七下数学第十四周
- 格式:doc
- 大小:441.00 KB
- 文档页数:4
沪教版七年级数学第二学期第十四章三角形专项测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知ACD ∠为ABC 的外角,60ACD ∠=︒,20B ∠=︒,那么A ∠的度数是( )A .30°B .40°C .50°D .60°2、已知三角形的两边长分别是3cm 和7cm ,则下列长度的线段中能作为第三边的是( )A .3cmB .4cmC .7cmD .10cm3、如图,在△ABC 中,BD 平分∠ABC ,∠C =2∠CDB ,AB =12,CD =3,则△ABC 的周长为( )A .21B .24C .27D .304、如图,等腰ABC 中,AB AC =,120BAC ∠=︒,AD DC ⊥于D ,点O 是线段AD 上一点,点P 是BA 延长线上一点,若OP OC =,则下列结论:①30APO DCO ∠+∠=︒;②APO DCO ∠=∠;③POC △是等边三角形;④AB OA AP =+.其中正确的是( )A .①③④B .①②③C .②③④D .①②③④5、如图,∠BAD =90°,AC 平分∠BAD ,CB =CD ,则∠B 与∠ADC 满足的数量关系为( )A .∠B =∠ADCB .2∠B =∠ADC C .∠B +∠ADC =180°D .∠B +∠ADC =90°6、将三根木条钉成一个三角形木架,这个三角形木架具有稳定性.解释这个现象的数学原理是( )A .SSSB .SASC .ASAD .AAS7、定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD 是△ABC 的外角.求证:∠ACD =∠A +∠B .下列说法正确的是( )A .证法1用特殊到一般法证明了该定理B .证法1只要测量够100个三角形进行验证,就能证明该定理C .证法2还需证明其他形状的三角形,该定理的证明才完整D .证法2用严谨的推理证明了该定理8、已知:如图,D 、E 分别在AB 、AC 上,若AB =AC ,AD =AE ,∠A =60°,∠B =25°,则∠BDC 的度数是( )A .95°B .90°C .85°D .80°9、如图,BD 是ABC 的角平分线,∥DE BC ,交AB 于点E .若30A ∠=︒,50BDC ∠=︒,则BDE ∠的度数是( )A .10°B .20°C .30°D .50°10、如图,若ABC 绕点A 按逆时针方向旋转40°后与11AB C △重合,则1AB B ∠=() .A .40°B .50°C .70°D .100第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知AB =3,AC =CD =1,∠D =∠BAC =90°,则△ACE 的面积是 _____.2、如图,已知△ABC 是等边三角形,边长为3,G 是三角形的重心,那么GA =______.3、△ABC 的高AD 所在直线与高BE 所在直线相交于点F 且DF =CD ,则∠ABC =______.4、如图,ABC 中,90A ∠=︒,点D 在AC 边上,∥DE BC ,若1145∠=︒,则B 的度数为_______.5、如图,直线ED 把ABC 分成一个AED 和四边形BDEC ,ABC 的周长一定大于四边形BDEC 的周长,依据的原理是____________________________________.三、解答题(10小题,每小题5分,共计50分)1、如图,在△ABC 中,AB =AC ,CD ⊥AB 于点D ,∠A =50°,求∠BCD 的度数.2、已知,在△ABC中,∠BAC=30°,点D在射线BC上,连接AD,∠CAD=α,点D关于直线AC的对称点为E,点E关于直线AB的对称点为F,直线EF分别交直线AC,AB于点M,N,连接AF,AE,CE.(1)如图1,点D在线段BC上.①根据题意补全图1;②∠AEF=(用含有α的代数式表示),∠AMF=°;③用等式表示线段MA,ME,MF之间的数量关系,并证明.(2)点D在线段BC的延长线上,且∠CAD<60°,直接用等式表示线段MA,ME,MF之间的数量关系,不证明.3、如图,在△ABC中,CE平分∠ACB交AB于点E,AD是△ABC边BC上的高,AD与CE相交于点F,且∠ACB=80°,求∠AFE的度数.=,4、如图,在四边形ABCD中,E是CB上一点,分别延长AE,DC相交于点F,AB CF∠=∠+∠.CEA B F(1)求证:EAB F∠=∠;BC=,求BE的长.(2)若105、已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,∠AEG=∠AGE,∠C =∠DGC.(1)求证:AB//CD;(2)若∠AGE+∠AHF=180°,求证:∠B=∠C;(3)在(2)的条件下,若∠BFC=4∠C,求∠D的度数.6、如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE.7、直线l 经过点A ,ABC 在直线l 上方,AB AC =.(1)如图1,90BAC ∠=︒,过点B ,C 作直线l 的垂线,垂足分别为D 、E .求证:ABD CAE ≌(2)如图2,D ,A ,E 三点在直线l 上,若BAC BDA AEC α∠=∠=∠=(α为任意锐角或钝角),猜想线段DE 、BD 、CE 有何数量关系?并给出证明.(3)如图3,90BAC ∠=︒过点B 作直线l 上的垂线,垂足为F ,点D 是BF 延长线上的一个动点,连结AD ,作90DAE ∠=︒,使得AE AD =,连结DE ,CE .直线l 与CE 交于点G .求证:G 是CE 的中点.8、如图,在△ABC 中,AB =AC ,M ,N 分别是AB ,AC 边上的点,并且MN ∥BC .(1)△AMN 是否是等腰三角形?说明理由;(2)点P 是MN 上的一点,并且BP 平分∠ABC ,CP 平分∠ACB .①求证:△BPM 是等腰三角形;②若△ABC 的周长为a ,BC =b (a >2b ),求△AMN 的周长(用含a ,b 的式子表示).9、如图,AD为△ABC的角平分线.(1)如图1,若BE⊥AD于点E,交AC于点F,AB=4,AC=7.则CF=;(2)如图2,CG⊥AD于点G,连接BG,若△ABG的面积是6,求△ABC的面积;(3)如图3,若∠B=2∠C,AB=m,AC=n,则CD的长为.(用含m,n的式子表示)10、(1)我们把两个面积相等但不全等的三角形叫做“偏等积三角形”,如图1,ABC中,AC BC AB,P为AC上一点,当AP=_______时,ABP===7,9,10△与CBP是偏等积三角形;(2)如图2,四边形ABED是一片绿色花园,ACB△、DCE是等腰直角三角形,()ACB DCB BCE.90090∠=∠=︒<∠<︒①ACD △与BCE 是偏等积三角形吗?请说明理由;②已知60m, BE ACD 的面积为22100m .如图3,计划修建一条经过点C 的笔直的小路CF ,F 在BE 边上,FC 的延长线经过AD 中点G .若小路每米造价600元,请计算修建小路的总造价.-参考答案-一、单选题1、B【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD =60°,∠B =20°,∴∠A =∠ACD −∠B =60°−20°=40°,故选:B .【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.2、C【分析】设三角形第三边的长为x cm ,再根据三角形的三边关系求出x 的取值范围,找出符合条件的x 的值即可.【详解】解:设三角形的第三边是xcm .则7-3<x <7+3.即4<x <10,四个选项中,只有选项C 符合题意,故选:C .【点睛】本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.3、C【分析】根据题意在AB 上截取BE =BC ,由“SAS ”可证△CBD ≌△EBD ,可得∠CDB =∠BDE ,∠C =∠DEB ,可证∠ADE =∠AED ,可得AD =AE ,进而即可求解.【详解】解:如图,在AB 上截取BE =BC ,连接DE ,∵BD 平分∠ABC ,∴∠ABD =∠CBD ,在△CBD 和△EBD 中,CB BE CBD DBE BD BD =⎧⎪∠=∠⎨⎪=⎩, ∴△CBD ≌△EBD (SAS ),∴∠CDB =∠BDE ,∠C =∠DEB ,∵∠C =2∠CDB ,∴∠CDE =∠DEB ,∴∠ADE=∠AED,∴AD=AE,∴△ABC的周长=AD+AE+BE+BC+CD=AB+AB+CD=27,故选:C.【点睛】本题考查全等三角形的判定和性质以及等腰三角形的性质,注意掌握添加恰当辅助线构造全等三角形是解题的关键.4、A【分析】①利用等边对等角得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;②因为点O是线段AD上一点,所以BO不一定是∠ABD的角平分线,可作判断;③证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;④证明△OPA≌△CPE,则AO=CE,得AC=AE+CE=AO+AP.【详解】解:①如图1,连接OB,∵AB=AC,AD⊥BC,∴BD=CD,∠BAD=12∠BAC=12×120°=60°,∴OB=OC,∠ABC=90°﹣∠BAD=30°∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,故①正确;②由①知:∠APO=∠ABO,∠DCO=∠DBO,∵点O是线段AD上一点,∴∠ABO与∠DBO不一定相等,则∠APO与∠DCO不一定相等,故②不正确;③∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°﹣(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC是等边三角形,故③正确;④如图2,在AC上截取AE=PA,∵∠PAE=180°﹣∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=PA,∴∠APO +∠OPE =60°,∵∠OPE +∠CPE =∠CPO =60°,∴∠APO =∠CPE ,∵OP =CP ,在△OPA 和△CPE 中,PA PE APO CPE OP CP =⎧⎪∠=∠⎨⎪=⎩, ∴△OPA ≌△CPE (SAS ),∴AO =CE ,∴AC =AE +CE =AO +AP ,∴AB =AO +AP ,故④正确;正确的结论有:①③④,故选:A .【点睛】本题主要考查了全等三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质等知识,正确作出辅助线是解决问题的关键.5、C【分析】由题意在射线AD 上截取AE =AB ,连接CE ,根据SAS 不难证得△ABC ≌△AEC ,从而得BC =EC ,∠B =∠AEC ,可求得CD =CE ,得∠CDE =∠CED ,证得∠B =∠CDE ,即可得出结果.【详解】解:在射线AD 上截取AE =AB ,连接CE ,如图所示:∵∠BAD =90°,AC 平分∠BAD ,∴∠BAC =∠EAC ,在△ABC 与△AEC 中,AC AC BAC EAC AB AE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△AEC (SAS ),∴BC =EC ,∠B =∠AEC ,∵CB =CD ,∴CD =CE ,∴∠CDE =∠CED ,∴∠B =∠CDE ,∵∠ADC +∠CDE =180°,∴∠ADC +∠B =180°.故选:C .【点睛】本题主要考查全等三角形的判定与性质,解答的关键是作出适当的辅助线AE ,CE .6、A【分析】根据三根木条即为三角形的三边长,利用全等三角形判定定理确定唯一三角形即可得.【详解】解:三根木条即为三角形的三边长,即为利用SSS确定三角形,故选:A.【点睛】题目主要考查利用全等三角形判定确定唯一三角形,熟练掌握全等三角形的判定是解题关键.7、D【分析】利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.【详解】解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,证法2才是用严谨的推理证明了该定理,故A不符合题意,C不符合题意,D符合题意,证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;故选D【点睛】本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.8、C【分析】根据SAS证△ABE≌△ACD,推出∠C=∠B,求出∠C的度数,根据三角形的外角性质得出∠BDC=∠A +∠C ,代入求出即可.【详解】解:在△ABE 和△ACD 中,AE AD A A AB AC =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△ACD (SAS ),∴∠C =∠B ,∵∠B =25°,∴∠C =25°,∵∠A =60°,∴∠BDC =∠A +∠C =85°,故选C .【点睛】本题主要考查了全等三角形的性质与判定,三角形外角的性质,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.9、B【分析】由外角的性质可得∠ABD =20°,由角平分线的性质可得∠DBC =20°,由平行线的性质即可求解.【详解】解:(1)∵∠A =30°,∠BDC =50°,∠BDC =∠A +∠ABD ,∴∠ABD =∠BDC −∠A =50°−30°=20°,∵BD 是△ABC 的角平分线,∴∠DBC =∠ABD =20°,∵DE ∥BC ,∴∠EDB =∠DBC =20°,故选:B .【点睛】本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.10、C【分析】根据旋转的性质,可得140BAB ∠=︒ ,1AB AB = ,从而得到11ABB AB B ∠=∠,即可求解.【详解】解:∵ABC 绕点A 按逆时针方向旋转40°后与11AB C △重合,∴140BAB ∠=︒ ,1AB AB = , ∴()1111180702ABB AB B BAB ∠=∠=︒-∠=︒. 故选:C【点睛】本题主要考查了图形的旋转,等腰三角形的性质,熟练掌握图形旋转前后对应线段相等,对应角相等是解题的关键.二、填空题1、32## 【分析】先根据三角形全等的判定定理证出ABC DEC ≅,再根据全等三角形的性质可得3AB DE ==,然后利用三角形的面积公式即可得.【详解】解:在ABC 和DEC 中,90ACB DCE AC DC BAC D ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ()ABC DEC ASA ∴≅,3AB DE ∴==,则ACE 的面积是11313222AC DE ⋅=⨯⨯=, 故答案为:32. 【点睛】本题考查了三角形全等的判定定理与性质,熟练掌握三角形全等的判定方法是解题关键. 2【分析】延长AG 交BC 于D ,根据重心的概念得到AD ⊥BC ,BD =DC =12BC =32,根据勾股定理求出AD ,根据重心的概念计算即可.【详解】解:延长AG 交BC 于D ,∵G 是三角形的重心,∴AD ⊥BC ,BD =DC =12BC =32, 由勾股定理得,AD=,∴GA =23AD【点睛】本题考查的是等边三角形的性质、三角形的重心的概念,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.3、45°或135°【分析】根据题意,分两种情况讨论:①当ABC ∆为锐角三角形时;②当ABC ∆为钝角三角形时;作出相应图形,然后利用全等三角形的判定证明三角形全等,根据其性质及各角直角的等量关系即可得.【详解】解:①如图所示:当ABC ∆为锐角三角形时,∵AD BC ⊥,BE AC ⊥,∴90BDF ADC BEC ∠=∠=∠=︒,∴90C CBE ∠+∠=︒,90C CAD ∠+∠=︒,∴CBE CAD ∠=∠,在ΔΔΔΔ与ADC ∆中,CBE CAD BDF ADC DF CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴ΔΔΔΔ≅ΔΔΔΔ,∴BD AD =,∵90ADB ∠=︒,∴45ABC DAB ∠=∠=︒;②如图所示:当ABC ∆为钝角三角形时,∵AD BC ⊥,BE AC ⊥,∴90BDF ADC BEC ∠=∠=∠=︒,∴90C CAD ∠+∠=︒,90C CBE ∠+∠=︒,∴CBE CAD ∠=∠,∵DBF CBE ∠=∠,∴DBF CAD ∠=∠,在ΔΔΔΔ与ADC ∆中,DBF CAD BDF ADC DF CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴ΔΔΔΔ≅ΔΔΔΔ,∴BD AD =,∵90ADB ∠=︒,∴45ABD DAB ∠=∠=︒,18045135ABC ∠=︒-︒=︒,综合①②可得:ABC ∠为45︒或135︒,故答案为:45︒或135︒.【点睛】题目主要考查全等三角形的判定和性质,等腰三角形的性质,根据题意进行分类讨论,作出相应图形是解题关键.4、55︒【分析】先求出∠EDC =35°,然后根据平行线的性质得到∠C =∠EDC =35°,再由直角三角形两锐角互余即可求解.【详解】解:∵∠1=145°,∴∠EDC =35°,∵DE ∥BC ,∴∠C =∠EDC =35°,又∵∠A =90°,∴∠B =90°-∠C =55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,直角三角形两锐角互余,求出∠C 的度数是解题的关键.5、三角形两边之和大于第三边【分析】表示出ABC 和四边形BDEC 的周长,再结合ADE 中的三边关系比较即可.【详解】解:ABC 的周长=AC AB BC AE AD CE CB BD ++=++++四边形BDEC 的周长=DE CE CB BD +++∵在ADE 中AE AD DE +>∴AE AD CE CB BD ++++>DE CE CB BD +++即ABC 的周长一定大于四边形BDEC 的周长,∴依据是:三角形两边之和大于第三边;故答案为三角形两边之和大于第三边【点睛】本题考查了三角形三边关系定理,关键是熟悉三角形两边之和大于第三边的知识点.三、解答题1、25°【分析】直接利用等腰三角形的性质得出∠ABC =∠ACB =65°,进而利用三角形内角和定理得出答案.【详解】∵AB =AC ,∠A =50°,∴∠ABC=∠ACB=65°,∵CD⊥BC于点D,∴∠BCD的度数为:180°−90°−65°=25°.【点睛】此题主要考查了等腰三角形的性质,正确得出∠B的度数是解题关键.2、(1)①见解析;②60α︒-,60;③MF=MA+ME,证明见解析;(2)MF MA ME=-【分析】(1)①按照要求旋转作图即可;②由旋转和等腰三角形性质解出∠AEF;再由三角形外角定理求出∠AMF;③在FE上截取GF=ME,连接AG,证明△AFG≌△AEM且△AGM为等边三角形后即可证得MF =MA+ME;(2)根据题意画出图形,根据含30°的直角三角形的性质,即可得到结论.【详解】解:(1)①补全图形如下图:②∵∠CAE=∠DAC=α,∴∠BAE=30°+α∴∠FAE=2×(30°+α)∴∠AEF =()180-2+302α︒⨯︒=60°-α; ∵∠AMF =∠CAE +∠AEF =α+60°-α=60°,故答案是:60°-α,60°;③MF =MA +ME .证明:在FE 上截取GF =ME ,连接AG .∵点D 关于直线AC 的对称点为E ,∴△ADC ≌△AEC .∴∠CAE =∠CAD =α.∵∠BAC =30°,∴∠EAN =30°+α.又∵点E 关于直线AB 的对称点为F ,∴AB 垂直平分EF .∴AF =AE ,∠FAN =∠EAN =30°+α,∴∠F =∠AEF =()180230602αα︒-︒+=︒-.∴∠AMG =6060αα︒-+=︒.∵AF =AE ,∠F =∠AEF , GF =ME ,∴△AFG≌△AEM.∴AG=AM.又∵∠AMG=60︒,∴△AGM为等边三角形.∴MA=MG.∴MF=MG+GF=MA+ME.(2)MF MA ME=-,理由如下:如图1所示,∵点E与点F关于直线AB对称,∴∠ANM=90°,NE=NF,又∵∠NAM=30°,∴AM=2MN,∴AM=2NE+2EM =MF+ME,∴MF=AM-ME;如图2所示,∵点E与点F关于直线AB对称,∴∠ANM=90°,NE=NF,∵∠NAM=30°,∴AM=2NM,∴AM=2MF+2NF=2MF+NE+NF=ME+MF,∴MF=MA-ME;综上所述:MF=MA-ME.【点睛】本题考查轴对称、三角形全等判定与性质、等边三角形判定与性质,掌握这些是本题关键.3、∠AFE=50°.【分析】根据CE平分∠ACB,∠ACB=80°,得出∠ECB=11804022ACB∠=⨯︒=︒,根据高线性质得出∠ADC=90°,根据三角形内角和得出∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,利用对顶角性质得出∠AFE=∠DFC=50°即可.【详解】解:∵CE平分∠ACB,∠ACB=80°,∴∠ECB =11804022ACB ∠=⨯︒=︒, ∵AD 是△ABC 边BC 上的高,AD ⊥BC ,∴∠ADC =90°,∴∠DFC =180°-∠ADC -∠ECB =180°-90°-40°=50°,∴∠AFE =∠DFC =50°.