人教版初二数学上册乘法公式综合练习题大全71
- 格式:doc
- 大小:89.00 KB
- 文档页数:41
八年级数学上册《第十四章乘法公式》同步练习带有答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.(x﹣a)2的计算结果是()A.x2﹣2ax+a2B.x2+a2C.x2+2ax+a2D.x2+2ax﹣a2 2.下列各式中,能用平方差公式计算的是()A.(1−2b)(2b−1)B.(−1−2b)(1+2b)C.(−1−2b)(−1+2b)D.(1−2b)(1+2a)3.化简:(m+1)2﹣(1﹣m)(1+m)正确的结果是()A.2m2B.2m+2 C.2m2+2m D.04.已知x+ 1x =7,则x2+ 1x2的值为()A.51 B.49 C.47 D.455.已知x+y=3,xy=-2,则x2-xy+y2的值是( )A.15 B.11 C.7 D.36.已知代数式-a2+2a-1,无论a取任何值,它的值一定是()A.正数B.零或负数C.零或正数D.负数7.已知(m−n)2=10,(m+n)2=2,则mn的值为()A.10 B.﹣6 C.﹣2 D.28.如图,根据阴影部分面积和图形的面积关系可以得到的数学公式是()A.a(a+b)=a2+ab B.a(a−b)=a2−abC.(a+b)2=a2+2ab+b2D.(a−b)2=a2−2ab+b2二、填空题:(本题共5小题,每小题3分,共15分.)9.计算:(−2m−n)2=.10.计算:20192-2017×2021= .11.若x2+kx+25是完全平方式,那么k的值是.12.已知x−y=2,xy=3则x2+y2的值为.13.一个正方形的边长增加3 cm,它的面积就增加 9cm2,那么这个正方形的边长是cm.三、解答题:(本题共5题,共45分)14.计算:(1)(a+3)(a−1)+a(a−2)(2)(x−2y+z)(x−2y−z)15.计算(1)(x+3y−2)(x−3y−2)(2)(3ab+4)2−(3ab−4)2.16.先化简,再求值:(2a+b)2−(3b+2a)(2a−3b),其中a=2,b=2517.已知a+b=2,ab=−1求下列各式的值.(1)求a2+b2的值;(2)求(a−b)2的值.18.将完全平方公式作适当变形,可以用来解决很多数学问题.(1)观察图1,写出代数式(a+b)2,(a−b)2,ab之间的等量关系:;(2)若x+y=6,xy=4则x2+y2=;(x−y)2=;(3)如图2,边长为5的正方形ABCD中放置两个长和宽分别为m,n(m<5,n<5)的长方形,若长方形的周长为12,面积为8.5,求图中阴影部分的面积S1+S2+S3的值.参考答案:1.A 2.C 3.C 4.C 5.A 6.B 7.C 8.D9.4m2+4mn+n210.411.±1012.1013.514.(1)解:原式=a2−a+3a−3+a2−2a=2a2−3(2)解:原式=[(x−2y)+z][(x−2y)−z]=(x−2y)2−z2=(x2−4xy+4y2)−z2=x2−4xy+4y2−z215.(1)解:(x+3y−2)(x−3y−2)=[(x−2)+3y][(x−2)−3y]=(x−2)2−3y2=x2−4x+4−3y2;(2)解:(3ab+4)2−(3ab−4)2=(3ab+4+3ab−4)[(3ab+4)−(3ab−4)]=6ab(3ab+4−3ab+4)=6ab×8=48ab.16.(2a+b)2−(3b+2a)(2a−3b)=4a2+4ab+b2−4a2+9b2=4ab+10b2当a=2,b=25时4ab+10b2=4×2×25+10×425=24517.(1)解:∵a+b=2,ab=−1∴a2+b2=(a+b)2−2ab=22−2×(−1)=6;(2)解:由(1)可知a2+b2=6∴(a−b)2=a2+b2−2ab=6−2×(−1)=8.18.(1)(a+b)2−(a−b)2=4ab(2)28;20(3)解:如图所示,由题意得,ED=5−m,HG=n−(5−m)=m+n−5,BQ=5−n∵长方形的周长为12,面积为8.5=6,mn=8.5∴m+n=122∴m2+n2=(m+n)2−2mn=36−17=19∴S1+S2+S3=(5−m)2+(m+n−5)2+(5−n)2=(5−m)2+(6−5)2+(5−n)2=m2−10m+25+1+n2−10n+25=m2+n2−10(m+n)+51=19−10×6+51=10。
初中数学八年级上册乘法公式练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 下列各式能用平方差公式进行计算的是()A.(x−3)(−x+3)B.(a+2b)(2a−b)C.(a−1)(−a−1)D.(x−3)22. 若x2+2(m−5)x+16是完全平方式,则m的值是( )A.5B.9C.9或1D.5或13. 下列等式中:① (a−b)2n=(b−a)2n (n为正整数);② (−1+2x)(−1−2x)=4x2−1;③(a−b)2=−(b−a)2;④(ab−2b)(−ab−2b)=2b2−a2b2;正确的个数是( )A.1个B.2个C.3个D.4个4. 如图a,边长为a的大正方形中有一个边长为b的小正方形,小明将图a的阴影部分拼成了一个矩形,如图b,这一过程可以验证()A.a2+b2−2ab=(a−b)2B.a2+b2+2ab=(a+b)2C.2a2+b2−3ab=(2a−b)(a−b)D.a2−b2=(a+b)(a−b)5. 如图能验证的公式是()A.(a−b)(a+b)=a2−b2B.(a+b)2=a2+2ab+b2C.(a−b)2=a2−2ab+b2D.a2−b2=(a−b)(a+b)6. 已知a 3+b 3=9,a +b =3,则ab =( )A.2B.3C.4D.67. 下列运算中,错误的运算有( )①(2x +y)2=4x 2+y 2,②(a −3b)2=a 2−9b 2,③(−x −y)2=x 2−2xy +y 2,④(x −12)2=x 2−2x +14.A.1个B.2个C.3个D.4个8.的计算结果为() A.B. C. D.9. 使m 2+m +7是完全平方数的所有整数m 的积是( )A.84B.86C.88D.9010. 下列乘法公式的运用,不正确的是( )A.B. C.D.11. 观察右边的图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来进行乘法运算的公式,这个公式是________.12. 