的分离和纯化。
此外,膜分离技术还可以用于有机合成中的溶剂萃取、分馏等过程,代替传统的精馏和萃取工艺。
在膜分离技术的研究方面,近年来也取得了一系列的进展。
一方面,研究人员不断开发新型的膜材料,如高分子材料、无机材料、复合材料等,以提高膜的分离性能和稳定性。
另一方面,研究人员利用纳米技术、表面改性等手段进行膜的结构调控,以获得更高的通量和分离效果。
此外,研究人员还致力于膜分离技术与其他技术的结合,如电化学、光化学等,以实现新的分离方式和效果。
总的来说,膜分离技术作为一种高效、节能、环保的分离技术,应用范围广泛,研究进展也较为迅速。
随着科学技术的不断发展,膜分离技术在应用领域的拓展和研究进展将会更加广泛和深入。
污水处理行业中的膜分离技术应用案例研究近年来,随着水资源的不断减少和环境污染的加剧,污水处理成为全球面临的重要问题。
膜分离技术作为一种高效、可持续的污水处理技术,被广泛应用于污水处理行业中。
本文将通过研究一些成功案例来探讨膜分离技术在污水处理领域的应用。
案例一:美国亚利桑那州凤凰城市污水处理厂凤凰城市污水处理厂是美国亚利桑那州最大的污水处理厂之一,每天处理超过100,000吨的废水。
该污水处理厂采用了膜分离技术作为其主要的后处理工艺。
膜分离技术通过使用微孔膜或纳滤膜来过滤污水中的颗粒物、细菌和病毒,并去除有害物质,从而提供高质量的处理水。
通过应用膜分离技术,凤凰城市污水处理厂成功解决了废水处理过程中的难题。
首先,该技术可以高效地去除微生物和有害物质,可有效避免水源二次污染的风险。
其次,采用膜分离技术后的处理水质量符合相关标准,能够安全地用于灌溉、工业用水等用途。
最后,膜分离技术具有较低的运营成本和能耗,相比传统的废水处理工艺,能够节约能源并减少运营成本。
案例二:新加坡内核公园水厂新加坡是全球著名的水资源匮乏国家,尽管如此,该国却成功实现了水资源的可持续利用。
内核公园水厂是新加坡的一个经典案例,该水厂运用了膜分离技术来处理污水,使其达到可饮用水质量。
内核公园水厂使用了一种称为“新加坡乌敏岗膜分离技术”的创新膜分离工艺。
这项技术通过在污水处理工艺中引入一种新型膜分离设备,可有效去除水中的悬浮物、有机物和微生物,提供高质量的饮用水。
这一技术的成功应用使得新加坡能够实现100%的废水回用率,成为全球范围内水资源有效管理的典范。
案例三:中国上海市污水处理厂上海市是中国人口密集的大城市之一,面临着庞大的污水处理任务。
上海市污水处理厂采用膜分离技术作为其高级处理工艺,为城市居民提供清洁的水环境。
上海市污水处理厂的膜分离工艺主要包括基于微孔膜的超滤和纳滤工艺。
通过这些膜分离工艺,厂方能够将污水中的悬浮物、胶体颗粒、重金属离子等有害物质高效去除,实现废水的净化。
膜技术在工业废水处理中的应用研究进展来源:中国论文下载中心 [ 07-04-30 10:36:00 ] 作者:未知编辑:studa20作为一种新型的分离技术,膜分离技术既能对废水进行有效的净化,又能回收一些有用物质,同时具有节能、无相变、设备简单、操作方便等特点,因此在废水处理中得到了广泛的应用并显示了广阔的发展前景。
据估计,2000 年膜技术的世界市场规模已达近20 亿美元的销售额〔1〕。
在废水处理中应用的膜分离过程主要有微滤(MF)、超滤(UF)、纳滤(NF)、反渗透(RO)和电渗析(ED),它们的分离过程及其传质机理见表1〔2〕。
1 含油废水的处理含油废水面广量大,钢铁工业的压延、金属切削、研磨,以及石油炼制及管道运输等都产生含油废水,处理含油废水的目的主要是除油同时去除COD及BOD.膜分离技术在含油废水处理中的研究与应用相当广泛,主要是采用不同材质的超滤膜和微滤膜来处理。
唐燕辉等利用自行设计、组装的膜处理装置,考察了多种制膜方法,实验表明用加压制膜法制备的超滤膜(A4 膜),分离机械加工排放的含油污水时,可以使CODCr 从728.64 mg/L 降至87.8 mg/L,含油质量浓度从5 000 mg/L 降至2.5 mg/L,脱除率分别达到87.95%和99.95%,分离后排水已达到国家规定的排放标准〔3〕。
B. E. Reed 研究了用截留相对分子质量为120 000、表面荷负电和截留相对分子质量为100 000、表面不带电的管式聚亚乙烯氟超滤膜处理含质量分数为0.5%油脂的金属工业废水〔4〕。
荷电膜由于高的截留相对分子质量和表面电荷,其平均渗透通量远大于不带电膜。