【点睛】本题考查角平分线定义,垂线性质,三角形内角和,对顶角性质,掌握角平分线定义,垂线性质,三角形内角和,对顶角性质是解题关键.4、(1)见解析(2)5BE =【分析】(1)利用CEA ∠是ABE △的外角,以及CEA B F ∠=∠+∠证明即可.(2)证明ABE △≌FCE △,可知BE CE =,从而得出答案.(1)证明:∵CEA ∠是ABE △的外角,∴CEA B EAB ∠=∠+∠.又∵CEA B F ∠=∠+∠,∴EAB F ∠=∠.(2)解:在ABE △和FCE △中,AB FC EAB F AEB FEC =⎧⎪∠=∠⎨⎪∠=∠⎩, ∴ABE △≌FCE △.∴BE CE =.∵10BC =,∴5BE =.【点睛】本题考查了三角形的外角以及三角形全等的性质和判定,掌握三角形全等的性质和判定是解题的关键.5、(1)见解析;(2)见解析;(3)108°【分析】(1)根据对顶角相等结合已知条件得出∠AEG =∠C ,根据内错角相等两直线平行即可证得结论;(2)由∠AGE +∠AHF =180°等量代换得∠DGC +∠AHF =180°可判断EC //BF ,两直线平行同位角相等得出∠B =∠AEG ,结合(1)得出结论;(3)由(2)证得EC //BF ,得∠BFC +∠C =180°,求得∠C 的度数,由三角形内角和定理求得∠D 的度数.【详解】证明:(1)∵∠AEG =∠AGE ,∠C =∠DGC ,∠AGE =∠DGC∴∠AEG =∠C∴AB //CD(2)∵∠AGE =∠DGC ,∠AGE +∠AHF =180°∴∠DGC +∠AHF =180°∴EC //BF∴∠B=∠AEG由(1)得∠AEG=∠C∴∠B=∠C(3)由(2)得EC//BF∴∠BFC+∠C=180°∵∠BFC=4∠C∴∠C=36°∴∠DGC=36°∵∠C+∠DGC+∠D=180°∴∠D=108°【点睛】此题考查了平行线的判定与性质,三角形内角和定理,熟记“内错角相等,两直线平行”、“同旁内角互补,两直线平行”及“两直线平行,同旁内角互补”是解题的关键.6、见解析【分析】过A作AF⊥BC于F,根据等腰三角形的性质得出BF=CF,DF=EF,即可求出答案.【详解】证明:如图,过A作AF⊥BC于F,∵AB =AC ,AD =AE ,∴BF =CF ,DF =EF ,∴BF -DF =CF -EF ,∴BD =CE .【点睛】本题考查了等腰三角形的性质的应用,注意:等腰三角形的底边上的高,底边上的中线,顶角的平分线互相重合.7、(1)见解析;(2)猜想:DE BD CE =+,见解析;(3)见解析【分析】(1)先证明BDA AEC ∠=∠和ABD CAE ∠=∠,再根据AAS 证明ABD CAE ≌即可;(2)根据AAS 证明ABD CAE ≌得BD AE =,DA EC =,进一步可得出结论;(3)分别过点C 、E 作CM l ⊥,EN l ⊥,同(1)可证ABF CAM ≌,ADF EAN ≌,得出CM =EN ,证明CMG ENG ≌得CG EG =,从而可得结论.【详解】解:(1)证明:∵BD l ⊥,CE l ⊥,∴90BDA AEC ∠=∠=︒,∴90ABD DAB ∠+∠=︒∴90CAE DAB ∠+∠=︒∴ABD CAE ∠=∠,在ABD 与CAE 中BDA AEC ABD CAE AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()ABD CAE AAS ≌(2)猜想:DE BD CE =+,∵BDA BAC α∠=∠=∴180180ABD DAB BDA α∠+∠=︒-∠=︒-,180180CAE DAB BAC α∠+∠=︒-∠=︒-∴ABD CAE ∠=∠,在ABD 与CAE 中BDA AEC ABD CAE AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()ABD CAE AAS ≌,∴BD AE =,DA EC =,∴DE AE DA BD CE =+=+(3)分别过点C 、E 作CM l ⊥,EN l ⊥,同(1)可证ABF CAM ≌,ADF EAN ≌,∴AF CM =,AF EN =∵CM l ⊥,EN l ⊥,∴90CMG ENG ∠=∠=︒在CMG 与ENG 中CMG ENG CGM EGN CM EN ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CMG ENG AAS ≌,∴CG EG =,∴G 为CE 的中点.【点睛】本题考查了全等三角形的判定与性质、垂线的定义、角的互余关系,证得△ABD ≌△CAE 是解决问题的关键.8、(1)△AMN 是是等腰三角形;理由见解析;(2)①证明见解析;②a ﹣b .【分析】(1)由等腰三角形的性质得到∠ABC=∠ACB,由平行线的性质得到∠AMN=∠ABC,∠ANM=∠ACB,于是得到∠AMN=∠ANM,根据等角对等边即可证得结论;(2)①由角平分线的定义得到∠PBM=∠PBC,由平行线的性质得到∠MPB=∠PBC,于是得到∠PBM=∠MPB,根据等角对等边即可证得结论;②由①知MB=MP,同理可得:NC=NP,故△AMN的周长=AB+AC,再根据已知条件即可求出结果.(1)解:△AMN是是等腰三角形,理由如下:∵AB=AC,∴∠ABC=∠ACB,∵MN∥BC,∴∠AMN=∠ABC,∠ANM=∠ACB,∴∠AMN=∠ANM,∴AM=AN,∴△AMN是等腰三角形;(2)①证明:∵BP平分∠ABC,∴∠PBM=∠PBC,∵MN∥BC,∴∠MPB=∠PBC∴∠PBM=∠MPB,∴MB=MP,∴△BPM是等腰三角形;②由①知MB=MP,同理可得:NC=NP,∴△AMN的周长=AM+MP+NP+AN=AM+MB+NC+AN=AB+AC,∵△ABC的周长为a,BC=b,∴AB+AC+b=a,∴AB+AC=a﹣b∴△AMN的周长=a﹣b.【点睛】本题考查了等腰三角形的性质和判定,平行线的性质,列代数式,能够灵活应用这些性质是解决问题的关键.9、(1)3(2)12(3)2nn m【分析】(1)利用ASA证明△AEF≌△ABE,得AE=AB=4,得出答案;(2)延长CG、AB交于点H,设S△BGC=S△HGB=a,用两种方法表示△ACH的面积即可;(3)在AC上取AN=AB,可得CD=DN=n-m,根据△ABD和△ACD的高相等,面积比等于底之比可求出CD的长.(1)∵AD是△ABC的平分线,∴∠BAD=∠CAD,∵BE ⊥AD ,∴∠BEA =∠FEA ,在△AEF 和△AEB 中,BAE FAE AE AEAEB AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEF ≌△AEB (ASA ),∴AF =AB =4,∵AC =7∴CF =AC -AF =7-4=3,故答案为:3;(2)延长CG 、AB 交于点H ,如图,由(1)知AC =AH ,点G 为CH 的中点,设S △BGC =S △HGB =a ,根据△ACH 的面积可得:S △ABC +2a =2(6+a ),∴S △ABC =12;(3)在AC 上取AN =AB ,如图,∵AD 是△ABC 的平分线,∴∠NAD =∠BAD ,在△ADN 与△ADB 中,AN AB NAD BAD AD AD ⎧⎪∠∠⎨⎪⎩===, ∴△ADN ≌△ADB (SAS ),∴∠AND =∠B ,DN =BD ,∵∠B =2∠C ,∴∠AND =2∠C ,∴∠C =∠CDN ,∴CN =DN =AC -AB =n -m ,∴BD =DN =n -m ,根据△ABD 和△ACD 的高相等,面积比等于底之比可得:CD AC BD AB=,∴CD n n m m=-, ∴2()n n m n CD n m m-==-, 故答案为:2n n m-. 【点睛】本题主要考查了全等三角形的判定与性质,角平分线的定义,三角形的面积等知识,利用角的轴对称性构造全等三角形是解题的关键.10、(1)72;(2)①ACD △与BCE 是偏等积三角形,理由见详解;②修建小路的总造价为42000元【分析】(1)当AP CP =时,则72AP =,证ABP CBP S S ∆∆=,再证ABP ∆与CBP ∆不全等,即可得出结论;(2)①过A 作AM DC ⊥于M ,过B 作BN CE ⊥于N ,证()ACM BCN AAS ∆∆≌,得AM BN =,则ACD BCE S S ∆∆=,再证ACD ∆与BCE ∆不全等,即可得出结论;②过点A 作//AN CD ,交CG 的延长线于N ,证得()AGN DGC AAS ∆∆≌,得到AN CD =,再证()ACN CBE SAS ∆∆≌,得ACN CBE ∠=∠,由余角的性质可证CF BE ⊥,然后由三角形面积和偏等积三角形的定义得12BCE S BE CF ∆=⋅,2100BCEACD S S ∆∆==,求出70()CF m =,即可求解. 【详解】解:(1)当72AP CP ==时,ABP ∆与CBP ∆是偏等积三角形,理由如下:设点B 到AC 的距离为h ,则12ABP S AP h ∆=⋅,12CBP S CP h ∆=⋅,ABP CBP S S ∆∆∴=,10AB =,7BC =,AB BC ∴≠,AP CP =、PB PB =,ABP ∴∆与CBP ∆不全等,ABP ∴∆与CBP ∆是偏等积三角形, 故答案为:72;(3)①ACD ∆与BCE ∆是偏等积三角形,理由如下: 过A 作AM DC ⊥于M ,过B 作BN CE ⊥于N ,如图3所示:则90AMC BNC ∠=∠=︒,ACB ∆、DCE ∆是等腰直角三角形,90ACB DCE ∴∠=∠=︒,AC BC =,CD CE =,3603609090180BCN ACD ACB DCE ∴∠+∠=︒-∠-∠=︒-︒-︒=︒, 180ACM ACD ∠+∠=︒,ACM BCN ∴∠=∠,在∆ACM 和BCN ∆中,AMC BNC ACM BCN AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ACM BCN AAS ∴∆∆≌,AM BN ∴=,12ACD S CD AM ∆=⋅,12BCE S CE BN ∆=⋅, ACD BCE S S ∆∆∴=,180BCE ACD ∠+∠=︒,090BCE ︒<∠<︒, ACD BCE ∴∠≠∠,CD CE =,AC BC =,ACD ∴∆与BCE ∆不全等, ACD ∴∆与BCE ∆是偏等积三角形; ②如图4,过点A 作//AN CD ,交CG 的延长线于N ,则N GCD ∠=∠, G 点为AD 的中点,AG GD ∴=,在AGN ∆和DGC ∆中,N GCD AGN DGC AG DG ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AGN DGC AAS ∴∆∆≌,AN CD ∴=,CD CE =,AN CE ∴=,//AN CD ,180CAN ACD ∴∠+∠=︒,90ACB DCE ∠=∠=︒,3609090180ACD BCE ∴∠+∠=︒-︒-︒=︒,BCE CAN ∴∠=∠,在ACN ∆和CBE ∆中,AN CE CAN BCE AC CB =⎧⎪∠=∠⎨⎪=⎩, ()ACN CBE SAS ∴∆∆≌,ACN CBE ∴∠=∠,1809090ACN BCF ∠+∠=︒-︒=︒,90CBE BCF ∴∠+∠=︒,90BFC ∴∠=︒,CF BE ∴⊥.由①得:ACD ∆与BCE ∆是偏等积三角形,12BCE S BE CF ∆∴=⋅,2100BCE ACD S S ∆∆==, 22210070()60BCE S CF m BE ∆⨯∴===, ∴修建小路CF 的总造价为:6007042000⨯=(元).【点睛】本题是四边形综合题目,考查了新定义“偏等积三角形”的定义、全等三角形的判定与性质、等腰直角三角形的性质、三角形面积等知识;本题综合性强,熟练掌握“偏等积三角形”的定义,证明∆∆≌是解题的关键,属于中考常考题型.∆∆ACM BCN≌和ACN CBE。
沪教版七年级下册数学第十四章三角形含答案一、单选题(共15题,共计45分)1、若等腰三角形的两边长分别是4和9,则它的周长是()A.17B.22C.17或22D.132、如图2,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为()A.30°B.35°C.40°D.45°3、如图,已知在△ABC中,∠C = 90°,AD = AC,DE⊥AB交BC于点E,若∠B = 28°,则∠AEC =()A.28°B.59°C.60°D.62°4、已知等腰三角形的两边长分别是5和6,则这个等腰三角形的周长为().A.11B.16C.17D.16或175、在等腰三角形ABC中,它的两边长分别为8cm和4cm,则它的周长为()A.10cmB.12 cmC.20 cm或16 cmD.20 cm6、如图,直线l1 ∥ l2,CD⊥AB于点D ,∠1=50°,则∠BCD的度数为()A.40°B.45°C.50°D.30°7、如图,l∥m,等边△ABC的顶点B在直线m上,∠1=20°,则∠2的度数为()A.60°B.45°C.40°D.30°8、△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c 2=b 2﹣a 2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b 2,则△ABC是直角三角形 D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形9、如图绕点B顺时针旋转60°得到,A、B、E三点共线,AC交DE于F,BC交DE于G,下列结论错误的是()A. B. C. D.10、如图,已知⊙O是△ABC的外接圆,若弦BC等于⊙O的半径,则∠BAC等于()A.30°B.45°C.60°D.20°11、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=6,AB=10,则DE的长为()A. B.3 C. D.12、锐角三角形.任意两个内角之和必大于()A.120°B.100°C.90°D.60°13、已知直线y=﹣x+3与坐标轴分别交于点A,B,点P在抛物线y=﹣(x ﹣)2+4上,能使△ABP为等腰三角形的点P的个数有()A.8个B.4个C.5个D.6个14、已知线段a=4cm,b=6cm,下列长度的线段中,不能与a,b组成三角形的是()A.4cmB.6cmC.11cmD.9cm15、如图,矩形的两条对角线相交于点,则的长是()A. B. C. D.二、填空题(共10题,共计30分)16、已知在△ABC中,AB=3,AC=5,第三边BC的长为一元二次方程x2-6x+8=0的一个根,则该三角形为________三角形.17、如图,△ABC是等边三角形,AD是BC边上的中线,点E在AC上,且∠CDE=20°,现将△CDE沿直线DE折叠得到△FDE,连结BF.∠BFE的度数是________.18、等腰三角形的一个角是80°,则它的底角是________.19、如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A=________°.20、如图,在四边形ABCD中,AB=AD=4,,BC= ,CD=8,则四边形ABCD的面积为________.21、如图,点A是反比例函数y= 图象上的任意一点,过点A作AB∥x轴,AC∥y轴,分别交反比例函数y= 的图象于点B,C,连接BC,E是BC上一点,连接并延长AE交y轴于点D,连接CD,则S△DEC ﹣S△BEA=________.22、如图,,以点为圆心,小于长为半径画弧,分别交,于,两点,再分别以,为圆心,大于长为半径画弧,两弧交于点,作射线,交于点.若,则的大小等于________(度).23、如图,P是等边△ACB中的一个点,PA=2,,PC=4,则△ACB 的边长是________.24、已知等腰ABC的三条边长都是方程x2-9x+18=0的根,则ABC的周长为________;25、若三角形的两边长是5 和2 ,且第三边的长度是偶数,则第三边长可能是________.三、解答题(共5题,共计25分)26、如图所示,△ABC平移后得到了△DEF,D在AB上,若∠A=26°,∠E=74°,求∠1,∠2,∠F,∠C的度数.27、如图所示,B处在A处的南偏西45°方向上,C处在A处的南偏东30°方向,C处在B处的北偏东60°,求∠ACB是多少度?28、如图,在中,,以为直径作,过点作交于,.求证:是的切线.29、把同一个正三角形的三条边5等分、7等分(如图①②)然后适当地连结这些等分点,使其得到若干个面积相等的小正三角形,已知图①中阴影部分的面积是294cm2,求图②中阴影部分的面积.30、如图,AB∥CD,BD=CD,∠D=36°,求∠ABC的度数.参考答案一、单选题(共15题,共计45分)1、B2、C3、B4、D5、D6、A7、C8、B9、D10、A11、A12、C13、A14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。
沪教版七年级下册数学第十四章三角形含答案一、单选题(共15题,共计45分)1、如图,在△ABC中,AB=AD=DC,∠BAD=26°,则∠C的度数是()A.36°B.77°C.64°D.38.5°2、如图,己知直线y= x-3与x轴、y轴分别交于A,B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连接PA,PB,则△PAB面积的最大值是( )A.8B.12C.D.3、如图,在中,为的中点且交于,平分交于点.若,则的长为().A.3B.6C.10D.124、在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF的是()A.AC=DFB.AB=DEC.∠A=∠DD.∠B=∠E5、如图,,,并且,则的度数为()A.55°B.45°C.30°D.60°6、等边三角形的一个角是().A. B. C. D.7、如图所示是二次函数的图象在x轴上方的一部分,对于这段图象与x轴所围成的阴影部分的面积,你认为与其最接近的值是()A.4B.C.D.88、已知如图所示,另有,满足,,.下列结论一定正确的是()A. B. C. 中边上的高中边上的高 D. 中边上的中线中边上的中线9、如图,点O是平行四边形ABCD的对角线的交点,则图中全等三角形共有()A.4对B.3对C.2对D.1对10、在中,若,则是().A.锐角三角形B.形状不确定C.钝角三角形D.直角三角形11、如图,,点在边上,线段,交于点,若,则的度数为()A. B. C. D.12、如图,点O是△ABC中∠ABC与∠ACB的平分线的交点,OD∥AB交BC于D 点,OE∥AC交BC于E点,若BC=20cm,则△ODE的周长为()A.16cmB.18cmC.20cmD.22cm13、如图,一艘轮船在B处观测灯塔A位于南偏东50°方向上,相距40海里,轮船从B处沿南偏东20°方向匀速航行至C处,在C处观测灯塔A位于北偏东10°方向上,则C处与灯塔A的距离是()A.20海里B.40海里C.20 海里D.40 海里14、如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.135°B.150°C.270°D.90°15、如图,等边三角形ABC中,D,E分别为AB,BC边上的点,且 AD=BE,AE与CD交于点F,AG⊥CD于点G,则的值为( )A. B. C. D.二、填空题(共10题,共计30分)16、如图,直线y=2x+2 与x、y轴分别交于A、B两点,以OB为边在y轴左侧作等边△OBC,将△OBC沿y轴上下平移,使点C的对应点C′恰好落在直线AB上,则点C'的坐标为________.17、请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为________.B. tan38°15′≈________.(结果精确到0.01)18、如图,正方形网格中,每个正方形边长都相等,A、O、B在如图的格点上,则________.19、已知△ABC中,∠A∶∠B∶∠C=2∶3∶5,则△ABC是________三角形.20、如图,要测量池塘两岸相对的两点A,B的距离,可以在池塘外取AB的垂线BF上的两点C,D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直线上.若想知道两点A,B的距离,只需要测量出线段________即可.21、如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB=________.22、等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形的一个底角的度数为________.23、如图,在△ABC中,AD平分∠BAC,交BC于点D,BE⊥AD于E,AB=6,AC=14,∠ABC=3∠C,则BE=________.24、在⊙O中,若弧AB等于2倍的弧AC,则AB________ 2AC.25、如图,正方形ABCD的对角线相交于点O,点O又是正方形A1B1C1O的一个顶点,而且这两个正方形的边长都为2,无论正方形A1B1C1O绕点O怎样转动,两个正方形重叠部分的面积均为定值________.三、解答题(共5题,共计25分)26、已知如图所示,∠B=60°,∠C=20°,∠BDC=3∠A,求∠A的度数.27、下面是数学课堂的一个学习片断.阅读后,请回答下面的问题:学习等腰三角形有关内容后,张老师请同学们交流讨论这样一个问题:“已知等腰三角形ABC的角A等于300,请你求出其余两角”.同学们经片刻的思考与交流后,李明同学举手讲:“其余两角是300和1200”;王华同说:“其余两角是750和750”.还有一些同学也提出了不同的看法.(1)假如你也在课堂中,你的意见如何?为什么?(2)通过上面数学问题的讨论,你有什么感受?(用一句话表示)28、已知:如图,AB=BC,∠A=∠C.求证:AD=CD.29、如图,P为△ABC中任意一点.证明:AB+BC+CA>PA+PB+PC.30、已知:如图,与都是等边三角形,且点D在边AC上,并与端点A、C不重合求证:≌ .参考答案一、单选题(共15题,共计45分)1、D2、C3、D4、B5、A6、B7、B8、C9、A10、D11、D12、C13、B14、C15、B二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