分解因式:(2x −3y)3+(3x −2y)3−125(x −y)3=________.13. 计算:(x +2y)(x −2y)=________.14. 已知,ab =6,则a 2+b 2的值是________ .15. 有一个完全平方数44 (44)⏟2014个4.88 (89)⏟2013个8,它是________的平方.16. 在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证________(填写序号).①(a+b)2=a2+2ab+b2②(a−b)2=a2−2ab+b2③a2−b2=(a+b)(a−b)④(a+2b)(a−b)=a2+ab−2b2.17. 已知n2是完全平方数,n3是立方数,则n的最小正数值是________.18. 化简:6(7+1)(72+1)(74+1)(78+1)(716+1)+1=________.19. (x−y+9)(x+y−9)=________.20. 如图,在一块边长为a的正方形纸片的四角各剪去一个边长为b的正方形,若a=3.6,b=0.8,则剩余部分的面积为________.21. 是否存在这样一个正整数,当它加上100时是一个完全平方数,当它加上129时是另一个完全平方数?若存在,请求出这个正整数;若不存在,请说明理由.22. 乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是________(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是________,长是________,面积是________(写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式________(用式子表达)(4)运用你所得到的公式,计算:10.3×9.7(x+2y−3)(x−2y+3).23. 如图,四边形ABCD是正方形,P是对角线BD上一点,过P点作直线MN和EF,分别平行于AB、BC,交两组对边于点M、N、E、F,则四边形PFDN、PEBM都是正方形,四边形PEAN、PMCF都是矩形,设正方形PEBM的边长为a,正方形PFDN的边长为b(a<b).(1)用代数式分别表示正方形PEBM和正方形PFDN的面积之和以及矩形PEAN与矩形PMCF的面积之和,并判定两个面积之和的大小.(2)当点P在什么位置时,它们的面积之和相等?(3)用含a、b的代数式表示S△EMD.24. 求证:四个连续自然的积与1之和必定是一个完全平方数.25. 有-块边长为a m的正方形空地,现准备将这块空地的四周均留出b m宽修筑围坝,中间建喷水池.请计算出喷水池的面积.26. 图(1)是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图(2)的形状拼成一个正方形.(1)你认为图(2)中阴影部分的正方形的边长等于多少?________;(2)请用两种不同的方法求图(2)中阴影部分面积.方法一:________;方法二:________;(3)观察图(2),你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m−n)2,4mn.________;(4)根据(3)题中的等量关系,解决如下问题:若a+b=7,ab=5,求(a−b)2的值.27. 已知x=2007,求(23x+3)(3−23x)+(23x−1)(23x+1)的值.28. 已知x+y=7,xy=6,试求:(1)x−y的值;(2)x3y+xy3的值.29. 用简便方法计算:(1)20122−4024×2011+20112(2)20192−2018×2020.30. 计算:(2x−y)(4x2+y2)(2x+y)31. 三个两位的完全平方数连在一起写,得到一个六位的完全平方数,求所有这样的六位完全平方数.32. 将甲、乙两人现在的年龄按从左至右的顺序排列得到一个四位数,这个数为完全平方数,再过31年,将他们的年龄已同样的方式排列又得到一个四位数,这个数仍为完全平方数.试求出甲、乙现在的年龄.33. 如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)按要求填空:①你认为图②中的阴影部分的正方形的边长等于________;②请用两种不同的方法表示图②中阴影部分的面积:方法1:________;方法2:________;③观察图②,直接写出三个代数式(m+n)2,(m−n)2,mn之间的等量关系:________;(2)根据(1)题中的等量关系,解决如下问题:若m+n=6,mn=4,求(m−n)2的值.34. 如图1,边长为a的大正方形中有一个边长为b的小正方形(a>b),图2是由图1中阴影部分拼成的一个长方形.(1)观察图1、图2,当用不同的方法表示图形中阴影部分的面积时,可以获得一个因式分解公式,则这个公式是________;(2)如果大正方形的边长a比小正方形的边长b多3,它们的面积相差57,试利用(1)中的公式,求a,b的值.35. 如图,求阴影部分的面积,它可以验证哪个公式?36. 利用乘法公式简便计算:20072−2006×2008.37. 阅读理解:若x满足(30−x)(x−10)=160,求(30−x)2+(x−10)2的值.解:设30−x=a,x−10=b,则(30−x)(x−10)=ab=160,a+b=(30−x)+(x−10)=20,(30−x)2+(x−10)2=a2+b2=(a+b)2−2ab=202−2×160=80.解决问题:(1)若x满足(2020−x)(x−2016)=2,则(2020−x)2+(x−2016)2=________;(2)若x满足(2021−x)2+(x−2018)2=2020,求(2021−x)(x−2018)的值;(3)如图,在长方形ABCD中,AB=20,BC=12,点E,F是BC,CD上的点,且BE=DF=x,分别以FC,CE为边在长方形ABCD外侧作正方形CFGH和CEMN,若长方形CEPF的面积为160平方单位,则图中阴影部分的面积和为________平方单位.38. (x−2y)(2y+x)39. 请你求出2(3+1)(32+1)(34+1)(38+1)的值.40. 运用整式乘法公式计算:(1)1001×999+1;(2)20102−2011×2009.