当油脂质量浓度小于50mg/L、总悬浮固体质量浓度小于25 mg/L 时,荷电膜油脂的平均去除率为97%,而不带电膜为98%.两种膜对总悬浮固体的去除率均接近97%.张国胜采用0.2 μm 氧化锆膜处理钢铁厂冷轧乳化液废水,通过对膜的选择、操作参数的考察、过程的优化,获得了满意的结果,膜通量100 L/(m2.h)时,含油质量浓度从5 000 mg/L 降至10 mg/L 以下,截留率大于99%,透过液中油质量分数小于0.001%,并且该技术已实现了工业化应用〔5〕。
张裕嫒用相转化法制备聚砜- Al2O3 复合膜,将Al2O3 微粒填充到聚砜中,并用该复合膜对华北油田北大站外排水砂滤后水样进行了超滤处理,原水的油质量浓度为640 mg/L,处理后的油质量浓度小于0.5 mg/L,完全符合回注水的要求〔6〕。
2 染料废水的处理目前在染料的工业生产过程中,产生大量的高盐度(质量分数大于5%)、高色度(数万至十几万)、高CODCr(数万至十几万)的废水。
由于该类废水的BOD5 与CODCr 的比值小于0.4,生物降解性差;同时废水中所含的盐将进一步降低废水的生物降解性,所以生化处理前必需对其进行预处理〔7〕。
杨刚等采用CA 卷式纳滤膜进行了二苯乙烯双三嗪型荧光增白染料(NT)水溶液脱盐和浓缩过程的研究。
在1.8 MPa 压力下经纳滤膜处理后,NT 染料水溶液中的NaCl 浓度从1.05 mol /L 降到0.049mol /L 以下,NT 浓度从0.14 mol /L 浓缩到0.25 mol /L以上,NT 成分的平均截留率达99.8%〔8 〕。
GuohuaChen 等采用ATF50 型纳滤膜对香港的印染废水进行处理,两股原水的COD 分别为14 000 mg /L 和5 430 mg/L,经纳滤后,两股废水的COD 截留率分别达到95%和80%~85%,出水达到了香港的排放标准〔9〕。
刘宗义利用卷式反渗透膜处理腈纶丝洗涤废液,进膜废液中己内酰胺单体质量浓度在2 000mg/L以上时,可以使单体含量浓缩10 倍以上,截留率达到80%左右,透过液可作为工艺用水,可节约大量新鲜软水,具有显著的经济效益〔10 〕。
郭明远等自制了醋酸纤维素纳滤膜,研究了该纳滤膜对活性艳红、X- 3B 水溶液的分离性能,结果表明,CA 纳滤膜可用于活性染料印染废水的处理和染料回收〔11〕。
3 造纸废水处理造纸废水一般含悬浮物(包括无机和有机的)较多,为避免废水污物堵塞薄膜,减少清洗难度和频率,不宜直接用一段膜分离法,最好在膜分离前进行絮凝和常规过滤等预处理。
目前对造纸废水的膜分离法的研究已取得实质性进展,并已开始进入工业化阶段。
除抄纸废水(白水)用气浮法即可处理外,膜分离法几乎适用于处理所有的制浆造纸废水(如机械浆废水、硫酸盐浆漂白碱性废水、涂布废水、亚硫酸盐废液等),特别对漂白废水的毒性、色度和悬浮物的去除有明显效果。
薛建军等研究用MAE(membrane-assisted electrolysis)单阳膜技术控制造纸黑液的污染。
研究表明,MAE 单阳膜技术不但能回收有用的化学品,还可将黑液的CODCr 从112 000 mg/L 降到2 000 mg/L左右,具有明显的控制效果〔12〕。
F. Zhang 进行了草浆CEH 漂白废水的超滤处理研究,选用透过相对分子质量分别为3 000(A)、10 000(B)、30 000(C)、60 000(D)4 种平板PS 膜(单膜有效面积0.33 cm2,操作压力0.3 MPa)进行对比研究,结果表明,A、C 膜具有较显著的分离效果和膜通量〔13〕。
分别以C、A 膜为一、二级联合处理CEH 漂白废水,膜通量为16.6 L/(m2.h),BOD5 去除率为66.0%,CODCr 去除率为85.1%,TOC去除率为71.6%.黄水前等提出,采用pH 范围为1~14 的高耐酸碱无机膜处理碱性造纸黑液,不需调整控制pH〔14〕。
利用不同孔径的高耐碱无机分离膜可回收纤维素、胶体SiO2、木质素(相对分子质量为1 000~12 000,分子大小为2.4~ 4.0 nm)和还原糖(相对分子质量约为200~400,分子大小为1~2 nm)等,最终透过液主要含氢氧化钠,质量分数调整到10%~12%即可回收用于蒸煮制浆,实现造纸工业废水的闭路循环。
4、重金属的废水处理在工业废水中重金属废水占有相当大的比例,如电镀、冶金、化工、电子、矿山等许多工业过程中都会产生含镍、铬、铜、铅、镉等金属离子的废水,利用膜技术不仅可以使得废水达标排放,而且可以回收有用物质。
许振良等利用3 种单皮层聚醚酰亚胺(PEI)中空纤维超滤膜,对水溶液中重金属离子(镉和铅,质量浓度均为100 mg/L)的脱除进行了胶束强化超滤研究〔15〕。