沪教版七年级数学第二学期第十四章三角形专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在△ABC 中,∠A =∠B =14∠C ,则∠C =( ) A .70° B .80° C .100° D .120°2、如图,BD 是ABC 的角平分线,∥DE BC ,交AB 于点E .若30A ∠=︒,50BDC ∠=︒,则BDE ∠的度数是( )A .10°B .20°C .30°D .50°3、下列各条件中,不能作出唯一的ABC 的是( )A .4AB =,5BC =,10AC =B .5AB =,4BC =,30A ∠=︒ C .90A ∠=︒,30B ∠=︒,5BC =D .60A ∠=︒,50B ∠=︒,5AB =4、如图,ABN ≌ACM △,B 和C ∠是对应角,AB 和AC 是对应边,则下列结论中一定成立的是( )A .BAM MAN ∠=∠B .AM CN =C .BAM ABM ∠=∠D .AM AN =5、我们称网格线的交点为格点.如图,在4×4的长方形网格中有两个格点A 、B ,连接AB ,在网格中再找一个格点C ,使得△ABC 是等腰直角三角形,则满足条件的格点C 的个数是( )A .3B .4C .5D .66、以下长度的三条线段,能组成三角形的是( )A .2,3,5B .4,4,8C .3,4.8,7D .3,5,97、下列三角形与下图全等的三角形是( )A .B .C .D .8、如图,ABC DEC ≌△△,点E 在线段AB 上,75B ∠=︒,则ACD ∠的度数为( )A .20°B .25°C .30°D .40°9、如图:将一张长为40cm 的长方形纸条按如图所示折叠,若AB =3BC ,则纸条的宽为( )A .12B .14C .16D .1810、将三根木条钉成一个三角形木架,这个三角形木架具有稳定性.解释这个现象的数学原理是( )A .SSSB .SASC .ASAD .AAS第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,△ABC 中,AB =AC =DC ,D 在BC 上,且AD =DB ,则∠BAC =_____.2、如图,在△ABC 中,AB =AC .在AB 、AC 上分别截取AP ,AQ ,使AP =AQ .再分别以点P ,Q 为圆心,以大于12PQ 的长为半径作弧,两弧在∠BAC 内交于点R ,作射线AR ,交BC 于点D .若BC =6,则BD 的长为______________.3、如图,ABC 与BDE 的顶点A 、B 、D 在同一直线上,AB DE =,BC BD =,BC DE ∥,延长AC 分别交BE 、DE 于点F 、G .若30A ∠=︒,50D ∠=︒,则BFG ∠=______.4、如图,在ABC 中,AB AC =,40A ∠=︒,E 为BC 延长线上一点,ABC ∠与ACE ∠的平分线相交于点D ,则∠D 的度数为______.5、如图,B BDE ∠=∠,点G 分别为AD 与CF 的中点,若3,5CE EF ==,则AC =______.三、解答题(10小题,每小题5分,共计50分)1、已知:如图,AD ,BE 相交于点O ,AB ⊥BE ,DE ⊥AD ,垂足分别为B ,D ,OA =OE .求证:△ABO ≌△EDO .2、如图,在△ABC 中,CE 平分∠ACB 交AB 于点E ,AD 是△ABC 边BC 上的高,AD 与CE 相交于点F ,且∠ACB =80°,求∠AFE 的度数.3、阅读下面材料:活动1利用折纸作角平分线①画图:在透明纸片上画出PQR ∠(如图1-①);②折纸:让PQR ∠的两边QP 与QR 重合,得到折痕QH (如图1-②);③获得结论:展开纸片,QH 就是PQR ∠的平分线(如图1-③).活动2利用折纸求角如图2,纸片上的长方形ABCD ,直线EF 与边AB ,CD 分别相交于点E ,F .将AEF ∠对折,点A 落在直线EF 上的点A '处,折痕EN 与AD 的交点为N ;将BEF ∠对折,点B 落在直线EF 上的点B '处,折痕EM 与BC 的交点为M .这时NEM ∠的度数可知,而且图中存在互余或者互补的角.解答问题:(1)求NEM ∠的度数;(2)①图2中,用数字所表示的角,哪些与A EN '∠互为余角?②写出A EN '∠的一个补角.解:(1)利用活动1可知,EN 是AEA '∠的平分线,EM 是BEB '∠的平分线,所以12A EN '∠=∠ ,12B EM '∠=∠ .由题意可知,AEB ∠是平角.所以12NEM A EN B EM ''∠=∠+∠=(∠ +∠ )= °. (2)①图2中,用数字所表示的角,所有与A EN '∠互余的角是: ;②A EN '∠的一个补角是 .4、如图,等边△ABC 中,点D 在BC 上,CE =CD ,∠BCE =60°,连接AD 、BE .(1)如图1,求证:AD =BE ;(2)如图2,延长AD 交BE 于点F ,连接DE 、CF ,在不添加任何辅助线和其它字母的情况下,请直接写出等于120°的角.5、周老师带领同学们在数学课上探究下面命题的正确性:顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形.为此,请你完成下列问题:(1)已知:如图①,在ABC 中,AB AC =,36A ∠=︒,直线BD 平分ABC ∠交AC 于点D .求证:ABD △与DBC △都是等腰三角形;(2)在证明了该命题后,小尹同学发现:图②、③两个等腰三角形也具有这种特性,请你在图②、图③中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所有等腰三角形两个底角的度数;(3)接着,小尹又发现:还有一些非等腰三角形也具有这样的特性:即过它其中一个顶点画一条直线可以将原三角形分成两个小等腰三角形,请你画出一个具有这种特性的三角形的示意图,并在图中标出可能的各内角的度数.(4)请你写出两个符合(3)中一般规律的非等腰三角形的特征.6、(1)我们把两个面积相等但不全等的三角形叫做“偏等积三角形”,如图1,ABC 中,7,9,10===AC BC AB ,P 为AC 上一点,当AP =_______时,ABP △与CBP 是偏等积三角形;(2)如图2,四边形ABED 是一片绿色花园,ACB △、DCE 是等腰直角三角形,()90090∠=∠=︒<∠<︒ACB DCB BCE .①ACD △与BCE 是偏等积三角形吗?请说明理由;②已知60m,=BE ACD 的面积为22100m .如图3,计划修建一条经过点C 的笔直的小路CF ,F 在BE 边上,FC 的延长线经过AD 中点G .若小路每米造价600元,请计算修建小路的总造价.7、一个零件形状如图所示,按规定A ∠应等于75°,B 和C ∠应分别是18°和22°,某质检员测得114BDC ∠=︒,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由.8、命题:如图,已知,AC EF AC FE =∥,A D B F ,,,共线,(1),那么ABC FDE ∆≅∆.(1)从①AB FD =和②BC DE =两个条件中,选择一个填入横线,使得上述命题为真命题,你选择的条件为_______(填序号);(2)根据你选择的条件,判定ABC FDE ∆≅∆的方法是________;(3)根据你选择的条件,完成ABC FDE ∆≅∆的证明.9、在等腰ABC 中,AB AC =,点D 是BC 边上的一个动点(点D 不与点B ,C 重合),连接AD ,作等腰ADE ,使AD AE =,DAE BAC ∠=∠,点D ,E 在直线AC 两旁,连接CE .(1)如图1,当90BAC ∠=︒时,直接写出BC 与CE 的位置关系;(2)如图2,当090BAC ︒<∠<︒时,过点A 作AF CE ⊥于点F ,请你在图2中补全图形,用等式表示线段BD ,CD ,2EF 之间的数量关系,并证明.10、如图,△ABC 是等边三角形,点D 、E 、F 分别同时从A 、B 、C 以同样的速度沿AB 、BC 、CA 方向运动,当点D 运动到点B 时,三个点都停止运动.(1)在运动过程中△DEF 是什么形状的三角形,并说明理由;(2)若运动到某一时刻时,BE =4,∠DEC =150°,求等边△ABC 的周长;-参考答案-一、单选题1、D【分析】根据三角形的内角和,180A B C ∠+∠+∠=︒①,进而根据已知条件,将,A B ∠∠代入①即可求得C ∠【详解】解:∵在△ABC 中,180A B C ∠+∠+∠=︒,∠A =∠B =14∠C , ∴1118044C C C ∠+∠+∠=︒解得120C ∠=︒故选D【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.2、B【分析】由外角的性质可得∠ABD =20°,由角平分线的性质可得∠DBC =20°,由平行线的性质即可求解.【详解】解:(1)∵∠A =30°,∠BDC =50°,∠BDC =∠A +∠ABD ,∴∠ABD =∠BDC −∠A =50°−30°=20°,∵BD 是△ABC 的角平分线,∴∠DBC =∠ABD =20°,∵DE ∥BC ,∴∠EDB =∠DBC =20°,故选:B .【点睛】本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.3、B根据三角形全等的判定及三角形三边关系即可得出结果.【详解】解:A 、AB BC AC +<,不能组成三角形;B 、根据SSA 不可以确定选项中条件能作出唯一三角形;C 、根据AAS 可以确定选项中条件能作出唯一三角形;D 、根据ASA 可以确定选项中条件能作出唯一三角形;故答案为:B .【点睛】本题考查确定唯一三角形所需要的条件及三角形三边关系,解题关键在于对全等判定条件的理解.4、D【分析】根据全等三角形的性质求解即可.【详解】解:∵ABN ≌ACM △,B 和C ∠是对应角,AB 和AC 是对应边,∴BAN CAM ∠=∠,AM AN =,∴BAM CAN =∠∠,∴选项A 、B 、C 错误,D 正确,故选:D .【点睛】本题考查全等三角形的性质,熟练掌握全等三角形的性质是解答的关键.5、A根据题意,结合图形,分两种情况讨论:①AB为等腰直角△ABC底边;②AB为等腰直角△ABC其中的一条腰.【详解】解:如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的格点C点有0个;②AB为等腰直角△ABC其中的一条腰时,符合条件的格点C点有3个.故共有3个点,故选:A.【点睛】本题考查了等腰三角形的性质和判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.6、C【分析】由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可.【详解】解:A、2+3=5,不能组成三角形,不符合题意;B、4+4=8,不能组成三角形,不符合题意;C、3+4.8>7,能组成三角形,符合题意;D、3+5<9,不能组成三角形,不符合题意.故选:C.【点睛】本题主要考查对三角形三边关系的理解应用.注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可.7、C【分析】根据已知的三角形求第三个内角的度数,由全等三角形的判定定理即可得出答案.【详解】由题可知,第三个内角的度数为180514980︒-︒-︒=︒,A.只有两边,故不能判断三角形全等,故此选项错误;B.两边夹的角度数不相等,故两三角形不全等,故此选项错误;C.两边相等且夹角相等,故能判断两三角形全等,故此选项正确;D. 两边夹的角度数不相等,故两三角形不全等,故此选项错误.故选:C.【点睛】本题考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键.8、C【分析】根据全等三角形的性质可证得BC=CE,∠ACB=∠DCE即∠ACD=∠BCE,根据等腰三角形的性质和三角形的内角和定理求解∠B=∠BEC和∠BCE即可.【详解】解:∵ABC DEC ≌△△,∴BC=CE ,∠ACB =∠DCE ,∴∠B =∠BEC ,∠ACD =∠BCE ,∵75B ∠=︒,∴∠ACD =∠BCE=180°-2×75°=30°,故选:C .【点睛】本题考查全等三角形的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握全等三角形的性质和等腰三角形的性质是解答的关键.9、B【分析】如图,延长NO 交AD 的延长线于点P ,设BC =x ,则AB =3x ,利用折叠的性质和等腰直角三角形的性质可表示出纸条的宽MO ,NO 的长,从而可表示出纸条的长2PN 的长,然后根据长方形纸条的长为40,可得到关于x 的方程,解方程求出x 的值,即可求出纸条的宽.【详解】解:如图,延长NO 交AD 的延长线于点P ,设BC =x ,则AB =3x ,∵折叠,∴AB =BM =CO =CD =PO =3x ,∴纸条的宽为:MO =NO =3x +3x +x =7x ,∴纸条的长为:2PN=2(7x+3x)=20x=40解得:x=2,∴纸条的宽NO=7×2=14.故答案为:B.【点睛】此题考查了折叠的性质,等腰直角三角形的性质,一元一次方程应用题,解题的关键是正确分析题目中的等量关系列出方程求解.10、A【分析】根据三根木条即为三角形的三边长,利用全等三角形判定定理确定唯一三角形即可得.【详解】解:三根木条即为三角形的三边长,即为利用SSS确定三角形,故选:A.【点睛】题目主要考查利用全等三角形判定确定唯一三角形,熟练掌握全等三角形的判定是解题关键.二、填空题1、108°108度【分析】先设∠B=x,由AB=AC可知,∠C=x,由AD=DB可知∠B=∠DAB=x,由三角形外角的性质可知∠ADC=∠B+∠DAB=2x,根据DC=CA可知∠ADC=∠CAD=2x,再在△ABC中,由三角形内角和定理即可得出关于x的一元一次方程,求出x的值,从而求解.【详解】设∠B=x,∵AB=AC,∴∠C=∠B=x,∵AD=DB,∴∠B=∠DAB=x,∴∠ADC=∠B+∠DAB=2x,∵DC=CA,∴∠ADC=∠CAD=2x,在△ABC中,x+x+2x+x=180°,解得:x=36°.∴∠BAC=108°.故答案为:108°.【点睛】此题主要考查等腰三角形的判定和性质、三角形的内角和定理,解题的关键是熟练进行逻辑推理2、3【分析】BC,进而分析计算即可得出结论.根据题意依据等腰三角形的性质,即可得到BD=12【详解】解:由题可得,AR平分∠BAC,又∵AB=AC,∴AD是三角形ABC的中线,∴BD =12BC =12×6=3.故答案为:3.【点睛】本题主要考查基本作图以及等腰三角形的性质,注意掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.3、110︒【分析】先证明△ABC ≌△EDB ,可得∠E =30A ∠=︒,然后利用三角形外角的性质求解.【详解】解:∵BC DE ∥,∴∠ABC =∠D ,在△ABC 和△EDB 中AB DE ABC D BC BD =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△EDB ,∴∠E =30A ∠=︒,∴30A ∠=︒,50D ∠=︒,∴∠EGF =30°+50°=80°,∴BFG ∠=80°+30°=110°,故答案为:110°.【点睛】本题考查了平行线的性质,全等三角形的判定与性质,以及三角形外角的性质,熟练掌握三角形的外角等于不相邻的两个内角和是解答本题的关键.4、20°度【分析】 根据角平分线的性质得到1,122DBC ABC DCE ACE ∠=∠∠=∠,再利用三角形外角的性质计算. 【详解】解:∵ABC ∠与ACE ∠的平分线相交于点D , ∴1,122DBC ABC DCE ACE ∠=∠∠=∠, ∵∠ACE=∠A+∠ABC ,∠DCE=∠D +∠DBC ,∴∠D=∠DCE-∠DBC =11()2022ACE ABC A ∠-∠=∠=︒,故答案为:20°.【点睛】此题考查了三角形的外角性质及角平分线的性质,熟记三角形外角的性质定理是解题的关键. 5、4【分析】根据SAS 证明ACG DFG ≅,由全等三角形的性质得AC DF =,A FDG ∠=∠,由FDG BDE ∠=∠,B BDE ∠=∠得B FDG A ∠=∠=∠,推出BDE ,ABC 都是等腰三角形,故得AC BC DF ==,设BE x =,则DE x =,5DF EF DE x =-=-,3BC CE BE x =+=+,列出等量关系式解出x ,即可得出3AC BC x ==+. 【详解】∵点G 分别为AD 与CF 的中点,∴AG DG =,AGC DGF ∠=∠,CG FG =,∴()ACG DFG SAS ≅,∴AC DF =,A FDG ∠=∠,∵FDG BDE ∠=∠,B BDE ∠=∠,∴B FDG A ∠=∠=∠,∴BDE ,ABC 都是等腰三角形,∴AC BC DF ==,设BE x =,则DE x =,5DF EF DE x =-=-,3BC CE BE x =+=+,∴53x x -=+,解得:1x =,∴3314AC BC x ==+=+=.故答案为:4.【点睛】本题考查全等三角形的判定与性质,等腰三角形的判定与性质,根据题意找出关系式是解题的关键.三、解答题1、见解析【分析】利用AAS 即可证明△ABO ≌△EDO .【详解】证明:∵AB ⊥BE ,DE ⊥AD ,∴∠B =∠D =90°.在△ABO 和△EDO 中,,B D AOB EOD OA OE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABO ≌△EDO .【点睛】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.2、∠AFE =50°.【分析】根据CE 平分∠ACB ,∠ACB =80°,得出∠ECB =11804022ACB ∠=⨯︒=︒,根据高线性质得出∠ADC =90°,根据三角形内角和得出∠DFC =180°-∠ADC -∠ECB =180°-90°-40°=50°,利用对顶角性质得出∠AFE =∠DFC =50°即可.【详解】解:∵CE 平分∠ACB ,∠ACB =80°,∴∠ECB =11804022ACB ∠=⨯︒=︒, ∵AD 是△ABC 边BC 上的高,AD ⊥BC ,∴∠ADC =90°,∴∠DFC =180°-∠ADC -∠ECB =180°-90°-40°=50°,∴∠AFE =∠DFC =50°.【点睛】本题考查角平分线定义,垂线性质,三角形内角和,对顶角性质,掌握角平分线定义,垂线性质,三角形内角和,对顶角性质是解题关键.3、(1)AEA ',BEB ',AEA BEB '',,90;(2)①∠1、∠2;②∠CME 或∠NEB .【分析】()11118090222BEB AEA BEB '''∠=∠+∠=⨯︒=︒ 【详解】解:(1)∵折叠∴EN 是AEA '∠的平分线,EM 是BEB '∠的平分线,∴∠NEA =∠NEA ′=12AEA '∠,∠BEM =∠B′EM=12BEB '∠, ∵AEB ∠是平角.∴∠NEM =∠NEA ′+∠B′EM==12AEA '∠+()11118090222BEB AEA BEB '''∠=∠+∠=⨯︒=︒, 故答案为:AEA ',BEB ',AEA BEB '',,90;(2)①∵∠1=∠2,∠A′EN =∠3,∠NEM =90°,∴∠A′EN +∠1=∠NEM =90°,∴A EN '∠互为余角为∠1和∠2,故答案为:∠1、∠2;②∵∠A′EN =∠3,∠3+∠NEB =180°,∴∠A′EN 的补角为∠NEB .∵∠B =90°,∴∠2+∠EMB =90°,∴∠3=∠EMB ,∵∠CME +∠EMB =180°,∴∠3+∠CME=180°,∴∠A′EN的补角为∠CME,∴∠A′EN的补角为∠CME或∠NEB.故答案为∠CME或∠NEB.【点睛】本题考查折叠性质,平角,角平分线,余角性质,补角性质,掌握折叠性质,平角,角平分线,余角性质,补角性质是解题关键.4、(1)见解析;(2)等于120°的角有∠BFC、∠BDE、∠DFE=120°.【分析】(1)利用SAS证明△ADC≌△BEC,即可证明AD=BE;(2)证明△CDE为等边三角形,可求得∠BDE=120°;利用全等三角形的性质可求得∠BFD=∠BCA=60°,推出∠DFE=120°;同理可推出∠BFC=∠AFC+∠BFD=120°.【详解】(1)证明:等边△ABC中,CA=CB,∠ACB=60°,∵CE=CD,∠BCE=60°,∴△ADC≌△BEC(SAS),∴AD=BE;(2)等于120°的角有∠BFC、∠BDE、∠DFE=120°.∵CE=CD,∠BCE=60°,∴△CDE为等边三角形,∴∠CDE=60°,∴∠BDE=120°;∵△ADC≌△BEC,∴∠DAC=∠EBC,又∠BDF=∠ADC,∴∠BFD=∠BCA=60°,∴∠DFE=120°;同理可求得∠AFC=∠ABC=60°,∴∠BFC=∠AFC+∠BFD=120°;综上,等于120°的角有∠BFC、∠BDE、∠DFE=120°.