参考答案与试题解析初中数学八年级上册乘法公式练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】C【考点】平方差公式【解析】本题是平方差公式的应用,在所给的两个式子中,必须有一项完全相同,有一项相反才可用平方差公式.【解答】解:A、B中不存在相同的项,C、−1是相同的项,互为相反项是a与−a,所以(a−1)(−a−1)=1−a2.D、(x−3)2符合完全平方公式.因此A、B、D都不符合平方差公式的要求;故选C.2.【答案】C【考点】完全平方公式【解析】完全平方公式:(a±b)2=a2±2ab+b2这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍,故2(m−5)=±8,∴m=9或1.【解答】解:∵(x±4)2=x2±8x+16,∴在x2+2(m−5)x+16中,2(m−5)=±8,解得:m=9或1.故选C.3.【答案】A【考点】完全平方公式与平方差公式的综合【解析】此题暂无解析【解答】解:①(a−b)2n=[(b−a)2]n=(b−a)2n (n为正整数),故①正确;②(−1+2x)(−1−2x)=1−4x2,故②错误;③(a−b)2=(b−a)2,故③错误;④(ab−2b)(−ab−2b)=4b2−a2b2;故④错误.所以正确的等式有1个.故选A.4.【答案】D【考点】平方差公式的几何背景【解析】利用正方形的面积公式可知阴影部分面积为a2−b2,根据矩形面积公式可知阴影部分面积为(a+b)(a−b),二者相等,即可解答.【解答】如图b,阴影部分的面积=(a+b)(a−b);如图a,阴影部分的面积=a2−b2;这一过程可以验证:a2−b2=(a+b)(a−b).5.【答案】C【考点】完全平方公式的几何背景【解析】由大正方形的面积-小正方形的面积=剩余部分的面积,进而可以证明平方差公式.【解答】解:S I=a2−2S II−S III,即(a−b)2=a2−2(a−b)b−b2=a2−2ab+b2.故选:C.6.【答案】A【考点】立方公式【解析】首先利用立方差公式得出原式=(a+b)(a2−ab+b2),进而利用完全平方公式得出关于a+b与ab的形式,求出即可.【解答】解:a3+b3=(a+b)(a2−ab+b2),=(a+b)(a2+2ab+b2−3ab),=(a+b)[(a+b)2−3ab],∵a3+b3=9,a+b=3,∴3×(32−3ab)=9,解得:ab=2.故选A.7.【答案】D【考点】完全平方公式【解析】直接利用完全平方公式分别判断各式得出答案即可.【解答】解:①(2x+y)2=4x2+y2+4xy,故此选项错误;②(a −3b)2=a 2−6ab +9b 2,故此选项错误;③(−x −y)2=x 2+2xy +y 2,故此选项错误;④(x −12)2=x 2−x +14,故此选项错误.故错误的有4个.故选:D .8.【答案】A【考点】平方差公式完全平方公式与平方差公式的综合【解析】首先把199×1999变为(1992−1)(1992+1),然后利用平方差公式化简,最后合并即可求出结果.【解答】解:19922−199+1993=19922⋅(1992−1)(1992+1)=19922−19922+=故选A .9.【答案】A【考点】完全平方数【解析】因为m 2+m +7是完全平方数,所以可设m 2+m +7=k 2(k 为正整数),则m 2+m +7−k 2=0,解得m =−1±√4k 2−272,由m 为整数,应有4k 2−27=n 2(n 为正整数),据此求解.【解答】解:设m 2+m +7=k 2(k 为正整数),则m 2+m +7−k 2=0,解得,m =−1±√4k 2−272,∵ m 为整数,∴ 4k 2−27=n 2(n 为正整数),∴ (2k +n)(2k −n)=27,∴ {2k +n =272k −n =1或{2k +n =92k −n =3, 解得{n =13k =7或{n =3k =3, ∴ m 1=−7,m 2=6,m 3=−2,m 4=1,∴ m 1m 2m 3m 4=−7×6×(−2)×1=84.故选A .10.【答案】D【考点】平方差公式完全平方公式完全平方公式与平方差公式的综合【解析】分别利用平方差公式及完全平方公式化简得到结果,即可做出判断.【解答】解:A选项运用平方差公式(2a+b)(2a−b)=(2a)2−b2=4a2−b2B选项运用平方差公式(−2a+3)(3+2a)=32−(2a)2=9−4a2C选项是运用了完全平方公式计算正确;D选项运用完全平方公式计算(−1−3x)2=(1−3x)2=1+6x+9x2,所以D选项错误.故选D.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】(a+b)2=a2+2ab+b2【考点】完全平方公式的几何背景【解析】此题观察一个正方形被分为四部分,把这四部分的面积相加就是边长为a+b的正方形的面积,从而得到一个公式.【解答】解:由图知,大正方形的边长为a+b,∴大正方形的面积为,(a+b)2,根据图知,大正方形分为:一个边长为a的小正方形,一个边长为b的小正方形,两个长为b,宽为a的长方形,∵大正方形的面积等于这四部分面积的和,∴(a+b)2=a2+2ab+b2,故答案为:(a+b)2=a2+2ab+b2.12.【答案】15(2x−3y)(3x−2y)(y−x)【考点】立方公式【解析】利利用立方差公式A3+B3+C3−3ABC=(A+B+C)(A2+B2+C2−BC−CA−AB),从而得出A3+B3+C3=3ABC,即(2x−3y)3+(3x−2y)3−125(x−y)3符合上述公式,即可得出答案.【解答】解:∵A3+B3+C3−3ABC=(A+B+C)(A2+B2+C2−BC−CA−AB),若A+B+C=0,便有A3+B3+C3=3ABC,令A=2x−3y,B=3x−2y,C=5y−5x,则符合上述条件,易得A3+B3+C3=3ABC.∴(2x−3y)3+(3x−2y)3−125(x−y)3=3(2x−3y)(3x−2y)[5(y−x)],=15(2x−3y)(3x−2y)(y−x),故答案为:15(2x−3y)(3x−2y)(y−x).13.【答案】x2−4y2【考点】平方差公式【解析】符合平方差公式结构,直接利用平方差公式计算即可.【解答】解:(x+2y)(x−2y)=x2−4y2.故答案为:x2−4y2.14.