在胶束强化超滤(MEUF)过程中,测定了流速、操作压力、表面活性剂(十二烷基硫酸钠和十二烷基苯磺酸钠)与浓度对超滤膜分离重金属离子性能的影响,结果表明,镉和铅的截留率可达99.0%以上,渗透通量可达1.83 ×10- 10 m3 /(m2.s.Pa)同时,对聚电解质(羧甲基纤维素钠和聚丙烯酸钠)在MEUF 中的应用也进行了研究。
R. J. Lahiere 等报道了采用陶瓷膜处理废水中的重金属离子,方法是用碱中和使之形成氢氧化物沉淀,通过0.8 μm 和1.4μm 两种孔径膜的两级过滤,使重金属氢氧化物质量分数从0.012%下降到0.000 2%以下,并把悬浮液浓缩至15%~20%〔16〕。
X. Chai 采用RO 膜对含铜废水进行研究,当进水铜质量浓度340 mg/L 时,透过液中铜质量浓度小于4 mg/L,去除率接近99%〔17〕。
5 高浓度有机废水的处理在高浓度有机废水处理中,膜技术发挥着越来越重要的作用,已在制药废水、制糖废水、含酚废水、乳化液废水、啤酒废水、味精废水等领域得到了应用。
1976 年,日本就通过管式反渗透处理系统实现了水产品(主要是鱼、蟹、贝类等)加工有机废水的回收利用,通过气浮、反渗透的二级处理,COD 由600~1 000 mg/L 降至30 ~70 mg/L〔18 〕。
陆晓千等利用自制小型超滤设备对上海拖拉机内燃机公司油嘴油泵厂的切削液废水进行了实验室研究,并将所得参数应用于生产设备的设计和运行〔19〕。
切削液乳化液废水经超滤法处理后可以回用,取得了良好的经济效益和社会效益。
蔡肖邦用试制的5 种聚酰胺型纳滤膜,对药厂生产的螺旋霉素(SPM)发酵液进行了分离操作条件和浓缩效果的研究,渗透通量为25 L/(m2.h),渗透液的SPM效价始终为零〔20〕。
王连军等采用无机膜- 生物反应器(IMBR)处理啤酒废水,在水力停留时间为3.5 ~5 h,COD 负荷为3.54 ~6.225 kg/(m3.d)条件下,IMBR 对废水的COD、NH3 - N、SS、浊度的去除率分别达到96%、99%、90%和100%,膜出水水质好且稳定〔21,22〕。
6 、结语由于膜过滤技术具有分离效率高、节能、设备简单、操作方便等优点,使其在废水处理领域有很大的发展潜力。
但由于工业废水往往含有酸、碱、油等物质,处理条件比较苛刻,因此,处理废水使用的膜必须具有较好的材料性能,从而在苛刻的条件下保持良好的分离性能和较长的使用寿命。
从这方面来看,开发抗污染等性能优良的过滤膜具有重要的战略意义。
由于工业废水的复杂性,任何单一技术的处理往往达不到理想的效果,必须重视膜分离技术与其他水处理技术的集成工艺研究,发挥各种技术的优势,形成废水深度处理的新工艺。
参考文献[ 1] 解利昕,阮国岭,张耀江。
反渗透海水淡化技术现状与展望[ J] .中国给水排水,2000,16(3):24- 27.[ 2] 黄加乐,董声雄。
我国膜技术的应用现状与前景[ J] . 福建化工,2000,34(3):3- 6.[ 3] 唐燕辉,梁伟,柴章民。
含油污水膜技术处理[ J] . 精细石油化工,1998,15(2):37- 39.[ 4]Reed Brim E. Treatment of an oil /grease wastewater using ultrafiltration:pilot-scale results [ J] . Sep. Sci. Technol.,1997,32 (9):1 490- 1 511.[ 5] 张国胜,谷和平。
无机陶瓷膜处理冷轧乳化液废水[ J] . 高校化学工程学报,1998,12(3):288- 292.[ 6] 张裕嫒,张裕卿。
用于含油废水处理的复合膜研制[ J] . 中国给水排水,2000,16(4):58- 60.[ 7] 刘梅红,姜坪。
膜法染料废水处理试验研究[ J] . 膜科学与技术,2001,21(3):50- 52.[ 8] 杨刚,邢卫红,徐南平。
应用膜技术精制水溶性染料[ J] . 膜科学与技术,2002,22(2):24- 28.[ 9]Chen Guohua,Chai Xijun,Yue Po-Lock,et al. Treatment of textiledesizing wastewater by pilot scale nanofiltration membrane separation[J] . J. Membrane Science,1997,127(1):93- 99.[ 10] 刘宗义。