【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.5、(1)见详解;(2)见详解;(3)见详解;(4)见详解;【分析】(1)根据等边对等角,及角平分线定义易得∠1=∠2=36°,∠C=72°,那么∠BDC=72°,则可得AD=BD=CB,所以△ABD与△DBC都是等腰三角形;(2)把等腰直角三角形分为两个小的等腰直角三角形即可,把108°的角分为36°和72°即可;(3)利用直角三角形的中线等于直角三角形斜边的一半可得任意直角三角形的中线把直角三角形分为两个等腰三角形;由(1),(2)易得所知的两个角要么是2倍关系,要么是3倍关系,可猜测只要所给的三个角中有2个角是2倍或3倍关系都可得到上述图形;(4)按照发现的(3)的特点来写,注意去掉特殊三角形的形式.(1)证明:在△ABC中,∵AB=AC,∴∠ABC=∠C,∵∠A=36°,(180°-∠A)=72°,∴∠ABC=∠C=12∵BD平分∠ABC,∴∠1=∠2=36°∴∠3=∠1+∠A=72°,∴∠1=∠A,∠3=∠C,∴AD=BD,BD=BC,∴△ABD与△BDC都是等腰三角形(2)解:如下图所示:(3)解:如图所示:(4)解:特征一:直角三角形(直角边不等);特征二:2倍内角关系,在△ABC 中,∠A =2∠B ,0°<∠B <45°,其中,∠B ≠30°;【点睛】本题考查了等腰三角形的判定;注意应根据题中所给的范例用类比的方法推测出把一般三角形分为两个等腰三角形的一般结论.6、(1)72;(2)①ACD △与BCE 是偏等积三角形,理由见详解;②修建小路的总造价为42000元【分析】(1)当AP CP =时,则72AP =,证ABP CBP S S ∆∆=,再证ABP ∆与CBP ∆不全等,即可得出结论;(2)①过A 作AM DC ⊥于M ,过B 作BN CE ⊥于N ,证()ACM BCN AAS ∆∆≌,得AM BN =,则ACD BCE S S ∆∆=,再证ACD ∆与BCE ∆不全等,即可得出结论;②过点A 作//AN CD ,交CG 的延长线于N ,证得()AGN DGC AAS ∆∆≌,得到AN CD =,再证()ACN CBE SAS ∆∆≌,得ACN CBE ∠=∠,由余角的性质可证CF BE ⊥,然后由三角形面积和偏等积三角形的定义得12BCE S BE CF ∆=⋅,2100BCEACD S S ∆∆==,求出70()CF m =,即可求解. 【详解】解:(1)当72AP CP ==时,ABP ∆与CBP ∆是偏等积三角形,理由如下:设点B 到AC 的距离为h ,则12ABP S AP h ∆=⋅,12CBP S CP h ∆=⋅,ABP CBP S S ∆∆∴=,10AB =,7BC =,AB BC ∴≠,AP CP =、PB PB =,ABP ∴∆与CBP ∆不全等,ABP ∴∆与CBP ∆是偏等积三角形, 故答案为:72;(3)①ACD ∆与BCE ∆是偏等积三角形,理由如下:过A 作AM DC ⊥于M ,过B 作BN CE ⊥于N ,如图3所示:则90AMC BNC ∠=∠=︒,ACB ∆、DCE ∆是等腰直角三角形,90ACB DCE ∴∠=∠=︒,AC BC =,CD CE =,3603609090180BCN ACD ACB DCE ∴∠+∠=︒-∠-∠=︒-︒-︒=︒,180ACM ACD ∠+∠=︒,ACM BCN ∴∠=∠,在∆ACM 和BCN ∆中,AMC BNC ACM BCN AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,AM BN ∴=,12ACD S CD AM ∆=⋅,12BCE S CE BN ∆=⋅, ACD BCE S S ∆∆∴=,180BCE ACD ∠+∠=︒,090BCE ︒<∠<︒,ACD BCE ∴∠≠∠,CD CE =,AC BC =,ACD ∴∆与BCE ∆不全等,ACD ∴∆与BCE ∆是偏等积三角形;②如图4,过点A 作//AN CD ,交CG 的延长线于N ,则N GCD ∠=∠, G 点为AD 的中点,AG GD ∴=,在AGN ∆和DGC ∆中,N GCD AGN DGC AG DG ∠=∠⎧⎪∠=∠⎨⎪=⎩,AN CD ∴=,CD CE =,AN CE ∴=,//AN CD ,180CAN ACD ∴∠+∠=︒,90ACB DCE ∠=∠=︒,3609090180ACD BCE ∴∠+∠=︒-︒-︒=︒,BCE CAN ∴∠=∠,在ACN ∆和CBE ∆中,AN CE CAN BCE AC CB =⎧⎪∠=∠⎨⎪=⎩, ()ACN CBE SAS ∴∆∆≌,ACN CBE ∴∠=∠,1809090ACN BCF ∠+∠=︒-︒=︒,90CBE BCF ∴∠+∠=︒,90BFC ∴∠=︒,CF BE ∴⊥.由①得:ACD ∆与BCE ∆是偏等积三角形,12BCE S BE CF ∆∴=⋅,2100BCE ACD S S ∆∆==, 22210070()60BCE S CF m BE ∆⨯∴===,∴修建小路CF 的总造价为:6007042000⨯=(元).【点睛】本题是四边形综合题目,考查了新定义“偏等积三角形”的定义、全等三角形的判定与性质、等腰直角三角形的性质、三角形面积等知识;本题综合性强,熟练掌握“偏等积三角形”的定义,证明ACM BCN ∆∆≌和ACN CBE ∆∆≌是解题的关键,属于中考常考题型.7、不合格,理由见解析【分析】延长BD 与AC 相交于点E .利用三角形的外角性质,可得1A B ∠=∠+∠,BDC BEC C ∠=∠+∠,即可求解.【详解】解:如图,延长BD 与AC 相交于点E .∵1∠是ABE △的一个外角,75A ∠=︒,18B ∠=︒,∴1751893A B ∠=∠+∠=︒+︒=︒,同理可得9322115BDC BEC C ∠=∠+∠=︒+︒=︒∵李师傅量得114BDC ∠=︒,不是115°,∴这个零件不合格.【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.8、(1)①(2)SAS(3)见解析【分析】(1)根据全等三角形的判定方法分析得出答案;(2)根据(1)直接填写即可;(3)利用SAS 进行证明.(1)解:∵AC EF ∥,∴∠A =∠F ,∵AC=EF ,∴当AB FD =时,可根据SAS 证明ABC FDE ∆≅∆; 当BC DE =时,不能证明ABC FDE ∆≅∆, 故答案为:①;(2)解:当AB FD =时,可根据SAS 证明ABC FDE ∆≅∆, 故答案为:SAS ;(3)证明:在△ABC 和△FDE 中,AC EF A F AB FD =⎧⎪∠=∠⎨⎪=⎩, ∴ABC FDE ∆≅∆.【点睛】此题考查了添加条件证明两个三角形全等,正确掌握全等三角形的判定定理是解题的关键. 9、(1)BC CE ⊥(2)2CD BD EF -=或2BD CD EF -=,见解析【分析】(1)根据已知条件求出∠B =∠ACB =45°,证明△BAD ≌△CAE ,得到∠ACE =∠B =45°,求出∠BCE =∠ACB +∠ACE =90°,即可得到结论BC CE ⊥;(2)根据题意作图即可,证明ABD △≌ACE .得到BD CE =,B ACE ∠=∠,ADB AEC ∠=∠,推出ACB ACE ∠=∠.延长EF 到点G ,使FG EF =,证明ADC ≌AGC ,推出CD CG =.由此得到2CD BD EF -=.同理可证2BD CD EF -=.(1)解:90BAC ∠=︒,AB AC =,∴∠B =∠ACB =45°,∵DAE BAC ∠=∠,∴DAE DAC BAC DAC ∠-∠=∠-∠,即∠BAD =∠CAE ,∵AB AC =,AD AE =,∴△BAD ≌△CAE ,∴∠ACE =∠B =45°,∴∠BCE =∠ACB +∠ACE =90°,∴BC CE ⊥;(2)解:如图,补全图形;2CD BD EF -=.证明:∵BAC DAE ∠=∠,∴BAD CAE ∠=∠.又∵AB AC =,AD AE =,∴ABD △≌ACE .∴BD CE =,B ACE ∠=∠,ADB AEC ∠=∠.∵AB AC =,∴B ACB ∠=∠.∴ACB ACE ∠=∠.延长EF 到点G ,使FG EF =.∵AF CE ⊥,∴AE AG =.∴AEG G ∠=∠.∵ADB AEC ∠=∠,∴ADC AEG ∠=∠.∴ADC G ∠=∠.∵AC AC =,∴ADC ≌AGC .∴CD CG =.∵2CG CE EF -=,∴2CD BD EF -=.如图,同理可证2BD CD EF -=..【点睛】此题考查了全等三角形的判定及性质,等腰三角形的性质,熟记全等三角形的判定及性质是解题的关键.掌握分类思想解题是难点.10、(1)△DEF 是等边三角形,理由见解析(2)等边△ABC 的周长为18【分析】(1)利用△DEF 是等边三角形的性质以及三点的运动情况,求证EBD FCE ∆∆≌和ECF FAD ∆∆≌,进而证明==DE EF FD ,最后即可说明△DEF 是等边三角形.(2)利用题(1)的条件即∠DEC =150°,得出DEB ∆是含30角的直角三角形,求出122BD BE ==,最后求解出等边△ABC 的BC 长,最后即可求出等边△ABC 的周长. 【详解】(1)解:△DEF 是等边三角形,证明:由点D 、E 、F 的运动情况可知:AD BE CF ==,△ABC 是等边三角形,60A B C ∴∠=∠=∠=︒,AB BC CA ==,BD AB AD BC BE CE ∴=-=-=,CE BC BE CA CF AF =-=-=,在EBD ∆与FCE ∆中,BD CE B C BE CF =⎧⎪∠=∠⎨⎪=⎩()EBD FCE SAS ∴∆∆≌,DE EF ∴=,同理可证ECF FAD ∆∆≌,进而有=EF FD ,DE EF FD ∴==,故△DEF 是等边三角形.(2)解:由(1)可知△DEF 是等边三角形,且EBD FCE ∆∆≌,60DEF ∴∠=︒,BDE CEF ∠=∠,BD CE =,150DEC ∠=︒,90BDE CEF DEC DEF ∴∠=∠=∠-∠=︒,在Rt DEB ∆中,9030DEB B ∠=︒-∠=︒,122BD BE ∴==, 6BC BE CE BE BD ∴=+=+=,AB BC CA ==,∴等边△ABC 的周长为318BC =.【点睛】本题主要是考查了全等三角形的性质及判定、等边三角形的判定及性质和含30角直角三角形的性质,熟练利用等边三角形的性质,找到相等条件,进而证明全等三角形,综合利用全等三角形以及含30角直角三角形的性质,求出对应边长,是解决该题的关键.。
初中数学十四章教案教学目标:1. 了解数据的收集与处理的意义和作用;2. 掌握数据的收集、整理、描述和分析的方法;3. 学会使用图表来表示和展示数据;4. 培养学生的数据观念和数据分析能力。
教学内容:1. 数据的收集与处理的意义和作用;2. 数据的收集、整理、描述和分析的方法;3. 图表的类型和作用;4. 数据的收集与处理的实际应用。
教学步骤:一、导入(5分钟)1. 引导学生回顾之前学过的统计知识,如平均数、中位数、众数等;2. 提问:我们为什么需要学习统计知识?统计在实际生活中有什么应用?二、讲解数据的收集与处理的意义和作用(10分钟)1. 讲解数据的概念和重要性;2. 解释数据的收集与处理的意义和作用;3. 通过实际例子说明数据的应用价值。
三、讲解数据的收集、整理、描述和分析的方法(10分钟)1. 讲解数据的收集方法,如调查、实验等;2. 讲解数据的整理方法,如分类、排序等;3. 讲解数据的描述方法,如图表、文字等;4. 讲解数据分析的方法,如平均数、中位数、众数等。
四、讲解图表的类型和作用(10分钟)1. 讲解条形图、折线图、饼图等常见图表的类型和特点;2. 通过实际例子说明图表在数据展示和分析中的作用。
五、讲解数据的收集与处理的实际应用(10分钟)1. 通过实际例子讲解数据在各个领域的应用,如经济学、生物学、社会学等;2. 引导学生认识到数据在决策和解决问题中的重要性。
六、课堂练习(10分钟)1. 布置一些有关数据收集与处理的练习题,让学生独立完成;2. 对学生的练习进行点评和指导。
七、总结与布置作业(5分钟)1. 对本节课的内容进行总结,让学生掌握数据的收集与处理的基本方法和图表的类型及作用;2. 布置一些有关数据收集与处理的作业,让学生巩固所学知识。
教学评价:1. 课后收集学生的作业,检查学生对数据的收集与处理的方法和图表的类型的掌握情况;2. 在下一节课开始时,让学生分享自己完成的作业,对学生的表现进行评价和指导。
清江外国语学校七年级下册周周清数学(9.3-)班级: 姓名: 时间:60分钟 总分:100分 分数: 一、选择题(每题3分,共12分):1、(2009宜昌)如果ab <0,那么下列判断正确的是( ).A .a <0,b <0B . a >0,b >0C . a ≥0,b ≤0 D. a <0,b >0或a >0,b <0 2、(2008肇庆)下列式子正确的是( )A .>0 B .≥0 C .a +1>1 D .a -1>13、(2008黄石)若,则的大小关系为( ) A .B .C .D .不能确定4、(2009牡丹江)若则的大小关系是( )A .B .C .D .二、填空题(每题3分,共15分)5、(2009泸州)关于x 的方程x kx 21=-的解为正实数,则k 的取值范围是6、(2009厦门)已知2ab =.(1)若3-≤b ≤1-,则a 的取值范围是____________.(2)若0b >,且225a b +=,则a b +=____________.7、(2007天门)关于x 的不等式2x -a ≤-1的解集如图2所示,则a 的取值是( )。
A 、0B 、-3C 、-2D 、-1 8、(2009孝感)关于x 的不等式组的解集是,则m = .9、(2009凉山)若不等式组220x a b x ->⎧⎨->⎩的解集是11x -<<,则2009()a b += .三、解答题:(共33分,10小题7分,11小题8分,12小题8分,13小题10分)01x <<,21x x x,,21x x x <<21x x x <<21x x x <<21x x x<<12x m x m >->+⎧⎨⎩1x >-(图2)10、(2008芜湖)解不等式组()⎪⎩⎪⎨⎧-<--≥+-xx x x 28254643,并判断5=x 是否满足该不等式组。
沪教版七年级数学第二学期第十四章三角形专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若一个三角形的三个外角之比为3:4:5,则该三角形为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形2、如图,ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,DH ⊥BC 于H ,交BE 于G ,下列结论中正确的是( ) ①BCD 为等腰三角形;②BF =AC ;③CE =12BF ;④BH =CE .A .①②B .①③C .①②③D .①②③④3、如图,AD 是ABC 的角平分线,CE AD ⊥,垂足为F .若40CAB ∠=︒,50B ∠=︒,则BDE ∠的度数为( )A .35°B .40°C .45°D .50°4、如图,在ABD △和ACE 中,AB AD =,AC AE =,AB AC >,50DAB CAE ∠=∠=︒,连接BE ,CD 交于点F ,连接AF .下列结论:①BE CD =;②50EFC ∠=︒;③AF 平分DAE △;④FA 平分DFE ∠.其中正确的个数为( )A .1个B .2个C .3个D .4个5、如图,点A 、B 、C 、D 在一条直线上,点E 、F 在AD 两侧,BF CE ∥,BF CE =,添加下列条件不能判定ACE DBF ≌的是( )A .AE DF =B .AB CD =C .E F ∠=∠D .AE DF ∥6、如图,E 为线段BC 上一点,∠ABE =∠AED =∠ECD =90°,AE =ED ,BC =20,AB =8,则BE 的长度为( )A.12 B.10 C.8 D.67、如图,点F,C在BE上,AC=DF,BF=EC,AB=DE,AC与DF相交于点G,则与2∠DFE相等的是()A.∠A+∠D B.3∠B C.180°﹣∠FGC D.∠ACE+∠B8、下列长度的三条线段能组成三角形的是()A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,79、如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①△BDF是等腰三角形;②DE=BD+CE;③若∠A=50°,则∠BFC=115°;④DF =EF.其中正确的有()A.1个B.2个C.3个D.4个△的相关数据如图所示,则下列选项正确的是()10、已知,ABC,DEF,MNPA .ABC PNM ≌B .DEF PNM ≌C .PN EF =D .F A ∠=∠第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在Rt ABC 中,90,12cm,6cm C AC BC ∠=︒==,一条线段PQ AB =,P ,Q 两点分别在线段AC 和AC 的垂线AX 上移动,若以A 、B 、C 为顶点的三角形与以A 、P 、Q 为顶点的三角形全等,则AP 的长为_________.2、如图,在等边△ABC 中,E 为AC 边的中点,AD 垂直平分BC ,P 是AD 上的动点.若AD =6,则EP +CP 的最小值为_______________.3、如图,AD ⊥BC ,∠1=∠B ,∠C=65°,∠BAC =__________4、如图,在ABC 中,AB AC =,点D ,E 在边BC 上,BAD CAE ∠=∠,若16BC =,6DE =,则CE 的长为______.5、如图,在边长为4,面积为ABC ∆中,点D 、E 分别是BC 、AB 边的中点,点F 是AD 边上的动点,求BF EF +的最小值___.三、解答题(10小题,每小题5分,共计50分)1、如图,ABC 是等边三角形,∥DE BC ,分别交AB ,AC 于点D ,E .(1)求证:ADE 是等边三角形;(2)点F 在线段DE 上,点G 在ABC 外,BF CG =,ABF ACG ∠=∠,求证:AF FG =.2、下面是“作一个角的平分线”的尺规作图过程.已知:如图,钝角AOB ∠.求作:射线OC ,使AOC BOC ∠=∠.作法:如图,①在射线OA 上任取一点D ;②以点О为圆心,OD 长为半径作弧,交OB 于点E ;③分别以点D ,E 为圆心,大于12DE 长为半径作弧,在AOB ∠内,两弧相交于点C ;④作射线OC .则OC 为所求作的射线.完成下面的证明.证明:连接CD ,CE由作图步骤②可知OD =______.由作图步骤③可知CD =______.∵OC OC =,∴OCD OCE ≌△△. ∴AOC BOC ∠=∠(________)(填推理的依据).3、周老师带领同学们在数学课上探究下面命题的正确性:顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形.为此,请你完成下列问题:(1)已知:如图①,在ABC 中,AB AC =,36A ∠=︒,直线BD 平分ABC ∠交AC 于点D .求证:ABD △与DBC △都是等腰三角形;(2)在证明了该命题后,小尹同学发现:图②、③两个等腰三角形也具有这种特性,请你在图②、图③中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所有等腰三角形两个底角的度数;(3)接着,小尹又发现:还有一些非等腰三角形也具有这样的特性:即过它其中一个顶点画一条直线可以将原三角形分成两个小等腰三角形,请你画出一个具有这种特性的三角形的示意图,并在图中标出可能的各内角的度数.(4)请你写出两个符合(3)中一般规律的非等腰三角形的特征.4、如图,点D 在AC 上,BC ,DE 交于点F ,BA BD =,BC BE =,ABD CBE ∠=∠.(1)求证:ABC DBE ≌;(2)若20ABD ∠=︒,求∠CDE 的度数.5、已知,如图,AB =AD ,∠B =∠D ,∠1=∠2=60°.(1)求证:△ADE ≌△ABC ;(2)求证:AE =CE .6、如图,已知△ABC ≌△DEB ,点E 在AB 上,AC 与BD 交于点F ,AB =6,BC =3,∠C =55°,∠D =25°.(1)求AE 的长度;(2)求∠AED 的度数.7、如图,90B ∠=︒,90C ∠=︒,E 为BC 中点,DE 平分ADC ∠.(1)求证:AE 平分DAB ∠;(2)求证:AE DE ⊥;(3)求证:DC AB AD +=.8、已知:如图,AD ,BE 相交于点O ,AB ⊥BE ,DE ⊥AD ,垂足分别为B ,D ,OA =OE .求证:△ABO ≌△EDO .9、如图,在等边三角形ABC 中,点D ,E 分别在边BC ,AC 上,且DE ∥AB ,过点E 作EF ⊥DE ,交BC 的延长线于点F .(1)求证:CE =CF ;(2)若CD =2,求DF 的长.10、ACB △中,90C ∠=︒,以点A 为中心,分别将线段AB ,AC 逆时针旋转60︒得到线段AD ,AE ,连接DE ,延长DE 交CB 于点F .(1)如图1,若60A ∠=︒,CFE ∠的度数为________;(2)如图2,当3060A ︒<∠<︒吋,①依题意补全图2;②猜想CF 与AC 的数量关系,并加以证明.-参考答案-一、单选题1、A【分析】根据三角形外角和为360°计算,求出内角的度数,判断即可.