【答案】244【考点】完全平方公式完全平方公式与平方差公式的综合【解析】已知第一个等式左边利用完全平方公式展开,将ab的值代入计算即可求出a2+b2的值.【解答】(a+b)2=a2+2ab+b2=256,ab=6∴a2+b2=24A故答案为24415.【答案】13(2×101007+10−1007)【考点】完全平方数【解析】先将式子变形为19×(4×102014+4+10−2014),再根据完全平方公式即可得到原式=[13(2×101007+10−1007)]2.依此即可求解.【解答】解:44 (44)⏟2014个4.88 (89)⏟2013个8=4×11...11+8×0.11...1+0.00...1(2014个1)=49×(99...9)+89×(0.99...9)+0.00...1(2014个9)=49×(102014−1)+89×(1−0.00...1)+0.00 (1)=49×102014−49+89−89×10−2014+10−2014=19×(4×102014+4+10−2014)=[13(2×101007+10−1007)]2.故答案为:13(2×101007+10−1007).16.【答案】③【考点】平方差公式的几何背景【解析】第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积,等于a2−b2;第二个图形阴影部分是一个长是(a+b),宽是(a−b)的长方形,面积是(a+b)(a−b);这两个图形的阴影部分的面积相等.【解答】解:∵图甲中阴影部分的面积=a2−b2,图乙中阴影部分的面积=(a+b)(a−b),而两个图形中阴影部分的面积相等,∴a2−b2=(a+b)(a−b).故可以验证③.故答案为:③.17.【答案】648【考点】完全平方数立方公式【解析】根据n2是完全平方数、n3是立方数即可设n=2m2=3k3(m,k是正整数),则k是偶数,即可求得n的最小正数值,即可解题.【解答】解:∵n2是完全平方数,n3是立方数,∴设n=2m2=3k3(m,k是正整数).由此k应是偶数,又要求n的最小正数值,∴只需取k=2,4,6试算,再注意m为3的倍数,即n为9的倍数,∴只需从6,12,试算即可,当k=6时,n=648即为所求.故答案为:648.18.【答案】732【考点】平方差公式【解析】原式变形后,利用平方差公式计算即可得到结果.【解答】解:原式=(7−1)(7+1)(72+1)(74+1)(78+1)(716+1)+1=(72−1)(72+1)(74+1)(78+1)(716+1)+1=(74−1)(74+1)(78+1)(716+1)+1=(78−1)(78+1)(716+1)+1=(716−1)(716+1)+1=732−1+1=732.故答案为:73219.【答案】x2−y2+18y−81【考点】平方差公式完全平方公式【解析】先变形,再根据平方差公式进行计算,最后根据完全平方公式展开即可.【解答】解:原式=[−(y−9)][x+(y−9)]=x2−(y−9)2=x2−y2+18y−81,故答案为:x2−y2+18y−81.20.【答案】10.4【考点】完全平方公式的几何背景【解析】直接利用已知图形,用总面积减去4个正方形面积进而得出答案.【解答】解:由题意可得:剩余部分的面积为:a2−4b2=(a+2b)(a−2b),将a=3.6,b=0.8代入上式可得:原式=(3.6+2×0.8)(3.6−2×0.8)=10.4.故答案为:10.4.三、解答题(本题共计 20 小题,每题 10 分,共计200分)21.【答案】解:假设存在这样的正整数m,由题意得:m+100=x2①;m+129=y2②,②-①得y2−x2=29.所以(y+x)(y−x)=29×1.只有当x +y =29,y −x =1时,成立,即{x +y =29y −x =1, 解得:{y =15x =14, 所以m =x 2−100=142−100=196−100=96,∴ 存在正整数96,当它加上100时是一个完全平方数,当它加上129时是另一个完全平方数.【考点】完全平方数【解析】利用分解因式求不定方程的整数解,再求m 的值,进而得出答案.【解答】解:假设存在这样的正整数m ,由题意得:m +100=x 2①;m +129=y 2②,②-①得y 2−x 2=29.所以(y +x)(y −x)=29×1.只有当x +y =29,y −x =1时,成立,即{x +y =29y −x =1, 解得:{y =15x =14, 所以m =x 2−100=142−100=196−100=96,∴ 存在正整数96,当它加上100时是一个完全平方数,当它加上129时是另一个完全平方数.22.【答案】a 2−b 2a −b ,a +b ,(a +b)(a −b)(a +b)(a −b)=a 2−b 2(4)10.3×9.7=(10+0.3)(10−0.3)=100−0.09=99.91;(x +2y −3)(x −2y +3)=[x +(2y −3)][x −(2y −3)]=x 2−(2y −3)2=x 2−(4y 2−12y +9)=x 2−4y 2+12y −9.【考点】平方差公式的几何背景【解析】(1)阴影部分的面积等于大正方形的面积减去小正方形的面积,据此即可写出;(2)宽是第一个图中的矩形的宽,长是两矩形的长的和,根据矩形的面积公式即可得到;(3)根据(1)(2)表示的两个图形的面积相等,即可得到公式;(4)10.3×9.7=(10+0.3)(10−0.3),(x +2y −3)(x −2y +3)=[x +(2y −3)][x −(2y −3)],再利用(3)得到的公式,即可计算.【解答】解:(1)a 2−b 2;(2)宽是:a−b,长是:a+b,面积是:(a+b)(a−b);(3)(a+b)(a−b)=a2−b2;(4)10.3×9.7=(10+0.3)(10−0.3)=100−0.09=99.91;(x+2y−3)(x−2y+3)=[x+(2y−3)][x−(2y−3)]=x2−(2y−3)2=x2−(4y2−12y+9)=x2−4y2+12y−9.23.【答案】解:(1)正方形PEBM和正方形PFDN的面积之和为:a2+b2;矩形PEAN与矩形PMCF的面积之和为:ab+ab=2ab;a2+b2−2ab=(a−b)2>0,∴正方形PEBM和正方形PFDN的面积之和大于矩形PEAN与矩形PMCF的面积之和;(2)当点P在中点时,它们的面积之和相等;(3)S△EMD=12(a+b)2−12b(a+b)−14a2=12a2+ab+12b2−12ab−12b2−14a2=1 4a2+12ab.