【详解】解:设三角形的三个外角的度数分别为3x、4x、5x,则3x+4x+5x=360°,解得,x=30°,∴三角形的三个外角的度数分别为90°、120°、150°,对应的三个内角的度数分别为90°、60°、30°,∴此三角形为直角三角形,故选:A.【点睛】本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键.2、C【分析】根据∠ABC=45°,CD⊥AB可得出BD=CD;利用AAS判定Rt△DFB≌Rt△DAC,从而得出BF=AC;再利用AAS判定Rt△BEA≌Rt△BEC,即可得到CE=12BF;由CE=12BF,BH=12BC,在三角形BCF中,比较BF、BC的长度即可得到CE<BH.【详解】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD,故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC,故②正确;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=12AC=12BF,故③正确;∵CE=12AC=12BF,BH=12BC,在△BCF中,∠CBE=12∠ABC=22.5°,∠DCB=∠ABC=45°,∴∠BFC=112.5°,∴BF<BC,∴CE<BH,故④错误;故选:C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.3、B【分析】根据三角形的内角和求出∠ACB=90°,利用三角形全等,求出DC=DE,再利用外角求出答案.【详解】解:∵∠CAB=40°,∠B=50°,∴∠ACB=180°−40°−50°=90°,∵CE⊥AD,∴∠AFC=∠AFE=90°,∵AD是△ABC的角平分线,×40°=20°,∴∠CAD=∠EAD=12又∵AF=AF,∴△ACF≌△AEF(ASA)∴AC=AE,∵AD=AD,∠CAD=∠EAD,∴△ACD≌△AED(SAS),∴DC =DE ,∴∠DCE =∠DEC ,∵∠ACE =90°−20°=70°,∴∠DCE =∠DEC =∠ACB −∠ACE =90°−70°=20°,∴∠BDE =∠DCE +∠DEC =20°+20°=40°,故选:B .【点睛】考查角平分线、全等三角形的判定和性质、三角形的内角和等知识,根据三角形的内角和求出相应各个角的度数是解决问题的关键.4、C【分析】由全等三角形的判定及性质对每个结论推理论证即可.【详解】∵50DAB CAE ∠=∠=︒∴DAB BAC CAE BAC ∠+∠=∠+∠∴DAC BAE ∠=∠又∵AB AD =,AC AE =∴()DAC BAE SAS ≅△△∴BE CD =故①正确∵DAC BAE ≅∴AEB ACD ∠=∠由三角形外角的性质有ACD CFE AEB CAE ∠+∠=∠+∠则50EFC CAE ∠=∠=︒故②正确作AH DC ⊥于H ,AG BE ⊥于G ,如图所示:则90AGE AHC =∠∠=°,在AHC 和AGE 中,AHC AGE DAC BEA AC AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()AG AHC E AAS ≅∆,∴AH AG =,在AHF △和AGF 中,AH AG AHF AGF AF AF =⎧⎪∠=∠⎨⎪=⎩∴()AGF L A H HF ≅∆,∴AFH AFG ∠=∠∴FA 平分DFE ∠故④正确假设AF 平分DAE △则DAF EAF ∠=∠∵DAB CAE ∠=∠∴DAF DAB FAE CAE ∠-∠=∠-∠即BAF CAF ∠=∠由④知AFD AFE ∠=∠又∵BFD CFE ∠∠、为对顶角∴BFD CFE ∠=∠∴BFD AFD CFE AFE ∠+∠=∠+∠∴AFB AFE ∠=∠∴在ABF 和ACF 中,BAF CAF AF AF BFA CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()CF BFA A ASA ≅∆即AB =AC又∵AB AC >故假设不符,故AF 不平分DAE △故③错误.综上所述①②④正确,共有3个正确.故选:C .【点睛】本题考查了全等三角形的判定及性质,灵活的选择全等三角形的判定的方法是解题的关键,从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边角迅速、准确地确定要补充的边角,有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路.5、A【分析】根据题意,可得,BE CE FBD ECA =∠=∠,结合选项根据三角形全等的性质与判定逐项分析即可.【详解】 解:BF CE ∥∴FBD ECA ∠=∠ A. ,BE CE FBD ECA =∠=∠,AE DF =,不能根据SSA 证明三角形全等,故该选项符合题意; B. AB CD =AB BC BC CD ∴+=+AC BD ∴=,BE CE FBD ECA =∠=∠,∴ACE DBF ≌()SAS故能判定ACE DBF ≌,不符合题意; C. ,BE CE FBD ECA =∠=∠,E F ∠=∠,∴ACE DBF ≌()ASA ,故能判定ACE DBF ≌,不符合题意;D.AE DF ∥A D ∴∠=∠,BE CE FBD ECA =∠=∠∴ACE DBF ≌()AAS ,故能判定ACE DBF ≌,不符合题意;故选A【点睛】本题考查了平行线的性质,三角形全等的性质与判定,掌握三角形全等的性质与判定是解题的关键.6、A【分析】利用角相等和边相等证明ABE ECD ∆∆≌,利用全等三角形的性质以及边的关系,即可求出BE 的长度.【详解】解:由题意可知:∠ABE =∠AED =∠ECD =90°,1809090AEB DEC ∴∠+∠=︒-︒=︒,90A AEB ∠+∠=︒,A DEC ∴∠=∠,在ABE ∆和ECD ∆中,ABE ECD A DEC AE ED ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABE ECD AAS ∴∆∆≌,8CE AB ∴==,12BE BC CE ∴=-=,故选:A .【点睛】本题主要是考查了全等三角形的判定和性质,熟练通过已知条件证明三角形全等,利用全等性质及边的关系,来求解未知边的长度,这是解决本题的主要思路.7、C【详解】由题意根据等式的性质得出BC =EF ,进而利用SSS 证明△ABC 与△DEF 全等,利用全等三角形的性质得出∠ACB =∠DFE ,最后利用三角形内角和进行分析解答.【分析】解:∵BF =EC ,∴BF +FC =EC +FC ,∴BC =EF ,在△ABC 与△DEF 中,AC DF AB DE BC EF =⎧⎪=⎨⎪=⎩, ∴△ABC ≌△DEF (SSS ),∴∠ACB =∠DFE ,∴2∠DFE =180°﹣∠FGC ,故选:C .【点睛】本题考查全等三角形的判定与性质,其中全等三角形的判定方法有:SSS ;SAS ;ASA ;AAS ;以及HL (直角三角形的判定方法).8、C【分析】根据三角形的三边关系,逐项判断即可求解.【详解】解:A 、因为2356+=< ,所以不能组成三角形,故本选项不符合题意;B 、因为2467+=< ,所以不能组成三角形,故本选项不符合题意;C 、因为3365+=> ,所以能组成三角形,故本选项符合题意;D 、因为3367+=< ,所以不能组成三角形,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.9、C【分析】根据平行线的性质和角平分线的定义以及等腰三角形的判定和性质逐个判定即可解答.【详解】解:∵BF是∠AB的角平分线,∴∠DBF=∠CBF,∵DE∥BC,∴∠DFB=∠CBF,∴∠DBF=∠DFB,∴BD=DF,∴△BDF是等腰三角形;故①正确;同理,EF=CE,∴DE=DF+EF=BD+CE,故②正确;∵∠A=50°,∴∠ABC+∠ACB=130°,∵BF平分∠ABC,CF平分∠ACB,∴11,22FBC ABC FCB ACB ∠=∠∠=∠,∴∠FBC+∠FCB=12(∠ABC+∠ACB)=65°,∴∠BFC=180°﹣65°=115°,故③正确;当△ABC 为等腰三角形时,DF =EF ,但△ABC 不一定是等腰三角形,∴DF 不一定等于EF ,故④错误.故选:C .【点睛】本题主要考查等腰三角形的性质、角平分线的定义及平行线的性质等知识点,根据两直线平行、内错角相等以及等角对等边来判定等腰三角形是解答本题的关键.10、D【分析】根据三角形内角和定理分别求出三个三角形中未知角的度数,然后依据全等三角形的判定定理,从三个三角形中寻找条件证明全等,即可得出选项.【详解】解:180307080C ∠=︒-︒-︒=︒,180308070F ∠=︒-︒-︒=︒,在ABC ∆与ΔΔΔΔ中,C D B E AB EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴ABC ∆≅ΔΔΔΔ,∴A F ∠=∠,A 、B 、C 三个选项均不能证明,故选:D .【点睛】题目主要考查三角形内角和定理、全等三角形的判定和性质,理解题意,熟练运用全等三角形的判定定理是解题关键.二、填空题1、6cm或12cm【分析】先根据题意得到∠BCA=∠PAQ=90°,则以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ两种情况,由此利用全等三角形的性质求解即可.【详解】解:∵AX是AC的垂线,∴∠BCA=∠PAQ=90°,∴以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ两种情况,当△ACB≌△QAP,∴6cmAP BC==;当△ACB≌△PAQ,∴12cm==,AP AC故答案为:6cm或12cm.【点睛】本题主要考查了全等三角形的性质,熟知全等三角形的性质是解题的关键.2、6【分析】要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解.【详解】解:作点E关于AD的对称点F,连接CF,∵△ABC是等边三角形,AD是BC边上的中垂线,∴点E关于AD的对应点为点F,∴CF就是EP+CP的最小值.∵△ABC是等边三角形,E是AC边的中点,∴F是AB的中点,∴CF=AD=6,即EP+CP的最小值为6,故答案为6.【点睛】本题考查了等边三角形的性质和轴对称等知识,熟练掌握等边三角形和轴对称的性质是本题的关键.3、70°【分析】先根据AD⊥BC可知∠ADB=∠ADC=90°,再根据直角三角形的性质求出∠1与∠DAC的度数,由∠BAC=∠1+∠DAC即可得出结论.【详解】∵AD⊥BC,∴∠ADB =∠ADC =90°,∴∠DAC =90°﹣65°=25°,∠1=∠B =45°,∴∠BAC =∠1+∠DAC =45°+25°=70°.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.4、5【分析】由题意易得B C ∠=∠,然后可证ABD ACE △≌△,则有BD CE =,进而问题可求解.【详解】解:∵AB AC =,∴B C ∠=∠,∵BAD CAE ∠=∠,∴ABD ACE △≌△(ASA ),∴BD CE =,∵16BC =,6DE =,∴10BD CE BC DE +=-=,∴5BD CE ==;故答案为5.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.5、【分析】连接CE,交AD于点F,连接BF,则BF EF+的最小值为CE,再由已知求出CE的长即可.【详解】解:连接CE,交AD于点F,连接BF,ABC∆是等边三角形,D是BC边中点,∴点与C点关于AD对称,B∴=,BF CF∴+=+,BF EF CF EF CE∴+的最小值为CE,BF EFE是AB的中点,∴⊥,CE ABAB=,ABC4∆的面积为∴=CEBF EF∴+的最小值为故答案为:【点睛】本题考查了等边三角形的性质,将军饮马河原理,熟练掌握等边三角形的性质,灵活运用将军饮马河原理是解题的关键.三、解答题1、(1)见详解;(2)见详解【分析】(1)由题意易得60ABC ACB BAC ∠=∠=∠=︒,然后根据平行线的性质可得60ADE AED ∠=∠=︒,进而问题可求证;(2)连接AG ,由题意易得AB =AC ,然后可知△ABF ≌△ACG ,则有AF =AG ,进而可得∠FAG =60°,最后问题可求证.【详解】证明:(1)∵ABC 是等边三角形,∴60ABC ACB BAC ∠=∠=∠=︒,∵DE ∥BC ,∴60,60ADE ABC AED ACB ∠=∠=︒∠=∠=︒,∴60ADE AED ∠=∠=︒,∴ADE 是等边三角形;(2)连接AG ,如图所示:∵ABC 是等边三角形,∴60BAC ∠=︒,AB =AC ,∵BF CG =,ABF ACG ∠=∠,∴△ABF ≌△ACG (SAS ),∴,AF AG BAF CAG =∠=∠,∵60BAF FAC BAC ∠+∠=∠=︒,∴60CAG FAC FAG ∠+∠=∠=︒,∴AFG 是等边三角形,∴AF FG =.【点睛】本题主要考查全等三角形及等边三角形的性质与判定,熟练掌握全等三角形及等边三角形的性质与判定是解题的关键.2、OE ; CE ;全等三角形的对应角相等【分析】根据圆的半径相等可得OD =OE ,CD =CE ,再利用SSS 可证明OCD OCE ≌△△,从而根据全等三角形的性质可得结论.【详解】证明:连接CD ,CE由作图步骤②可知OD =___OE ___.由作图步骤③可知CD =__CE ___.∵OC OC =,∴OCD OCE ≌△△. ∴AOC BOC ∠=∠(__全等三角形对应角相等__)故答案为:OE ; CE ;全等三角形的对应角相等【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定和性质.3、(1)见详解;(2)见详解;(3)见详解;(4)见详解;【分析】(1)根据等边对等角,及角平分线定义易得∠1=∠2=36°,∠C=72°,那么∠BDC=72°,则可得AD=BD=CB,所以△ABD与△DBC都是等腰三角形;(2)把等腰直角三角形分为两个小的等腰直角三角形即可,把108°的角分为36°和72°即可;(3)利用直角三角形的中线等于直角三角形斜边的一半可得任意直角三角形的中线把直角三角形分为两个等腰三角形;由(1),(2)易得所知的两个角要么是2倍关系,要么是3倍关系,可猜测只要所给的三个角中有2个角是2倍或3倍关系都可得到上述图形;(4)按照发现的(3)的特点来写,注意去掉特殊三角形的形式.(1)证明:在△ABC中,∵AB=AC,∴∠ABC=∠C,∵∠A=36°,∴∠ABC=∠C=1(180°-∠A)=72°,2∵BD平分∠ABC,∴∠1=∠2=36°∴∠3=∠1+∠A=72°,∴∠1=∠A,∠3=∠C,∴AD=BD,BD=BC,∴△ABD与△BDC都是等腰三角形(2)解:如下图所示:(3)解:如图所示:(4)解:特征一:直角三角形(直角边不等);特征二:2倍内角关系,在△ABC中,∠A=2∠B,0°<∠B<45°,其中,∠B≠30°;【点睛】本题考查了等腰三角形的判定;注意应根据题中所给的范例用类比的方法推测出把一般三角形分为两个等腰三角形的一般结论.4、(1)证明见解析;(2)∠CDE=20°.(1)由“SAS ”可证△ABC ≌△DBE ;(2)由全等三角形的性质可得∠C =∠E ,由三角形的外角性质可求解.(1)证明:∵∠ABD =∠CBE ,∴∠ABD +∠DBC =∠CBE +∠DBC ,即:∠ABC =∠DBE ,在△ABC 和△DBE 中,BA BD ABC DBE BC BE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△DBE (SAS );(2)解:由(1)可知:△ABC ≌△DBE ,∴∠C =∠E ,∵∠DFB =∠C +∠CDE ,∠DFB =∠E +∠CBE ,∴∠CDE =∠CBE ,∵∠ABD =∠CBE =20°,∴∠CDE =20°.【点睛】本题考查了全等三角形的判定和性质,三角形的外角性质,证明三角形全等是解题的关键.5、(1)见解析;(2)见解析(1)根据∠1=∠2可推出∠DAE =∠BAC ,然后结合全等三角形的判定定理进行证明;(2)由全等三角形的性质可得AE =AC ,结合∠2=60°可推出△AEC 为等边三角形,据此证明.【详解】(1)证明:∵∠1=∠2∴∠1+BAE ∠=∠2+BAE ∠即∠DAE =∠BAC在△ADE 和△ABC 中DAE BAC AD ABD B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△ABC (ASA )(2)证明:∵△ADE ≌△ABC∴AE =AC又∵∠2=60°∴△AEC 为等边三角形∴AE =CE【点睛】此题考查了全等三角形的性质和判定,等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定方法,等边三角形的性质和判定方法.6、(1)3AE =;(2)80AED ∠=︒.【分析】(1)先根据全等三角形的性质可得3BE BC ==,再根据线段的和差即可得;(2)先根据全等三角形的性质可得55DBE C ∠=∠=︒,再根据三角形的外角性质即可得.【详解】解:(1)∵,3ABC DEB BC ≅=,∴3BE BC ==,∵6AB =,∴633AE AB BE =-=-=;(2)∵ABC DEB ≅△△,∴55DBE C ∠=∠=︒,∵25D ∠=︒,∴552580AED DBE D ∠=∠+∠=︒+︒=︒.【点睛】本题考查全等三角形的性质等知识点,熟练掌握全等三角形的对应角和对应边相等是解题关键.7、(1)见解析;(2)见解析;(3)见解析【分析】(1)延长DE 交AB 延长线于F ,由∠B =∠C =90°,推出AB ∥CD ,则∠CDE =∠F ,再由DE 平分∠ADC ,即可推出∠ADF =∠F ,得到AD =AF ,即△ADF 是等腰三角形,然后证明△CDE ≌△BFE 得到DE =FE ,即E 是DF 的中点,即可证明AE 平分∠BAD ;(2)由(1)即可用三线合一定理证明;(3)由△CDE ≌△BFE ,得到CD =BF ,则AD =AF =AB +BF =AB +CD .【详解】解:(1)如图所示,延长DE 交AB 延长线于F ,∵∠B =∠C =90°,∴AB ∥CD ,∴∠CDE=∠F,∵DE平分∠ADC,∴∠CDE=∠ADE,∴∠ADF=∠F,∴AD=AF,∴△ADF是等腰三角形,∵E是BC的中点,∴CE=BE,∴△CDE≌△BFE(AAS),∴DE=FE,∴E是DF的中点,∴AE平分∠BAD;(2)由(1)得△ADF是等腰三角形,AD=AF,E是DF的中点,∴AE⊥DE;(3)∵△CDE≌△BFE,∴CD=BF,∴AD =AF =AB +BF =AB +CD .【点睛】本题主要考查了平行线的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,熟知相关知识是解题的关键.8、见解析【分析】利用AAS 即可证明△ABO ≌△EDO .【详解】证明:∵AB ⊥BE ,DE ⊥AD ,∴∠B =∠D =90°.在△ABO 和△EDO 中,,B D AOB EOD OA OE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABO ≌△EDO .【点睛】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.9、(1)证明见解析;(2)4【分析】(1)根据等边三角形的性质和平行线的性质可证得∠EDC =∠ECD =∠DEC =60°,再根据直角定义和三角形的外角性质证得∠F =∠FEC =30°,利用等角对等边即可证得结论;(2)由等角对等边可知CE=DC=2,结合(1)中结论即可求解.(1)证明:∵△ABC是等边三角形,∴∠A=∠B=∠ACB=60°.∵DE∥AB,∴∠B=∠EDC=60°,∠A=∠CED=60°,∴∠EDC=∠ECD=∠DEC=60°,∵EF⊥ED,∴∠DEF=90°,∴∠F=30°∵∠F+∠FEC=∠ECD=60°,∴∠F=∠FEC=30°,∴CE=CF.(2)解:由(1)可知∠EDC=∠ECD=∠DEC=60°,∴CE=DC=2.又∵CE=CF,∴CF=2.∴DF=DC+CF=2+2=4.【点睛】本题考查等边三角形的性质、等腰三角形的判定、平行线的性质、三角形的外角性质、线段的和与差,熟练掌握相关知识的联系与运用是解答的关键.10、(1)120°(2)①图形见解析;②AC=【分析】(1)根据60∠=︒进而判断出点E在边AB上,得出△ADE≌△ABC(SAS),进而得出A∠AED=∠ACB=90°最后用三角形的外角的性质即可得出结论;(2)①依题意补全图形即可;②先判断出△ADE≌△ABC(SAS),进而得出∠AEF=90°,即可判断出Rt△AEF≌Rt△ACF,进而求出∠CAF=1∠CAE=30°,即可得出结论.2(1)(1)如图1,在Rt△ABC中,∠B=30°,∴∠BAC=60°,由旋转知,∠CAE=60°=∠CAB,∴点E在边AB上,∵AD=AB,AE=AC,∴△ADE≌△ABC(SAS),∴∠AED=∠ACB=90°,∴∠CFE=∠B+∠BEF=30°+90°=120°,故答案为120°;(2)(2)①依题意补全图形如图2所示,②如图2,连接AF,∵∠BAD=∠CAE,∴∠EAD=∠CAB,∵AD=AB,AE=AC,∴△ADE≌△ABC(SAS),∴∠AED=∠C=90°,∴∠AEF=90°,∴Rt△AEF≌Rt△ACF(HL),∴∠EAF=∠CAF,∴∠CAF=1∠CAE=30°,2AF,且AC2+CF2=AF2,在Rt△ACF中,CF=12∴AC【点睛】此题是三角形综合题,主要考查了旋转的性质,全等三角形的判定和性质,三角形的外角的性质,含30度角的直角三角形的性质,勾股定理,判断出△ADE≌△ABC是解本题的关键.。
沪教版七年级数学第二学期第十四章三角形专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有下列说法:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;②等腰三角形一腰上的高与底边的夹角与顶角互余;③等腰三角形顶角的平分线是它的对称轴;④等腰三角形两腰上的中线相等.其中正确的说法有()个.A.1 B.2 C.3 D.42、已知长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折,点B落在直线EF 上的点B′处,得折痕EM,将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN,则图中与∠B′ME互余的角有()A.2个B.3个C.4个D.5个3、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是()A.50°B.60°C.40°D.30°4、如图,在△ABC和△DEF中,∠A=∠D,AF=DC,添加下列条件中的一个仍无法证明△ABC≌△DEF 的是()A.BC=EF B.AB=DE C.∠B=∠E D.∠ACB=∠DFE5、如图,ABC≌DEF,点B、E、C、F在同一直线上,若BC=7,EC=4,则CF的长是()A.2 B.3 C.4 D.76、如图,∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,则∠BDC的大小为()A .3454a ︒+B .2603a ︒+C .3454a ︒-D .2603a ︒- 7、BP 是∠ABC 的平分线,CP 是∠ACB 的邻补角的平分线,∠ABP =20°,∠ACP =50°,则∠P =( )A .30°B .40°C .50°D .60°8、根据下列已知条件,不能画出唯一ABC 的是( )A .60A ∠=︒,45B ∠=︒,4AB =B .30A ∠=︒,5AB =,3BC = C .60B ∠=︒,6AB =,10BC =D .90C ∠=︒,5AB =,3BC =9、如图,等边ABC 中,D 为AC 中点,点P 、Q 分别为AB 、AD 上的点,4BP AQ ==,3QD =,在BD 上有一动点E ,则PE QE +的最小值为( )A .7B .8C .10D .1210、定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD 是△ABC 的外角.求证:∠ACD =∠A +∠B .下列说法正确的是( )A .证法1用特殊到一般法证明了该定理B .证法1只要测量够100个三角形进行验证,就能证明该定理C .证法2还需证明其他形状的三角形,该定理的证明才完整D .证法2用严谨的推理证明了该定理第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知30MON ∠=︒,点1A ,2A ,3A ,⋅⋅⋅在射线ON 上,点1B ,2B ,3B ,⋅⋅⋅在射线OM 上,112A B A △,223A B A △,334A B A △,⋅⋅⋅均为等边三角形,若1OA a =,则223A B A △的边长为______.1n n n A B A +△的边长为______.2、已知△ABC 是等腰三角形,若∠A =70°,则∠B =_____.3、△ABC 的高AD 所在直线与高BE 所在直线相交于点F 且DF =CD ,则∠ABC =______.4、如图,在ABC 中,BD 和CD 分别是ABC ∠和ACB ∠的平分线,EF 过点D ,且EF BC ∥,若3BE =,4CF =,则EF 的长为______.5、如图,在△ABC 中,点D 为BC 边的中点,点E 为AC 上一点,将∠C 沿DE 翻折,使点C 落在AB 上的点F 处,若∠AEF =50°,则∠A 的度数为__.三、解答题(10小题,每小题5分,共计50分)1、如图,AD 是ABC 的角平分线,DE AB ⊥于点E .(1)用尺规完成以下基本作图:过点D作DF AC⊥于点F,连接EF交AD于点G.(不写作法,保留作图痕迹)(2)在(1)中所作的图形中,求证:AD EF⊥.2、如图,AD,BC相交于点O,AO=DO.(1)如果只添加一个条件,使得△AOB≌△DOC,那么你添加的条件是(要求:不再添加辅助线,只需填一个答案即可);(2)根据已知及(1)中添加的一个条件,证明AB=DC.3、如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连结AE,作AF⊥AE且AF=AE.(1)如图1,过F点作FD⊥AC交AC于D点,求证:FD=BC;(2)如图2,连结BF交AC于G点,若AG=3,CG=1,求证:E点为BC中点.(3)当E点在射线CB上,连结BF与直线AC交子G点,若BC=4,BE=3,则AGCG=.(直接写出结果)4、已知:如图,在ABC 中,AB =AC ,点D 、E 分别在边BC ,AC 上,AD =AE .(1)若∠BAD =30°,则∠EDC = °;若∠EDC =20°,则∠BAD = °.(2)设∠BAD =x ,∠EDC =y ,写出y 与x 之间的关系式,并给出证明.5、如图所示,四边形ABCD 中,∠ADC 的角平分线DE 与∠BCD 的角平分线CA 相交于E 点,已知:∠ACB =32°,∠CDE =58°.(1)求∠DEC 的度数;(2)试说明直线AD BC ∥6、ACB △中,90C ∠=︒,以点A 为中心,分别将线段AB ,AC 逆时针旋转60︒得到线段AD ,AE ,连接DE ,延长DE 交CB 于点F .(1)如图1,若60A ∠=︒,CFE ∠的度数为________;(2)如图2,当3060A ︒<∠<︒吋,①依题意补全图2;②猜想CF 与AC 的数量关系,并加以证明.7、探究与发现:如图①,在△ABC 中,∠B =∠C =45°,点D 在BC 边上,点E 在AC 边上,且∠ADE =∠AED ,连接DE .(1)当∠BAD =60°时,求∠CDE 的度数;(2)当点D 在BC (点B 、C 除外)边上运动时,试猜想∠BAD 与∠CDE 的数量关系,并说明理由.(3)深入探究:如图②,若∠B =∠C ,但∠C ≠45°,其他条件不变,试探究∠BAD 与∠CDE 的数量关系.8、如图,△ABC 是等边三角形,点D 、E 、F 分别同时从A 、B 、C 以同样的速度沿AB 、BC 、CA 方向运动,当点D 运动到点B 时,三个点都停止运动.(1)在运动过程中△DEF 是什么形状的三角形,并说明理由;(2)若运动到某一时刻时,BE =4,∠DEC =150°,求等边△ABC 的周长;9、在复习课上,老师布置了一道思考题:如图所示,点M ,N 分别在等边ABC 的,BC CA 边上,且BM CN =,AM ,BN 交于点Q .求证:60BQM ∠=︒.同学们利用有关知识完成了解答后,老师又提出了下列问题:(1)若将题中“BM CN =”与“60BQM ∠=︒”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由.(2)若将题中的点M ,N 分别移动到,BC CA 的延长线上,是否仍能得到60BQM ∠=︒?请你画出图形,给出答案并说明理由.10、如图,在△ABC 中, AB =AC ,AD 是△ABC 的中线,BE 平分∠ABC 交AD 于点E ,连接EC .求证:CE 平分∠ACB .-参考答案-一、单选题1、B【分析】根据轴对称的性质,轴对称图形的概念,等腰三角形的性质判断即可.【详解】解:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线,说法正确;②等腰三角形一腰上的高与底边的夹角与底角互余,原说法错误;③等腰三角形的顶角平分线在它的对称轴上,原说法错误;④等腰三角形两腰上的中线相等,说法正确.综上,正确的有①④,共2个,故选:B.【点睛】本题考查了轴对称的性质及等腰三角形的性质,掌握轴对称的性质,轴对称图形的概念,等腰三角形的性质是解题的关键.2、C【分析】先由翻折的性质得到∠AEN=∠A′EN,∠BEM=∠B′EM,从而可知∠NEM=12×180°=90°,然后根据余角的定义找出∠B′ME的余角即可.【详解】解:由翻折的性质可知:∠AEN=∠A′EN,∠BEM=∠B′EM.∠NEM=∠A′EN+∠B′EM=12∠AEA′+12∠B′EB=12×180°=90°.由翻折的性质可知:∠MB ′E =∠B =90°.由直角三角形两锐角互余可知:∠B ′ME 的一个余角是∠B ′EM .∵∠BEM =∠B ′EM ,∴∠BEM 也是∠B ′ME 的一个余角.∵∠NBF +∠B ′EM =90°,∴∠NEF =∠B ′ME .∴∠ANE 、∠A ′NE 是∠B ′ME 的余角.综上所述,∠B ′ME 的余角有∠ANE 、∠A ′NE 、∠B ′EM 、∠BEM .故选:C .【点睛】本题主要考查的是翻折的性质、余角的定义,掌握翻折的性质是解题的关键.3、A【分析】根据旋转的性质求解80,BOD AOC 110,C A 再利用三角形的内角和定理求解1801104030,COD 再利用角的和差关系可得答案.【详解】 解: 将△OAB 绕点O 逆时针旋转80°得到△OCD ,80,BOD AOC∠A 的度数为110°,∠D 的度数为40°,110,1801104030,C A COD 803050,AOD 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.4、A【分析】根据AF =DC 求出AC =DF ,再根据全等三角形的判定定理逐个判断即可.【详解】解:∵AF =DC ,∴AF +FC =DC +FC ,即AC =DF ,A 、BC =EF ,AC =DF ,∠A =∠D ,不符合全等三角形的判定定理,不能推出△ABC ≌△DEF ,故本选项符合题意;B 、AB =DE ,∠A =∠D ,AC =DF ,符合全等三角形的判定定理SAS ,能推出△ABC ≌△DEF ,故本选项不符合题意;C .∠B =∠E ,∠A =∠D ,AC =DF ,符合全等三角形的判定定理AAS ,能推出△ABC ≌△DEF ,故本选项不符合题意;D .∠ACB =∠DFE ,AC =DF ,∠A =∠D ,符合全等三角形的判定定理ASA ,能推出△ABC ≌△DEF ,故本选项不符合题意;故选:A .【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,两直角三角形全等还有HL .5、B【分析】根据全等三角形的性质可得BC EF =,根据CF EF EC =-即可求得答案.【详解】 解:ABC ≌DEF ,∴BC EF =点B 、E 、C 、F 在同一直线上,BC =7,EC =4,∴CF EF EC =-743BC EC -=-=故选B【点睛】本题考查了全等三角形的性质,掌握全等三角形的性质是解题的关键.6、A【分析】根据题意设,ABD ACD βθ∠=∠=,根据三角形内角和公式定理βθ+,进而表示出α,进而根据三角形内角和定理根据()1803BDC βθ∠=︒-+即可求解【详解】解:∵∠A =α,∠DBC =3∠DBA ,∠DCB =3∠DCA ,设,ABD ACD βθ∠=∠=,∴3,3DBC DCB βθ∠=∠=180A ABC ACB ∠+∠+∠=︒即44180αβθ++=︒454αβθ∴+=︒-∴()1803BDC βθ∠=︒-+31803454544αα⎛⎫=︒-⨯︒-=︒+ ⎪⎝⎭ 故选A【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.7、A【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P 的度数.【详解】∵BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,∴∠ABP =∠CBP =20°,∠ACP =∠MCP =50°,∵∠PCM 是△BCP 的外角,∴∠P =∠PCM −∠CBP =50°−20°=30°,故选:A .【点睛】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.8、B【分析】根据三角形存在的条件去判断.【详解】∵60A ∠=︒,45B ∠=︒,4AB =,满足ASA 的要求,∴可以画出唯一的三角形,A 不符合题意;∵30A ∠=︒,5AB =,3BC =,∠A 不是AB ,BC 的夹角,∴可以画出多个三角形,B 符合题意;∵60B ∠=︒,6AB =,10BC =,满足SAS 的要求,∴可以画出唯一的三角形,C 不符合题意;∵90C ∠=︒,5AB =,3BC =,AB 最大,∴可以画出唯一的三角形,D 不符合题意;故选B .【点睛】本题考查了三角形的存在性,熟练掌握三角形全等的判定方法是解题的关键.9、C【分析】作点Q 关于BD 的对称点Q ',连接PQ '交BD 于E ,连接QE ,此时PE EQ +的值最小,最小值PE PQ PE EQ PQ +=+'=',据此求解即可.【详解】解:如图,ABC ∆是等边三角形,BA BC ∴=,∵D 为AC 中点,∴BD AC ⊥,4AQ =,3QD =,7AD DC AQ QD ∴==+=,作点Q 关于BD 的对称点Q ',连接PQ '交BD 于E ,连接QE ,此时PE EQ +的值最小.最小值PE QE PE EQ PQ +=+'=',4AQ =,7AD DC ==,3∴='=,QD DQ∴'==,4CQ BPAP AQ∴='=,10∠=︒,A60∴∆'是等边三角形,APQ∴'==,PQ PA10∴+的最小值为10.PE QE故选:C.【点睛】本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.10、D【分析】利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.【详解】解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,证法2才是用严谨的推理证明了该定理,故A不符合题意,C不符合题意,D符合题意,证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;故选D【点睛】本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.二、填空题1、2a 2n﹣1a【分析】利用等边三角形的性质得到∠A1OB1=∠A1B1O=30°,OA1=A1B1=A2B1=a,利用同样的方法得到A2O=A2B2=2a=21a,A3B3=A3O=2A2O=4=22a,利用此规律即可得到A n B n=2n﹣1a.【详解】解:∵△A1B1A2为等边三角形,∠MON=30°,∴∠A1OB1=∠A1B1O=30°,OA1=A1B1=A2B1=a,同理:A2O=A2B2=2=21a,A3B3=A3O=2A2O=4a=22a,…….以此类推可得△A n B n A n+1的边长为A n B n=2n﹣1a.故答案为:2a;2n﹣1a.【点睛】本题考查规律型:图形的变化类,等边三角形的性质,解题关键是掌握三角形边长的变化规律.2、40︒或55︒或70︒【分析】分①A∠是底角,B是顶角三种情况,再根据∠是底角,B是底角,③A∠是顶角,B是底角,②A等腰三角形的定义、三角形的内角和定理即可得.【详解】解:由题意,分以下三种情况:①当A∠是顶角,B是底角时,则11(180)(18070)5522B A ∠=︒-∠=⨯︒-︒=︒;②当A ∠是底角,B 是底角时,则70B A ∠=∠=︒;③当A ∠是底角,B 是顶角时,则180218027040B A ∠=︒-∠=︒-⨯︒=︒;综上,B 的度数为40︒或55︒或70︒,故答案为:40︒或55︒或70︒.【点睛】本题考查了等腰三角形、三角形的内角和定理,正确分三种情况讨论是解题关键.3、45°或135°【分析】根据题意,分两种情况讨论:①当ABC ∆为锐角三角形时;②当ABC ∆为钝角三角形时;作出相应图形,然后利用全等三角形的判定证明三角形全等,根据其性质及各角直角的等量关系即可得.【详解】解:①如图所示:当ABC ∆为锐角三角形时,∵AD BC ⊥,BE AC ⊥,∴90BDF ADC BEC ∠=∠=∠=︒,∴90C CBE ∠+∠=︒,90C CAD ∠+∠=︒,∴CBE CAD ∠=∠,在ΔΔΔΔ与ADC ∆中,CBE CAD BDF ADC DF CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴ΔΔΔΔ≅ΔΔΔΔ,∴BD AD =,∵90ADB ∠=︒,∴45ABC DAB ∠=∠=︒;②如图所示:当ABC ∆为钝角三角形时,∵AD BC ⊥,BE AC ⊥,∴90BDF ADC BEC ∠=∠=∠=︒,∴90C CAD ∠+∠=︒,90C CBE ∠+∠=︒,∴CBE CAD ∠=∠,∵DBF CBE ∠=∠,∴DBF CAD ∠=∠,在ΔΔΔΔ与ADC ∆中,DBF CAD BDF ADC DF CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴ΔΔΔΔ≅ΔΔΔΔ,∴BD AD =,∵90ADB ∠=︒,∴45ABD DAB ∠=∠=︒,18045135ABC ∠=︒-︒=︒,综合①②可得:ABC ∠为45︒或135︒,故答案为:45︒或135︒.【点睛】题目主要考查全等三角形的判定和性质,等腰三角形的性质,根据题意进行分类讨论,作出相应图形是解题关键.4、7【分析】根据角平分线的定义和平行线的性质证明∠EBD =∠EDB ,∠FDC =∠FCD ,得到BE =DE ,CF =DF ,即可求解.【详解】解:∵EF∥BC ,∴∠EDB =∠DBC ,∠FDC =∠DCB ,又∵BD 和CD 分别是∠ABC 和∠ACB 的平分线,∴∠EBD =∠DBC ,∠FCD =∠DCB ,∴∠EBD =∠EDB ,∠FDC =∠FCD ,∴BE =DE ,CF =DF ,又∵BE=3,CF=4,∴EF=DE+DF=BE+CF=7.故答案为:7.【点睛】本题主要考查了平行线的性质,角平分的定义,等腰三角形的性质与判定,熟知相关知识是解题的关键.5、65°度【分析】由点D为BC边的中点,得到BD=CD,根据折叠的性质得到DF=CD,∠EFD=∠C,得到DF=BD,根据等腰三角形的性质得到∠BFD=∠B,由三角形的内角和和平角的定义得到∠A=∠AFE,于是得到结论.【详解】解:∵点D为BC边的中点,∴BD=CD,∵将∠C沿DE翻折,使点C落在AB上的点F处,∴DF=CD,∠EFD=∠C,∴DF=BD,∴∠BFD=∠B,∵∠A=180°-∠C-∠B,∠AFE=180°-∠EFD-∠DFB,∴∠A=∠AFE,∵∠AEF=50°,∴∠A=12(180°-50°)=65°.故答案为:65°.【点睛】本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.三、解答题1、(1)见解析;(2)见解析.【分析】(1)以点D 为圆心,适当长为半径,作弧,交AC 于两点,再分别以这两点为圆心,适当长为半径作弧,连接两条弧的交点所在的直线,该直线与AC 的交点即为点F ,连接EF 交AD 于点G ;(2)利用角平分线性质可得,DE DF EAD FAD =∠=∠,由此证明()EAD FAD AAS ≅,得到AE AF =,继而证明()EAG FAG SAS ≅,证得90AGE AGF ∠=∠=︒即可解题.【详解】解:(1)如图,点F 、G 即为所求作的点;(2)AD 是ABC 的角平分线,DE AB ⊥,DF AC ⊥,,DE DF EAD FAD ∴=∠=∠AD AD =()EAD FAD AAS ∴≅AE AF ∴=,EAD FAD AG AG ∠=∠=()EAG FAG SAS ∴≅AGE AGF ∴∠=∠180AGE AGF ∠+∠=︒90AGE AGF ∴∠=∠=︒AD EF ∴⊥【点睛】本题考查角平分线的性质、全等三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.2、(1)OB =OC (或A D ∠=∠,或B C ∠=∠);(2)见解析【分析】(1)根据SAS 添加OB =OC 即可;(2)由(1)得△AOB ≌△DOC ,由全等三角形的性质可得结论.【详解】解:(1)添加的条件是:OB =OC (或A D ∠=∠,或B C ∠=∠)证明:在AOB ∆和DOC ∆中AO BO AOB COD BO CO =⎧⎪∠=∠⎨⎪=⎩所以,△AOB ≌△DOC(2)由(1)知,△AOB ≌△DOC所以,AB =DC .【点睛】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解答本题的关键3、(1)证明见解析;(2)证明见解析;(3)113或53【分析】(1)证明△AFD ≌△EAC ,根据全等三角形的性质得到DF =AC ,等量代换证明结论;(2)作FD ⊥AC 于D ,证明△FDG ≌△BCG ,得到DG =CG ,求出CE ,CB 的长,得到答案;(3)过F 作FD ⊥AG 的延长线交于点D ,根据全等三角形的性质得到CG =GD ,AD =CE =7,代入计算即可.