【考点】完全平方公式的几何背景【解析】(1)根据正方形及矩形的面积公式即可得出答案;(2)当a=b时面积相等;(3)根据直角三角形面积公式即可求解.【解答】解:(1)正方形PEBM和正方形PFDN的面积之和为:a2+b2;矩形PEAN与矩形PMCF的面积之和为:ab+ab=2ab;a2+b2−2ab=(a−b)2>0,∴正方形PEBM和正方形PFDN的面积之和大于矩形PEAN与矩形PMCF的面积之和;(2)当点P在中点时,它们的面积之和相等;(3)S△EMD=12(a+b)2−12b(a+b)−14a2=12a2+ab+12b2−12ab−12b2−14a2=1 4a2+12ab.24.【答案】证明:设最小的自然数为n,则有n×(n+1)×(n+2)×(n+3)+1=[n×(n+3)]×[(n+1)×(n+2)]+1=(n2+3n)(n2+3n+2)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2.故四个连续自然的积与1之和必定是一个完全平方数.【考点】完全平方数【解析】可设最小的自然数为n,则四个连续自然数的积加l,可以写成n×(n+1)×(n+ 2)×(n+3)+1,再转化为[n×(n+3)]×[(n+1)×(n+2)]+1=(n2+3n)(n2+ 3n+2)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2.从而得以证明.【解答】证明:设最小的自然数为n,则有n×(n+1)×(n+2)×(n+3)+1=[n×(n+3)]×[(n+1)×(n+2)]+1=(n2+3n)(n2+3n+2)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2.故四个连续自然的积与1之和必定是一个完全平方数.25.【答案】(a2−4ab+4b2)m2或(a−2b)2m2.【考点】完全平方公式的几何背景【解析】利用正方形的面积减去四周围坝的面积,四个角处都多减了一次,所以再加上四个边长为b的小正方形的面积就是喷泉水池的面积,即可得出答案.【解答】解:喷泉水池的面积为:a2−4ab+4b2或(a−2b)2.26.m−n,(m−n)2,(m+n)2−4mn,(m−n)2=(m+n)2−4mn.m−n,(m−n)2,(m+n)2−4mn(m+n)2−4mn=(m−n)2(4)(a−b)2=(a+b)2−4ab=72−4×5=29.【考点】完全平方公式的几何背景【解析】(1)根据观察图形,可得小正方形的边长;(2)根据正方形的面积公式,可得方法一,根据面积的和差,可得方法二;(3)根据同一图形的面积的两种表示方法,可得答案;(4)根据规律,可得答案.【解答】解:(1)图(2)中阴影部分的正方形的边长等于多少?m−n;(2)请用两种不同的方法求图(2)中阴影部分面积.方法一:(m−n)2;方法二:(m+n)2−4mn;(3)观察图(2),你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m−n)2,4mn.(m+n)2−4mn=(m−n)2;(4)(a−b)2=(a+b)2−4ab=72−4×5=29.27.【答案】解:(23x+3)(3−23x)+(23x−1)(23x+1),=9−49x2+49x2−1,=8,所以,x=2007时,原式=8.【考点】平方差公式【解析】利用平方差公式计算,再把x=2007代入进行计算即可得解.【解答】解:(23x+3)(3−23x)+(23x−1)(23x+1),=9−49x2+49x2−1,=8,所以,x=2007时,原式=8.28.解:(1)(x−y)2=(x+y)2−4xy=25∴x−y=±5.(2)x2+y2=(x+y)2−2xy=37,所以原式=xy(x2+y2)=222.【考点】完全平方公式【解析】此题暂无解析【解答】解:(1)(x−y)2=(x+y)2−4xy=25∴x−y=±5.(2)x2+y2=(x+y)2−2xy=37,所以原式=xy(x2+y2)=222.29.【答案】解:(1)原式=20122−2×2012×2011+20112 =(2012−2011)2=1.(2)原式=20192−(2019−1)×(2019+1)=20192−(20192−1)=1.【考点】完全平方数平方差公式完全平方公式【解析】此题暂无解析【解答】解:(1)原式=20122−2×2012×2011+20112 =(2012−2011)2=1.(2)原式=20192−(2019−1)×(2019+1)=20192−(20192−1)=1.30.【答案】解:原式=(2x−y)(2x+y)(4x2+y2)=(4x2−y2)(4x2+y2)=16x4−y4.【考点】平方差公式先交换位置,再根据平方差公式进行计算即可.【解答】解:原式=(2x−y)(2x+y)(4x2+y2)=(4x2−y2)(4x2+y2)=16x4−y4.31.【答案】解:两位的完全平方数只有:16,25,36,49,64,81,如果一个数的十位数字是奇数且是完全平方数,则个位数字一定是6,也就是16在个位和十位位置,完全平方数具有:奇数的平方是8n+1型;偶数的平方为8n或8n+4型,且根据是8的倍数的特征是整数末三位是8的倍数,而任意三个两位的完全平方数连在一起写,是8的倍数的只有166464,646416,故所有这样的六位完全平方数是:166464,646416.【考点】完全平方数【解析】首先得出所有的两位的完全平方数,再利用完全平方数的特征奇数的平方是8n+1型;偶数的平方为8n或8n+4型,进而得出答案.【解答】解:两位的完全平方数只有:16,25,36,49,64,81,如果一个数的十位数字是奇数且是完全平方数,则个位数字一定是6,也就是16在个位和十位位置,完全平方数具有:奇数的平方是8n+1型;偶数的平方为8n或8n+4型,且根据是8的倍数的特征是整数末三位是8的倍数,而任意三个两位的完全平方数连在一起写,是8的倍数的只有166464,646416,故所有这样的六位完全平方数是:166464,646416.32.【答案】解:设甲年龄为x岁,乙年龄为y岁,可得,100x+y=m2,100(x+31)+y+31=n2,两式相减得100×31+31=n2−m2,31×101=(n−m)(n+m),∴{n+m=101n−m=31,解得,{n=66m=35,∴100x+y=352=1225,∴x=12,y=25,故甲年龄为12+31=42岁,乙年龄为25+31=56岁.