【详解】(1)证明:∵FD ⊥AC ,∴∠FDA =90°,∴∠DFA +∠DAF =90°,同理,∠CAE +∠DAF =90°,∴∠DFA =∠CAE ,在△AFD 和△EAC 中,AFD EAC ADF ECA AF AE ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△AFD ≌△EAC (AAS ),∴DF =AC ,∵AC =BC ,∴FD =BC ;(2)作FD ⊥AC 于D ,由(1)得,FD =AC =BC ,AD =CE ,在△FDG 和△BCG 中,90FDG BCG FGD BGCFD BC ∠∠︒⎧⎪∠∠⎨⎪⎩====, ∴△FDG ≌△BCG (AAS ),∴DG =CG =1,∴AD =2,∴CE =2,∵BC =AC =AG +CG =4,∴E 点为BC 中点;(3)当点E 在CB 的延长线上时,过F 作FD ⊥AG 的延长线交于点D ,BC =AC =4,CE =CB +BE =7,由(1)(2)知:△ADF ≌△ECA ,△GDF ≌△GCB ,∴CG =GD ,AD =CE =7,∴CG =DG =1.5,∴AG =CG +AC =5.5, ∴ 5.5111.53AG CG ==,同理,当点E在线段BC上时,AG= AC -CG+=2.5,∴2.551.53 AGCG==,故答案为:113或53.【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.4、(1)15,40;(2)y=12x,见解析【分析】(1)设∠EDC=m,则∠B=∠C=n,根据∠ADE=∠AED=m+n,∠ADC=∠B+∠BAD即可列出方程,从而求解.(2)设∠BAD=x,∠EDC=y,根据等腰三角形的性质可得∠B=∠C,∠ADE=∠AED=∠C+∠EDC=∠B+y,由∠ADC=∠B+∠BAD=∠ADE+∠EDC即可得∠B+x=∠B+y+y,从而求解.【详解】解:(1)设∠EDC=m,∠B=∠C=n,∵∠AED=∠EDC+∠C=m+n,又∵AD=AE,∴∠ADE=∠AED=m+n,则∠ADC=∠ADE+∠EDC=2m+n,又∵∠ADC=∠B+∠BAD,∴∠BAD=2m,∴2m+n=n+30,解得m=15°,∴∠EDC的度数是15°;若∠EDC=20°,则∠BAD=2m=2×20°=40°.故答案是:15;40;(2)y 与x 之间的关系式为y =12x ,证明:设∠BAD =x ,∠EDC =y ,∵AB =AC ,AD =AE ,∴∠B =∠C ,∠ADE =∠AED ,∵∠AED =∠C +∠EDC =∠B +y ,∴∠ADC =∠B +∠BAD =∠ADE +∠EDC ,∴∠B +x =∠B +y +y ,∴2y =x ,∴y =12x .【点睛】本题主要考查了等腰三角形的性质、三角形外角的性质以及一元一次方程的应用,灵活运用等腰三角形的性质成为解答本题的关键.5、(1)90°;(2)见解析【分析】(1)根据三角形内角和定理即可求解;(2)首先求得∠ADC 的度数和∠DCB 的度数,根据同旁内角互补,两直线平行即可证得.【详解】解:(1)∵AC 是∠BCD 的平分线∴32ACD ACB ∠=∠=︒∵180,58CDE DEC DCE CDE ∠+∠+∠=︒∠=︒∴∠DEC =180°-∠ACD -∠CDE =180°-32°-58°=90°;(2)∵DE平分∠ADC,CA平分∠BCD∴∠ADC=2∠CDE=116°,∠BCD=2∠ACD=64°∵∠ADC+∠BCD=116°+64°=180°∥∴AD BC【点睛】本题主要考查了角平分线,平行线的判定以及三角形内角和定理,熟练掌握相关性质和定理是解答本题的关键.6、(1)120°(2)①图形见解析;②AC=【分析】(1)根据60∠=︒进而判断出点E在边AB上,得出△ADE≌△ABC(SAS),进而得出A∠AED=∠ACB=90°最后用三角形的外角的性质即可得出结论;(2)①依题意补全图形即可;②先判断出△ADE≌△ABC(SAS),进而得出∠AEF=90°,即可判断出Rt△AEF≌Rt△ACF,进而求出∠CAF=1∠CAE=30°,即可得出结论.2(1)(1)如图1,在Rt△ABC中,∠B=30°,∴∠BAC=60°,由旋转知,∠CAE=60°=∠CAB,∴点E在边AB上,∵AD=AB,AE=AC,∴△ADE≌△ABC(SAS),∴∠AED=∠ACB=90°,∴∠CFE=∠B+∠BEF=30°+90°=120°,故答案为120°;(2)(2)①依题意补全图形如图2所示,②如图2,连接AF,∵∠BAD=∠CAE,∴∠EAD=∠CAB,∵AD=AB,AE=AC,∴△ADE≌△ABC(SAS),∴∠AED=∠C=90°,∴∠AEF=90°,∴Rt△AEF≌Rt△ACF(HL),∴∠EAF=∠CAF,∠CAE=30°,∴∠CAF=12AF,且AC2+CF2=AF2,在Rt△ACF中,CF=12∴AC【点睛】此题是三角形综合题,主要考查了旋转的性质,全等三角形的判定和性质,三角形的外角的性质,含30度角的直角三角形的性质,勾股定理,判断出△ADE≌△ABC是解本题的关键.7、(1)30°;(2)∠BAD=2∠CDE,理由见解析;(3)∠BAD=2∠CDE.【分析】(1)根据三角形的外角的性质求出∠ADC,结合图形计算即可;(2)设∠BAD=x,根据三角形的外角的性质求出∠ADC,结合图形计算即可;(3)设∠BAD=x,仿照(2)的解法计算.【详解】解:(1)∵∠ADC是△ABD的外角,∴∠ADC=∠BAD+∠B=105°,∠DAE=∠BAC﹣∠BAD=30°,∴∠ADE=∠AED=75°,∴∠CDE=105°﹣75°=30°;(2)∠BAD=2∠CDE,理由如下:设∠BAD=x,∴∠ADC =∠BAD +∠B =45°+x ,∠DAE =∠BAC ﹣∠BAD =90°﹣x ,∴∠ADE =∠AED =902x ︒+, ∴∠CDE =45°+x ﹣902x ︒+=12x , ∴∠BAD =2∠CDE ;(3)设∠BAD =x ,∴∠ADC =∠BAD +∠B =∠B +x ,∠DAE =∠BAC ﹣∠BAD =180°﹣2∠C ﹣x ,∴∠ADE =∠AED =∠C +12x ,∴∠CDE =∠B +x ﹣(∠C +12x )=12x ,∴∠BAD =2∠CDE .【点睛】本题考查了三角形内角和和外角的性质,解题关键是熟练掌握三角形内角和和外角性质,通过设参数计算,发现角之间的关系8、(1)△DEF 是等边三角形,理由见解析(2)等边△ABC 的周长为18【分析】(1)利用△DEF 是等边三角形的性质以及三点的运动情况,求证EBD FCE ∆∆≌和ECF FAD ∆∆≌,进而证明==DE EF FD ,最后即可说明△DEF 是等边三角形. (2)利用题(1)的条件即∠DEC =150°,得出DEB ∆是含30角的直角三角形,求出122BD BE ==,最后求解出等边△ABC 的BC 长,最后即可求出等边△ABC 的周长. 【详解】(1)解:△DEF 是等边三角形,证明:由点D 、E 、F 的运动情况可知:AD BE CF ==,△ABC 是等边三角形,60A B C ∴∠=∠=∠=︒,AB BC CA ==,BD AB AD BC BE CE ∴=-=-=,CE BC BE CA CF AF =-=-=,在EBD ∆与FCE ∆中,BD CE B C BE CF =⎧⎪∠=∠⎨⎪=⎩()EBD FCE SAS ∴∆∆≌,DE EF ∴=,同理可证ECF FAD ∆∆≌,进而有=EF FD ,DE EF FD ∴==,故△DEF 是等边三角形.(2)解:由(1)可知△DEF 是等边三角形,且EBD FCE ∆∆≌,60DEF ∴∠=︒,BDE CEF ∠=∠,BD CE =,150DEC ∠=︒,90BDE CEF DEC DEF ∴∠=∠=∠-∠=︒,在Rt DEB ∆中,9030DEB B ∠=︒-∠=︒,122BD BE ∴==, 6BC BE CE BE BD ∴=+=+=,AB BC CA==,∴等边△ABC的周长为318BC=.【点睛】本题主要是考查了全等三角形的性质及判定、等边三角形的判定及性质和含30角直角三角形的性质,熟练利用等边三角形的性质,找到相等条件,进而证明全等三角形,综合利用全等三角形以及含30角直角三角形的性质,求出对应边长,是解决该题的关键.9、(1)仍是真命题,证明见解析(2)仍能得到60BQM∠=︒,作图和证明见解析【分析】(1)由角边角得出ABM和BCN△全等,对应边相等即可.(2)由(1)问可知BM=CN,故可由边角边得出BAN和ACM△全等,对应角相等,即可得出60BQM∠=︒.(1)∵60BQM∠=︒∴60QBA BAM∠+∠=︒∵60QBA CQN∠+∠=︒∴BAQ CQN∠=∠在ABM和BCN△中有BAQ CQNAB BCABM BCN∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABM BCN ASA≅△()∴BM CN=故结论仍为真命题.(2)∵BM =CN∴CM =AN∵AB =AC ,18060120ACM BAN ∠=∠=︒-︒=︒,在BAN 和ACM △中有BA AC BAN ACM AN CM =⎧⎪∠=∠⎨⎪=⎩∴BAN ACM SAS ≅△()∴BNA CMA ∠=∠∴60BQM BNA NAQ CMA CAM ACB ∠=∠+∠=∠+∠=∠=︒故仍能得到60BQM ∠=︒,如图所示【点睛】本题考查了全等三角形的判定和性质,从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边角迅速、准确地确定要补充的边角,有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路.10、见解析【分析】根据等腰三角形的性质,可得∠ADB =∠ADC =90°,∠ABC =∠ACB ,BD =CD ,从而得到△BDE ≌△CDE ,进而得到∠DCE =∠DBE ,再由BE 平分∠ABC ,可得12DBE ABC ∠=∠ ,进而得到12DCE ACB ∠=∠,即可求证.【详解】解:∵AB =AC ,AD 是△ABC 的中线,∴∠ADB =∠ADC =90°,∠ABC =∠ACB ,BD =CD ,∵DE =DE ,∴△BDE ≌△CDE ,∴∠DCE =∠DBE ,∵BE 平分∠ABC , ∴12DBE ABC ∠=∠ , ∴12DCE ABC ∠=∠, ∴12DCE ACB ∠=∠, ∴CE 平分∠ACB .【点睛】本题主要考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握等腰三角形的两底角相等,等腰三角形“三线合一”是解题的关键.。
柳堡镇中心初中七年级数学第十四周假期作业一、选择题:(每题3分,共30分)5、a、b、c、d四根竹签的长分别为2cm、3cm、4cm、6cm.从中任意选取三根首尾依次相接围成不同的三角形,则围成的三角形共有:( )A、1个B、2个C、3个D、4个6、若一个多边形每一个外角都与它的相邻的内角相等,则这个多边形的边数是:( )A、6B、5C、4D、37、下列叙述中,正确的有:( )①三角形的一个外角等于两个内角的和;②一个五边形最多有3个内角是直角;③任意一个三角形的三条高所在的直线相交于一点,且这点一定在三角形的内部;④ΔABC中,若∠A=2∠B=3∠C,则这个三角形ABC为直角三角形.A、0个B、1个C、2个D、3个8、如图,OP∥QR∥ST,则下列各式中正确的是:( )A、∠1+∠2+∠3=180°B、∠1+∠2-∠3=90°C、∠1-∠2+∠3=90°D、∠2+∠3-∠1=180°9、如图是一块电脑主板的示意图,每一转角处都是直角,数据如图所示,则该主板的周长是:( )A、88mmB、96mmC、80mmD、84mm10、一幅三角板如图所示叠放在一起,则图中∠α的度数为:( )A、75°B、60°C、65°D、55°二、填空题(每题2分,共20分)1、如图,面积为6cm2的直角三角形ABC沿BC方向平移至三角形DEF的位置,平移距离是BC的2倍,则图中四边形ACED的面积为_______ cm2.2、如图,l1∥l2,AB⊥l2,垂足为O,BC交l2于点E,若∠ABC=140°,则∠1=_____°.3、光线a照射到平面镜CD上,然后在平面镜AB和CD之间来回反射,这时光线的入射角等于反射角。
若已知∠1=55°,∠3=55°,则∠1=______°.4、人们都知道五星红旗中的五角星的五个角都相等,那么每一个角是______°.5、如图AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1=72°,则∠AEG=____°6、如图,把ΔABC沿线段DE折叠,使点A落在点F处,BC∥DE,若∠B=50°,则∠BDF=______°7、如图,AB∥CD,AD∥BC,∠B=110°,延长AD到F,延长CD到E,连接EF,则∠E+∠F=______°8、三角形的周长为10cm,其中有两边的长相等且长为整数,则第三边长为______cm.9、如果一个等腰三角形的两边长分别为4cm和9cm,则此等腰三角形的周长为________cm.10、如图,五边形ABCDE中,∠BCD、∠EDC的外角分别是∠FCD、∠GDC,CP、DP 分别平分∠FCD和∠GDC且相交于点P,若∠A=140°,∠B=120°,∠E=90°,根据条件,你能求出哪个角的度数?是多少?请直接写出结论____________________.三、操作题(4分+6分)1、请你把所给的三角形沿箭头的方向平移3cm(不写画法,保留作图痕迹)2、如图是3×4的正方形网格(每个小正方形的边长为1),点A、B、C、D、E、F、G七点在格点上。
沪教版七年级数学第二学期第十四章三角形章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,等腰△ABC中,AB=AC,点D是BC边中点,则下列结论不正确...的是()A.∠B=∠C B.AD⊥BC C.∠BAD=∠CAD D.AB=2BC2、下列四个命题是真命题的有()①同位角相等;②相等的角是对顶角;③直角三角形两个锐角互余;④三个内角相等的三角形是等边三角形.A.1个B.2个C.3个D.4个3、如图,ABC DEC ≌△△,点E 在线段AB 上,75B ∠=︒,则ACD ∠的度数为( )A .20°B .25°C .30°D .40°4、下列说法不正确的是( )A .有两边对应相等的两个直角三角形全等;B .等边三角形的底角与顶角相等;C .有一个角是45的直角三角形是等腰直角三角形;D .如果点M 与点N 到直线l 的距离相等,那么点M 与点N 关于直线l 对称.5、如图,AB DF ∥,AC CE ⊥于点C ,BC 与DF 交于点E ,若20A ∠=︒,则CED ∠等于( )A .20°B .50°C .70°D .110°6、如图,在ABC 中,5AB =,8BC =,60B ︒∠=,将ABC 绕点A 顺时针旋转得到ADE ,当点B 的对应点D 恰好落在BC 边上时,CD 的长为( )A .3B .4C .5D .67、我们称网格线的交点为格点.如图,在4×4的长方形网格中有两个格点A 、B ,连接AB ,在网格中再找一个格点C ,使得△ABC 是等腰直角三角形,则满足条件的格点C 的个数是( )A .3B .4C .5D .68、下列说法错误的是( )A .任意一个直角三角形都可以被分割成两个等腰三角形B .任意一个等腰三角形都可以被分割成两个等腰三角形C .任意一个直角三角形都可以被分割成两个直角三角形D .任意一个等腰三角形都可以被分割成两个直角三角形9、如图,在ABC ∆中,BD 、CD 分别平分ABC ∠、ACB ∠,过点D 作直线平行于BC ,分别交AB 、AC 于点E 、F ,当A ∠大小变化时,线段EF 和BE CF +的大小关系是( )A .EF BE CF >+B .EF BE CF <+C .EF BE CF =+D .不能确定10、下列三角形与下图全等的三角形是( )A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在△ABC 中,∠C =62°,△ABC 两个外角的角平分线相交于G ,则∠G 的度数为_____.2、如图,将ABC 绕点A 顺时针旋转()090αα︒<<︒得到ADE ,点B 的对应点D 恰好落在边BC 上,则ADE∠=_______.(用含α的式子表示)3、在△ABC中,已知∠B是∠A的2倍,∠C比∠A大20°,则∠A=_____________.4、等腰三角形的两边长分别是4和9,则它的周长为________.5、如图,△ABC中,∠B=20°,D是BC延长线上一点,且∠ACD=60°,则∠A的度数是____________ 度.三、解答题(10小题,每小题5分,共计50分)1、已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,∠AEG=∠AGE,∠C =∠DGC.(1)求证:AB//CD;(2)若∠AGE+∠AHF=180°,求证:∠B=∠C;(3)在(2)的条件下,若∠BFC=4∠C,求∠D的度数.2、一个零件形状如图所示,按规定A∠应等于75°,B和C∠应分别是18°和22°,某质检员测得114BDC∠=︒,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由.3、如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连结AE,作AF⊥AE且AF=AE.(1)如图1,过F点作FD⊥AC交AC于D点,求证:FD=BC;(2)如图2,连结BF交AC于G点,若AG=3,CG=1,求证:E点为BC中点.(3)当E点在射线CB上,连结BF与直线AC交子G点,若BC=4,BE=3,则AGCG=.(直接写出结果)4、针对于等腰三角形三线合一的这条性质,老师带领同学们做了进一步的猜想和证明,提问:如果一个三角形中,一个角的平分线和它所对的边的中线重合,那么这个三角形是等腰三角形.已知:在△ABC中,AD平分∠CAB,交BC边于点D,且CD=BD,求证:AB=AC.以下是甲、乙两位同学的作法.甲:根据角平分线和中线的性质分别能得出一组角等和一组边等,再加一组公共边,可证△ACD ≌△ABD ,所以这个三角形为等腰三角形;乙:延长AD 到E ,使DE =AD ,连接BE ,可证△ACD ≌△EBD ,依据已知条件可推出AB =AC ,所以这个三角形为等腰三角形(1)对于甲、乙两人的作法,下列判断正确的是( );A .两人都正确B .甲正确,乙错误C .甲错误,乙正确(2)选择一种你认为正确的作法,并证明.5、如图,ABC 是等边三角形,D 点是BC 上一点,2BD CD =,DE AB ⊥于点E ,CE 交AD 于点P .求APE ∠的度数.6、如图,等边△ABC 中,点D 在BC 上,CE =CD ,∠BCE =60°,连接AD 、BE .(1)如图1,求证:AD=BE;(2)如图2,延长AD交BE于点F,连接DE、CF,在不添加任何辅助线和其它字母的情况下,请直接写出等于120°的角.7、如图,△ABC中,AB=AC,D为BC边的中点,AF⊥AD,垂足为A.求证:∠1=∠28、已知:如图,AD,BE相交于点O,AB⊥BE,DE⊥AD,垂足分别为B,D,OA=OE.求证:△ABO≌△EDO.9、“三等分角”是被称为几何三大难题的三个古希腊作图难题之一.如图1所示的“三等分角仪”是利用阿基米德原理做出的.这个仪器由两根有槽的棒PA,PB组成,两根棒在P点相连并可绕点P 旋转,C点是棒PA上的一个固定点,点A,O可在棒PA,PB内的槽中滑动,且始终保持OA=OC=PC.∠AOB为要三等分的任意角.则利用“三等分角仪”可以得到∠APB=13∠AOB.我们把“三等分角仪”抽象成如图2所示的图形,完成下面的证明.已知:如图2,点O ,C 分别在∠APB 的边PB ,PA 上,且OA =OC =PC .求证:∠APB =13∠AOB .10、如图,ABC 是等边三角形,∥DE BC ,分别交AB ,AC 于点D ,E .(1)求证:ADE 是等边三角形;(2)点F 在线段DE 上,点G 在ABC 外,BF CG =,ABF ACG ∠=∠,求证:AF FG =.-参考答案-一、单选题1、D【分析】根据等腰三角形的等边对等角的性质及三线合一的性质判断.【详解】解:∵AB =AC ,点D 是BC 边中点,∴∠B=∠C,AD⊥BC,∠BAD=∠CAD,故选:D.【点睛】此题考查了等腰三角形的性质:等边对等角,三线合一,熟记等腰三角形的性质是解题的关键.2、B【分析】利用平行线的性质、对顶角的定义、直角三角形的性质及等边三角形的性质分别判断后即可确定正确的选项.【详解】①两直线平行,同位角相等,故错误,是假命题;②相等的角是对顶角,错误,是假命题;③直角三角形两个锐角互余,正确,是真命题;④三个内角相等的三角形是等边三角形,正确,是真命题,综上所述真命题有2个,故选:B.【点睛】本题考查了命题真假的判断,要说明一个命题是正确的,需要根据命题的题设和已学的有关公理、定理进行说明、推理、证明,正确的命题叫做真命题,错误的命题叫做假命题.3、C【分析】根据全等三角形的性质可证得BC=CE,∠ACB=∠DCE即∠ACD=∠BCE,根据等腰三角形的性质和三角形的内角和定理求解∠B=∠BEC和∠BCE即可.【详解】解:∵ABC DEC ≌△△,∴BC=CE ,∠ACB =∠DCE ,∴∠B =∠BEC ,∠ACD =∠BCE ,∵75B ∠=︒,∴∠ACD =∠BCE=180°-2×75°=30°,故选:C .【点睛】本题考查全等三角形的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握全等三角形的性质和等腰三角形的性质是解答的关键.4、D【分析】利用全等三角形的判定、等边三角形的判定及轴对称的性质分别判断后即可确定不正确的选项.