【考点】完全平方数【解析】设甲年龄为x岁,乙年龄为y岁,可得100x+y=m2,100(x+31)+y+31=n2,两式相减因式分解后得到31×101=(n−m)(n+m),得到方程组后解答即可.解:设甲年龄为x 岁,乙年龄为y 岁,可得,100x +y =m 2,100(x +31)+y +31=n 2,两式相减得100×31+31=n 2−m 2,31×101=(n −m)(n +m),∴ {n +m =101n −m =31, 解得,{n =66m =35, ∴ 100x +y =352=1225,∴ x =12,y =25,故甲年龄为12+31=42岁,乙年龄为25+31=56岁.33.【答案】m −n ,(m −n)2,(m +n)2−4mn ,(m +n)2−(m −n)2=4mn(m −n)2的值为20【考点】完全平方公式的几何背景【解析】(1)①根据拼图即可得图②中的阴影部分的正方形的边长;②根据正方形和长方形的面积即可用两种不同的方法表示图②中阴影部分的面积: ③结合图②,即可写出三个代数式(m +n)2,(m −n)2,mn 之间的等量关系;(2)根据(1)题中的等量关系,若m +n =6,m =4,即可求(m −n)2的值.【解答】①观察图②中的阴影部分的正方形的边长为:m −n .故答案为m −n ;②两种不同的方法表示图②中阴影部分的面积:方法1:(m −n)2;方法2:(m +n)2−4mn故答案为:(m −n)2、(m +n)2−4mn ;③观察图②,三个代数式(m +n)2,(m −n)2,mn 之间的等量关系:(m +n)2=(m −n)2+4mn .故答案为:(m +n)2=(m −n)2+4mn ;根据(1)题中的等量关系:把m +n =6,m =4代入:(m +n)2=(m −n)2+4mn ,∴ (m −n)2=36−16=20.答:(m −n)2的值为20.34.【答案】a 2−b 2=(a +b)(a −b)解:由题意可得:a −b =3.∵ a 2−b 2=(a +b)(a −b)=57.∴ a +b =19.∴ {a +b =19,a −b =3.解得{a =11,b =8.∴a,b的值分别是11,8.【考点】平方差公式的几何背景【解析】(1)根据两个图形的面积即可列出等式;(2)根据题意得到a−b=3,由面积相差57得到a+b=19,解a与b组成的方程组求解即可.【解答】解:(1)图1阴影面积=a2−b2,图2的阴影面积=(a+b)(a−b)a2−b2=(a+b)(a−b)故答案为:a2−b2=(a+b)(a−b)35.【答案】解:由图可得:(a−b)2=a2−2ab−b2.【考点】完全平方公式的几何背景【解析】观察图形可以看出,阴影部分是一个正方形,阴影部分的面积=(a−b)2;从图中还可以发现,阴影部分是一个大正方形减两个长方形减一个小正方形得到的,阴影部分的面积=大正方形的面积−2个长方形的面积-小正方形的面积,即可解答.【解答】解:由图可得:(a−b)2=a2−2ab−b2.36.【答案】解:原式=20072−(2007−1)(2007+1)=20072−20072+1=1.【考点】平方差公式【解析】原式变形后,利用平方差公式即可得到结果.【解答】解:原式=20072−(2007−1)(2007+1)=20072−20072+1=1.37.【答案】12(2)设2021−x=c,x−2018=d,则(2021−x)2+(x−2018)2=c2+d2=2020,c+d=(2021−x)+(x−2018)=3,∴2(2021−x)(x−2018)=2cd=(c+d)2−(c2+d2)=32−2020=−2011,∴(2021−x)(x−2018)=cd=−2011.2384【考点】完全平方公式的几何背景完全平方公式【解析】1【解答】解:(1)设2020−x=a,x−2016=b,则(2020−x)(x−2016)=ab=2,a+b=(2020−x)+(x−2016)=4,∴(2020−x)2+(x−2016)2=a2+b2=(a+b)2−2ab=42−2×2=12.故答案为:12.(2)设2021−x=c,x−2018=d,则(2021−x)2+(x−2018)2=c2+d2=2020,c+d=(2021−x)+(x−2018)=3,∴2(2021−x)(x−2018)=2cd=(c+d)2−(c2+d2)=32−2020=−2011,∴(2021−x)(x−2018)=cd=−2011.2(3)由题意得,CF=20−x,CE=12−x,CF⋅CE=(20−x)(12−x)=160,∴图中阴影部分的面积和为:(20−x)2+(12−x)2.设20−x=e,12−x=f,则(20−x)(12−x)=ef=160,e−f=(20−x)−(12−x)=8,(20−x)2+(12−x)2=e2+f2=(e−f)2+2ef=82+2×160=384.故答案为:384.38.【答案】解:(x−2y)(2y+x)=x2−(2y)2=x2−4y2.【考点】平方差公式【解析】根据平方差公式(a+b)(a−b)=a2−b2进行计算即可.解:(x−2y)(2y+x)=x2−(2y)2=x2−4y2.39.【答案】解:2(3+1)(32+1)(34+1)(38+1),=(3−1)(3+1)(32+1)(34+1)(38+1),=(32−1)(32+1)(34+1)(38+1),=(34−1)(34+1)(38+1),=(38−1)(38+1),=316−1,.【考点】平方差公式【解析】根据平方差公式,可把2看成是(3−1),再根据平方差公式即可算出结果.【解答】解:2(3+1)(32+1)(34+1)(38+1),=(3−1)(3+1)(32+1)(34+1)(38+1),=(32−1)(32+1)(34+1)(38+1),=(34−1)(34+1)(38+1),=(38−1)(38+1),=316−1,.40.【答案】解:(1)1001×999+1=(1000+1)×(1000−1)+1=10002−12+1=1000000;(2)20102−2011×2009=20102−(2010+1)×(2010−1)=20102−(20102−1)=1.【考点】平方差公式【解析】(1)把所求式子中1001变形为(1000+1)和999变形为(1000−1),得到两数之和与两数之差的积满足平方差公式的特点,从而利用平方差公式计算即可求出值;(2)把所求式子中的2001变形为(2000+1),2009变形为(2000−1),得到两数之和与两数之差的积满足平方差公式的特点,从而利用平方差公式计算即可求出值.【解答】解:(1)1001×999+1=(1000+1)×(1000−1)+1=10002−12+1=1000000;(2)20102−2011×2009=20102−(2010+1)×(2010−1)=20102−(20102−1)。
初二数学乘法公式练习题1. 计算以下数的乘积:(1) $0.8 \times 4$(2) $5.2 \times 2$(3) $3 \times 0.75$(4) $1.5 \times 0.2$(5) $9.6 \times 0.25$2. 根据乘法交换律计算以下乘积:(1) $7 \times 3 \times 2$(2) $4 \times 2 \times 9$(3) $6 \times 8 \times 5$(4) $9 \times 2 \times 0.5$3. 根据乘法分配律计算以下乘积:(1) $5 \times (2 + 3)$(2) $(8 + 2) \times 4$(3) $3 \times (6 + 7)$(4) $(2 + 1) \times 9$4. 解决以下实际问题:(1) 小明买了4个相同价格的苹果,每个苹果的价格是5元,他一共支付了多少钱?(2) 某商店打折出售相同价格的书籍,每本书打7折,小华买了3本,每本书的原价是30元,他一共支付了多少钱?(3) 餐厅每天供应15桌午餐,每桌午餐需要用到4个土豆,一天需要使用多少个土豆?(4) 一辆货车每天运送10吨货物,每吨货物的运费是100元,一天需要支付多少运费?5. 设 $a=2$,$b=3$,$c=4$,计算以下表达式:(1) $a \times c$(2) $(a + b) \times c$(3) $a \times c + b \times c$(4) $(a \times b) + (a \times c)$6. 解决以下数学问题:(1) 甲、乙两人一起修一段公路,甲一天修一半,乙一天修1/3,两人一起修了多少天才能完成整段公路的修缮?(2) 父亲把一部价值6000元的电视机分成两分,大儿子得到其中的1/3,二儿子得到其中的5/9,剩下的归父亲所有,请问父亲得到了多少元?(3) 一盆花从一楼到十层高,共经过了9层,花比上一层少了1朵,每层花的数量相等,请问一楼开始有多少朵花?(4) 现有两个桶,一个装满了水,另一个空桶,通过这两个桶你如何得到4升水?以上是初二数学乘法公式的练习题,希望能够帮助你巩固乘法公式的应用,提升数学计算能力。
适用精选文件资料分享八年数学上小活用乘法公式算求同步( 人教版含答案)小 ( 十一 )活用乘法公式算求型算求 1 .算: (1)(x+2y)(x2-4y2)(x(2)(a +b-3)(a -b+3) ;(3)(x2 +x-3)(x2 -x-3) ;1直接运用乘法公式-2y) ;(4)(3x -2y)2(3x +2y)2.2.先化,再求:(1)(1+a)(1-a)+(a-2)2,此中a=-3;(2)( 河池中考 )(3 +x)(3 -x) +(x +1)2 ,此中 x=2;(3)(x +2y)2 -(x -2y)2 -(x +2y)(x -2y) -4y2,此中 x=- 2,y=12.型 2 运用乘法公式行便算 3 .用便方法算: (1)2002 -400×199+1992;(2)999 ×1 001 ;(3)4013 ×3923;(4)1002 -992+982-972+962-952+⋯+ 22-1;(5)(2 +1)(22 +1)(24 +1) +1.型3乘法公式的技巧 4 .已知 a,b 都是正数, a-b=1,ab=2, a+b=( ) A.-3 B .3 C.±3D.9 5 .若 m2-n2=6,且 m-n=3, m+n=________. 6 .若 x+y=3,xy=1, x2+y2=________. 7 .已知 a2+b2=13,(a -b)2 =1,(a +b)2 =________.8 .算: (1)(a+b+c)2 ;(2)(a +b)3 ;(3)(a -b)3 ;(4)(a +b)(a2 -ab+b2) ;(5)(a -b)(a2 +ab+b2) ;(6)(x -y-m+n)(x -y+m-n) .9.已知 (x +y)2 =25,(x -y)2 =16,求 xy 的.适用精选文件资料分享10.已知 (m-53)(m-47) =24,求 (m-53)2 +(m-47)2 的值.11.假如 a+b+c=0,a2+b2+c2=1,求 ab+bc+ca 的值.参照答案 1 .(1) 原式= x4-8x2y2+16y4. (2) 原式= a2-b2+6b-9. (3) 原式= x4-7x2+9. (4) 原式= 81x4-72x2y2+16y4.2.(1) 原式= 1-a2+a2-4a+4=- 4a+5. 当 a=- 3 时,原式= 12+5=17. (2) 原式= 2x+10. 当 x=2 时,原式= 2×2+10=14. (3)原式=- x2+8xy. 当 x=- 2,y=12 时,原式=- ( -2)2 +8×( - 2) ×12=- 12. 3.(1) 原式= 1. (2) 原式= 999 999. (3) 原式= 159989. (4)原式= 5 050.(5) 原式= 28. 5.2 6 .8.(1) 原式= a2+b2+c2+2ab+2ac+2bc.(2) 原式= a3+3a2b+3ab2+b3.(3) 原式= a3-3a2b+3ab2-b3.(4)原式= a3+b3. (5) 原式= a3-b3.(6) 原式= x2-2xy+y2-m2+2mn-n2.9. ∵(x + y)2 -(x -y)2 =4xy=25-16=9,∴xy=94. 10.(m -53)2+(m -47)2 =[(m -53) -(m-47)]2 +2(m-53)(m-47) =( -6)2 +48=84. 11. 已知两等式即为 a+b=- c,a2+b2=1-c2. ∵a2+ b2=(a +b)2 -2ab,∴ ab=12[(a +b)2 -(a2 +b2)] =12[( -c)2 -(1-c2)] =c2-12. 原式= ab+c(a +b) =(c2 -12) +c( -c) =- 12.。