【详解】解:A 、有两边对应相等的两个直角三角形全等,正确;B 、等边三角形的三个内角都是60°,所以等边三角形的底角与顶角相等,正确;C 、有一个角是45的直角三角形是等腰直角三角形,正确;D 、当点M 与点N 在直线l 的同侧时,点M 与点N 关于直线l 不对称,错误,故选:D .【点睛】本题考查了命题与定理的知识,解题的关键是了解全等三角形的判定、等边三角形的判定及轴对称的性质等知识,属于基础定理,难度不大.5、C【分析】由AC CE ⊥与20A ∠=︒,即可求得ABC ∠的度数,又由AB DF ∥,根据两直线平行,同位角相等,即可求得CED ∠的度数.【详解】解:∵AC CE ⊥,∴90C ∠=︒,∵20A ∠=︒,∴70ABC ∠=︒,∵AB DF ∥,∴70CED ABC ∠=∠=︒.故选:C .【点睛】题目主要考查了平行线的性质与垂直的性质、三角形内角和定理,熟练掌握平行线的性质是解题关键.6、A【分析】先根据旋转的性质可得AB AD =,再根据等边三角形的判定与性质可得5BD AB ==,然后根据线段的和差即可得.【详解】由旋转的性质得:5AB AD ==,60B ∠=︒,ABD ∴是等边三角形,5BD AB ∴==,8BC =,∴=-=-=.CD BC BD853故选:A.【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.7、A【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰直角△ABC底边;②AB为等腰直角△ABC其中的一条腰.【详解】解:如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的格点C点有0个;②AB为等腰直角△ABC其中的一条腰时,符合条件的格点C点有3个.故共有3个点,故选:A.【点睛】本题考查了等腰三角形的性质和判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.8、B【分析】根据等腰三角形和直角三角形的性质判断各选项即可得出答案.【详解】解:A、任意一个直角三角形一定能分成两个等腰三角形,本选项正确,不符合题意;B、任意一个等腰三角形不一定能分成两个等腰三角形,本选项错误,符合题意;C、任意一个直角三角形都可以被分割成两个直角三角形,本选项正确,不符合题意;D、任意一个等腰三角形都可以被分割成两个直角三角形,本选项正确,不符合题意;故选:B.【点睛】本题考查了等腰三角形和直角三角形的知识,解题的关键是能判断等腰三角形及直角三角形,可动手操作进行判断.9、C【分析】=,则由平行线的性质和角平分线的定义可得EBD EDB∠=∠,则ED BE=,同理可得DF FC =+,可得答案.EF BE CF【详解】EF BC,解://∴∠=∠,EDB DBCBD平分ABC∠,∴∠=∠,EBD DBC∴∠=∠,EDB EBD∴=,ED BE=,同理DF FC∴+=+,ED DF BE FC即EF BE CF =+.故选:C【点睛】本题主要考查了等腰三角形的判定,平行线的性质,角平分线的定义,熟练掌握等腰三角形的判定定理,平行线的性质定理,角平分线的定义是解题的关键.10、C【分析】根据已知的三角形求第三个内角的度数,由全等三角形的判定定理即可得出答案.【详解】由题可知,第三个内角的度数为180514980︒-︒-︒=︒,A.只有两边,故不能判断三角形全等,故此选项错误;B.两边夹的角度数不相等,故两三角形不全等,故此选项错误;C.两边相等且夹角相等,故能判断两三角形全等,故此选项正确;D. 两边夹的角度数不相等,故两三角形不全等,故此选项错误.故选:C .【点睛】本题考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键.二、填空题1、59°【分析】先利用三角形内角和定理求出∠CAB +∠CBA =180°-∠C =118°,从而利用三角形外角的性质求出∠DAB +∠EBA =2∠C +∠CAB +∠CBA =242°,再由角平分线的定义求出11==12122GAB GBA DAB EBA ++︒∠∠∠∠,由此求解即可.【详解】解:∵∠C=62°,∴∠CAB+∠CBA=180°-∠C=118°,∵∠DAB=∠C+∠CBA,∠EBA=∠C+∠CAB,∴∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,∵△ABC两个外角的角平分线相交于G,∴1=2GAB DAB∠∠,12GBA EBA∠=∠,∴11==12122GAB GBA DAB EBA++︒∠∠∠∠,∴∠G=180°-∠GAB-∠GBA=59°,故答案为:59°.【点睛】本题主要考查了三角形内角和定理,三角形外角的性质,角平分线的定义,熟知相关知识是解题的关键.2、1802α-【分析】由旋转的性质可得∠DAB =α,AD =AB ,ADE ∠=∠B ,进而即可求解.【详解】解:∵将ABC 绕点A 顺时针旋转()090αα︒<<︒得到ADE ,∴∠DAB =α,AD =AB ,ADE ∠=∠B ,∵∠B =1802α-, ∴ADE ∠=1802α-, 故答案是:1802α-. 【点睛】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是本题的关键.3、40°【分析】根据已知得出∠B =2∠A ,∠C =∠A +20°,代入∠A +∠B +∠C =180°得出方程∠A +2∠A +∠A +20°=180°,求出即可.【详解】解:∵∠B 是∠A 的2倍,∠C 比∠A 大20°,∴∠B =2∠A ,∠C =∠A +20°,∵∠A +∠B +∠C =180°,∴∠A +2∠A +∠A +20°=180°,∴∠A =40°,故答案为:40°.【点睛】本题考查了三角形内角和定理的应用,注意:三角形的内角和等于180°,用了方程思想.4、22【分析】分两种情况讨论:当腰长为4时,当腰长为9时,再结合三角形的三边关系,从而可得答案.【详解】解:等腰三角形的两边长分别是4和9,∴当腰长为4时,此时4+49,不符合题意,舍去,当腰长为9时,此时4+99,符合题意,所以三角形的周长为:4+9+9=22,故答案为:22【点睛】本题考查的是等腰三角形的定义,三角形的三边关系,掌握“等腰三角形的两腰相等,再分情况讨论”是解本题的关键.5、40【分析】直接根据三角形外角的性质可得结果.【详解】解:∵∠B=20°,∠ACD=60°,∠ACD是△ABC的外角,∴∠ACD=∠B+∠A,∴602040∠=∠-∠=︒-︒=︒,A ACD B故答案为:40.【点睛】本题考查了三角形外角的性质,熟知三角形的一个外角等于与它不相邻的两个内角的和是解本题的关键三、解答题1、(1)见解析;(2)见解析;(3)108°【分析】(1)根据对顶角相等结合已知条件得出∠AEG=∠C,根据内错角相等两直线平行即可证得结论;(2)由∠AGE+∠AHF=180°等量代换得∠DGC+∠AHF=180°可判断EC//BF,两直线平行同位角相等得出∠B=∠AEG,结合(1)得出结论;(3)由(2)证得EC//BF,得∠BFC+∠C=180°,求得∠C的度数,由三角形内角和定理求得∠D的度数.【详解】证明:(1)∵∠AEG=∠AGE,∠C=∠DGC,∠AGE=∠DGC∴∠AEG=∠C∴AB//CD(2)∵∠AGE=∠DGC,∠AGE+∠AHF=180°∴∠DGC+∠AHF=180°∴EC//BF∴∠B=∠AEG由(1)得∠AEG=∠C∴∠B=∠C(3)由(2)得EC//BF∴∠BFC+∠C=180°∵∠BFC=4∠C∴∠C=36°∴∠DGC =36°∵∠C +∠DGC +∠D =180°∴∠D =108°【点睛】此题考查了平行线的判定与性质,三角形内角和定理,熟记“内错角相等,两直线平行”、“同旁内角互补,两直线平行”及“两直线平行,同旁内角互补”是解题的关键.2、不合格,理由见解析【分析】延长BD 与AC 相交于点E .利用三角形的外角性质,可得1A B ∠=∠+∠,BDC BEC C ∠=∠+∠,即可求解.【详解】解:如图,延长BD 与AC 相交于点E .∵1∠是ABE △的一个外角,75A ∠=︒,18B ∠=︒,∴1751893A B ∠=∠+∠=︒+︒=︒,同理可得9322115BDC BEC C ∠=∠+∠=︒+︒=︒∵李师傅量得114BDC ∠=︒,不是115°,∴这个零件不合格.【点睛】 本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.3、(1)证明见解析;(2)证明见解析;(3)113或53 【分析】(1)证明△AFD ≌△EAC ,根据全等三角形的性质得到DF =AC ,等量代换证明结论;(2)作FD ⊥AC 于D ,证明△FDG ≌△BCG ,得到DG =CG ,求出CE ,CB 的长,得到答案;(3)过F 作FD ⊥AG 的延长线交于点D ,根据全等三角形的性质得到CG =GD ,AD =CE =7,代入计算即可.【详解】(1)证明:∵FD ⊥AC ,∴∠FDA =90°,∴∠DFA +∠DAF =90°,同理,∠CAE +∠DAF =90°,∴∠DFA =∠CAE ,在△AFD 和△EAC 中,AFD EAC ADF ECA AF AE ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△AFD ≌△EAC (AAS ),∴DF =AC ,∵AC =BC ,∴FD =BC ;(2)作FD ⊥AC 于D ,由(1)得,FD =AC =BC ,AD =CE ,在△FDG 和△BCG 中,90FDG BCG FGD BGCFD BC ∠∠︒⎧⎪∠∠⎨⎪⎩====, ∴△FDG ≌△BCG (AAS ),∴DG =CG =1,∴AD =2,∴CE =2,∵BC =AC =AG +CG =4,∴E 点为BC 中点;(3)当点E 在CB 的延长线上时,过F 作FD ⊥AG 的延长线交于点D ,BC =AC =4,CE =CB +BE =7,由(1)(2)知:△ADF ≌△ECA ,△GDF ≌△GCB ,∴CG =GD ,AD =CE =7,∴CG =DG =1.5,∴AG =CG +AC =5.5, ∴ 5.5111.53AG CG ==, 同理,当点E 在线段BC 上时,AG = AC -CG +=2.5, ∴ 2.551.53AG CG ==, 故答案为:113或53. 【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.4、(1)C ;(2)见解析【分析】(1)甲同学证明的两个三角形全等,没有边边角的判定,故错误,而乙的证明则正确,因此可作出判断;(2)按照乙的分析方法进行即可.【详解】(1)甲同学证明的两个三角形全等,边边角不能判定两个三角形全等,故错误,而乙的证明则正确,故选C ;(2)依据题意,延长AD 至E ,使DE =AD ,连接BE ,如图.∵D 为BC 中点.∴BD CD =.在△CAD 和△BED 中DE AD ADC EDB BD CD =⎧⎪∠=∠⎨⎪=⎩∴△CAD ≌△BED (SAS ).∴DAC E ∠=∠,BE AC =∵AD 平分∠BAC ,∴BAD CAD ∠=∠∴DAB E ∠=∠∴BE AB =∴AB =AC∴△ABC 为等腰三角形【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,关键是构造辅助线得到全等三角形. 5、60APE ∠=︒【分析】由题意易得60ABC ACB ∠=∠=︒,AB AC BC ==,则有30BDE ∠=︒,然后可得BE CD =,进而可证BEC CDA ≌,则有BCE =∠∠CAD ,最后问题可求解.【详解】解:∵ABC 是等边三角形,∴60ABC ACB ∠=∠=︒,AB AC BC ==,∵DE AB ⊥,∴90DEB ∠=︒,∴30BDE ∠=︒,∴2BD BE =,∵2BD CD =,∴BE CD =,∴BEC CDA ≌(SAS ),∴BCE =∠∠CAD ,∵,60APE PAC ACP ACB DAC ACP ∠=∠+∠∠=∠+∠=︒,∴60APE ACB ∠=∠=︒.【点睛】本题主要考查等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定,熟练掌握等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定是解题的关键.6、(1)见解析;(2)等于120°的角有∠BFC 、∠BDE 、∠DFE =120°.【分析】(1)利用SAS 证明△ADC ≌△BEC ,即可证明AD =BE ;(2)证明△CDE 为等边三角形,可求得∠BDE =120°;利用全等三角形的性质可求得∠BFD =∠BCA =60°,推出∠DFE =120°;同理可推出∠BFC =∠AFC +∠BFD =120°.【详解】(1)证明:等边△ABC 中,CA =CB ,∠ACB =60°,∵CE =CD ,∠BCE =60°,∴△ADC≌△BEC(SAS),∴AD=BE;(2)等于120°的角有∠BFC、∠BDE、∠DFE=120°.∵CE=CD,∠BCE=60°,∴△CDE为等边三角形,∴∠CDE=60°,∴∠BDE=120°;∵△ADC≌△BEC,∴∠DAC=∠EBC,又∠BDF=∠ADC,∴∠BFD=∠BCA=60°,∴∠DFE=120°;同理可求得∠AFC=∠ABC=60°,∴∠BFC=∠AFC+∠BFD=120°;综上,等于120°的角有∠BFC、∠BDE、∠DFE=120°.【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.7、见详解.【分析】根据等腰三角形三合一性质以及等边对等角性质得出AD ⊥BC ,∠B =∠C ,根据AF ⊥AD ,利用在同一平面内垂直同一直线的两直线平行得出AF∥BC ,利用平行线性质得出∠1=∠B ,∠2=∠C 即可.【详解】证明:∵△ABC 中,AB =AC ,D 为BC 边的中点,∴AD ⊥BC ,∠B =∠C ,∵AF ⊥AD ,∴AF∥BC ,∴∠1=∠B ,∠2=∠C ,∴∠1=∠2.【点睛】本题考查等腰三角形性质,平行线的判定与性质,掌握等腰三角形性质,平行线的判定与性质是解题关键.8、见解析【分析】利用AAS 即可证明△ABO ≌△EDO .【详解】证明:∵AB ⊥BE ,DE ⊥AD ,∴∠B =∠D =90°.在△ABO 和△EDO 中,,B D AOB EOD OA OE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABO ≌△EDO .【点睛】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.9、见解析【分析】由OA OC PC ==,得出,POC AOC 为等腰三角形,由外角的性质及等量代换得2CAO APB ∠=∠,再次利用外角的性质及等量代换得3AOB APB ∠=∠,即可证明.【详解】解:OA OC PC ==,,POC AOC ∴为等腰三角形,,APB COP ACO CAO ∴∠=∠∠=∠,由外角的性质得:2ACO APB COP APB ∠=∠+∠=∠,2CAO APB ∠=∠,再由外角的性质得:AOB APB CAO ∠=∠+∠,3AOB APB ∴∠=∠,13APB AOB ∴∠=∠. 【点睛】本题考查了等腰三角形、外角的性质、解题的关键是掌握外角的性质及等量代换的思想进行求解.10、(1)见详解;(2)见详解【分析】(1)由题意易得60ABC ACB BAC ∠=∠=∠=︒,然后根据平行线的性质可得60ADE AED ∠=∠=︒,进而问题可求证;(2)连接AG ,由题意易得AB =AC ,然后可知△ABF ≌△ACG ,则有AF =AG ,进而可得∠FAG =60°,最后问题可求证.【详解】证明:(1)∵ABC 是等边三角形,∴60ABC ACB BAC ∠=∠=∠=︒,∵DE ∥BC ,∴60,60ADE ABC AED ACB ∠=∠=︒∠=∠=︒,∴60ADE AED ∠=∠=︒,∴ADE 是等边三角形;(2)连接AG ,如图所示:∵ABC 是等边三角形,∴60BAC ∠=︒,AB =AC ,∵BF CG =,ABF ACG ∠=∠,∴△ABF ≌△ACG (SAS ),∴,AF AG BAF CAG =∠=∠,∵60BAF FAC BAC ∠+∠=∠=︒,∴60CAG FAC FAG ∠+∠=∠=︒,∴AFG是等边三角形,.∴AF FG【点睛】本题主要考查全等三角形及等边三角形的性质与判定,熟练掌握全等三角形及等边三角形的性质与判定是解题的关键.。
七中育才2013级第十四周周练
出题人:陶远辉 审题人:周敏
姓名: 班级: 一、选择题
1.下列说法:①全等三角形的形状相同,大小相等.•②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长,面积分别相等;⑤所有的等边三角形都是全等三角形.其中正确的说法有( )
A .5个
B .4个
C .3个
D .1个
2. 已知△ABC ≌△A ´B ´C ´,且△ABC 的周长为20,AB =8,BC =5,则A ´C ´等于( ) A. 5 B. 6 C. 7 D. 8
3. △ABC 与△DFE 是全等三角形,A 与D 对应,B 与F 对应,则按标有字母的线段计算,图中相等的线段有( )
第8题A B
C
D
E F
A. 1组
B. 2组
C. 3组
D. 4组
4.在A B C ∆和'''C B A ∆中,已知'A A ∠=∠,AB=''A B ,在下面判断中错误的是( ) A .若添加条件AC=''A C ,则≅∆ABC '''C B A ∆ B .若添加条件BC=''B C ,则≅∆ABC '''C B A ∆ C .若添加条件'B B ∠=∠,则≅∆ABC '''C B A ∆ D .若添加条件'C C ∠=∠,则≅∆ABC '''C B A ∆
5.等腰三角形两边的长分别为2cm 和5cm ,则这个三角形的周长是 ( ) A .9cm B .12cm
C .9cm 和12cm
D .在9cm 与12cm 之间
6.观察图下图中的汽车商标,其中是轴对称图形的个数为 (
)
A.2
B.3
C.4
D.5
7.对于下列命题:(1)关于某一直线成轴对称的两个三角形全等;(2)等腰三角形的对称轴是顶角的平分线;(3)一条线段的两个端点一定是关于经过该线段中点的直线的对称点;(4)如果两个三角形全等,那么它们关于某直线成轴对称.其中正确的个数为 ( )
第9题图
第10题图
A .0
B .1
C .2
D .3
8.下列图形中,不是轴对称图形的是 ( ) A .互相垂直的两条直线构成的图形 B .一条直线和直线外一点构成的图形
C .有一个内角为30°,另一个内角为120°的三角形
D .有一个内角为60°的三角形
9. 如图,OAB △绕点O 逆时针旋转80到OCD △的位置,已知45AOB ∠=,则
AOD ∠等于( )
A.55 B.45 C.40 D.
35
10.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明A O B AOB '''∠=∠的依据是 .
二、填空题
1.如图,若△ABC ≌△EFC,且CF=3cm,∠EFC=64°,则BC=___ __cm,∠B=_ __. 2.如图,若△ACB ≌△AED ,且∠B=35°,∠C=48°,则∠EAD=___ __.
3.如图,△ABC 绕点A 旋转后与△ADE 完全重合,则△ABC ≌△_______,那么两个三角形的对应边为__ ___,__ ___,___ __,对应角为____ __,____ ___,___ ___.
4.如图,ABC ∆中,
90=∠C ,AD 平分BAC ∠,BC=10cm ,BD=6cm ,则点D 到AB 的距离为 。
5.如图所示,点P 为△ABC 三条角平分线交点,PD ⊥AB ,PE ⊥BC ,PF ⊥AC ,则PD__________PE__________PF .
6.如图所示,P 是∠AOB 平分线上任意一点,且PD=2cm ,若使PE=2cm ,则PE 与OB 的关系是__________. 7.正五角星形共有_______条对称轴.
B A E F
C 第1题图 第2题图 第3题图
D 第4题图
D
C B E
A F 图
C 8.(1)等腰三角形,(2)正方形,(3)正七边形,(4)平行四边形,(5)梯形,(6)菱形中,一定是轴对称图形的是_____________(填番号).
9.如果AD 是ABC ∆中线,且AB=10,AC=6,那么AD 的范围是: 三、解答
1. 如图,D 、E 在BC 上,且BD=CE ,AD=AE ,AED ADE ∠=∠。
求证:AB=AC 。
2. 把两个含有45°角的直角三角板如图放置,点D 在BC 上,连结BE ,AD ,AD 的延长线交BE 于点F .
求证:AF ⊥BE .
3、如图:已知在ABC △中,C =∠B ∠,D 为BC 边的中点,过点D 作DE AB DF AC ⊥,⊥,垂足分别为E F ,. (1)求证:BED CFD △≌△;
(2)点D 在A ∠的平分线上吗?若在请说明理由。
②①A D
4.如图,BD=CD ,AB CE AC BF ⊥⊥,。
求证:点D 在BAC ∠的平分线上。
5.如图,=∠EAC ∠DAB ,AE=AC,AD=AB ,BC 的延长线交AD 于点F,交AE 延长线于点G,∠ACB=105°,∠CAD=10°,∠ADE=25°,求∠DFB 和∠AGB 的度数.
6.阅读下列材料并解决后面的问题:
两个大小不同的等腰直角三角形三角板如图①方式旋转放置,图②是由它抽象出的几何图形,B ,C ,E 在同一条直线上,连接DC.
(1)请找出图②中的全等三角形,并说明理由(说明:结论中不得含有未标识的字母); (2)试探究DC 与BE 的位置关系. (温馨提示:等腰直角三角形的两直角边相等,两锐角相等,都是45°)
B A G E
F C D。