初二年级上乘法公式练习题一、多位数乘一位数1. 58 × 7 = ______解:首先将个位上的数字7乘以被乘数58的个位上的数字8,得到56,将6写在个位上,将5进位;然后将个位数7乘以被乘数58的十位数5,得到35,加上进位的5,得到40,将0写在十位上,将4进位;最后将个位数7乘以被乘数58的百位数,得到49,再加上进位的4,得到53,将3写在百位上,将5进位。
所以,58 × 7 = 406。
2. 293 × 6 = ______解:首先将个位上的数字6乘以被乘数293的个位上的数字3,得到18,将8写在个位上,将1进位;然后将个位数6乘以被乘数293的十位数9,得到54,加上进位的1,得到55,将5写在十位上,将5进位;最后将个位数6乘以被乘数293的百位数2,得到12,再加上进位的5,得到17,将7写在百位上,将1进位。
所以,293 × 6 = 1758。
二、两位数乘两位数1. 34 × 57 = ______解:将个位数7分别乘以乘数34的个位4和十位3,得到28和21,并将结果相加,得到49,将9写在个位上,将4进位;然后将十位数5分别乘以乘数34的个位4和十位3,得到20和15,并将结果相加,得到35,再加上进位的4,得到39,将9写在十位上,将3进位;最后将个位数7分别乘以乘数34的百位,得到28,并将结果写在百位上。
所以,34 × 57 = 1938。
2. 76 × 28 = ______解:将个位数8分别乘以乘数76的个位6和十位7,得到48和56,并将结果相加,得到104,将4写在个位上,将10进位;然后将十位数2分别乘以乘数76的个位6和十位7,得到12和14,并将结果相加,得到26,再加上进位的10,得到36,将6写在十位上,将3进位;最后将个位数8分别乘以乘数76的百位7,得到56,并将结果写在百位上。
八年级数学上册《第十四章 乘法公式》同步练习题及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.如果x 2﹣6x+k 是完全平方式,则k 的值为( )A .±9B .±36C .36D .92.计算:2210021009999(-⨯⨯+==( ) A .0 B .1C .1-D .39601 3.下列运算正确的是( )A .32xy xy -=B .22(3)6x x -=C .62322x x x ÷=D .22()()x y x y x y -+=-4.已知4x y -=,xy =−3,则22x y +=( )A .22B .19C .16D .105.若a+x 2=2020,b+x 2=2021,c+x 2=2022,则a 2+b 2+c 2﹣ab ﹣bc ﹣ca 的值为( )A .0B .1C .2D .36.若()()22221135a b a b +++-=,则22a b +=( ) A .3 B .6 C .3± D .6±7.已知222x x -=,则x 4−2x 3+x 2−6x −5的值为( )A .2-B .1C .3D .108.如图有A 、B 、C 三类卡片,分别是边长为a 的正方形,边长为a ,b 的长方形,边长为b 的正方形,若用这三种卡片拼成无缝隙不重叠的正方形,以下方案不可行的是( )A .A 类卡片1张,B 类卡片2张,C 类卡片1张B .A 类卡片2张,B 类卡片4张,C 类卡片1张C .A 类卡片1张,B 类卡片4张,C 类卡片4张D .A 类卡片4张,B 类卡片8张,C 类卡片4张二、填空题:(本题共5小题,每小题3分,共15分.)9.化简: (2a −1)2 = .10.计算:1.992-1.98×1.99+0.992=11.若2b ﹣a =﹣2,a+2b =5.则a 2﹣4b 2= .12.若a 2+b 2+c 2-ab-bc-ac=0,且a+3b+4c=16,则a+b+c 的值为 .13.有两个正方形A 、B ,现将B 放在A 的内部得图甲,将A 、B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和10,则正方形A ,B 的面积之和为 .三、解答题:(本题共5题,共45分)14.计算(1)2(32)(32)(31)x x x +---(2)()()2323x y x y -++-15.计算:(1)(x +y)(x 2−xy +y 2) ;(2)[(x −y)2+(x +y)(x −y)]÷2x .16.已知a +b =7,ab =5,求22a b + 和2()a b -的值.17.已知关于x 的多项式2459x kx --减去3333k k x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的差是一个单项式,求231k k -+-的值.18.认真观察图形,解答下列问题:(1)根据图①中的条件,试用两种不同方法表示两个阴影图形的面积的和.方法1: ;方法2: .(2)从中你能发现什么结论?请用等式表示出来: ;(3)利用(2)中结论解决下面的问题:如图②,两个正方形边长分别为m ,n ,如果m +n =mn=4,求阴影部分的面积.参考答案:1.【答案】D 2.【答案】B 3.【答案】D 4.【答案】D 5.【答案】D 6.【答案】B 7.【答案】B 8.【答案】B9.【答案】4a 2−4a +110.【答案】111.【答案】1012.【答案】613.【答案】1114.【答案】(1)解:原式=9x 2-4-(9x 2-6x+1)=9x 2-4-9x 2+6x-1=6x-5;(2)解:原式=[2x-(y-3)][2x+(y-3)]=4x 2-(y-3)2=4x 2-y 2+6y-9.15.【答案】(1)解:原式= x 3−x 2y +xy 2+x 2y −xy 2+y 3=x 3+y 3(2)解:原式= (x 2−2xy +y 2+x 2−y 2)÷2x()2222x xy x =-÷ x y =-16.【答案】解:∵a+b=7,ab=5,∴a 2+b 2=(a+b )2﹣2ab=72﹣2×5=39;(a ﹣b )2=(a+b )2﹣4ab=72﹣4×5=29.17.【答案】解:∵2459x kx -- 3333kk x x ⎛⎫⎛⎫-+- ⎪⎪⎝⎭⎝⎭22245999k x x kx =---+22459k x kx ⎛⎫=-- ⎪⎝⎭22459k x kx ⎛⎫-- ⎪⎝⎭ 是一个单项式 ∴2409k -= 或 50k -=∴6k =± 或 0k =则当 6k = 时 2313618119k k -+-=-+-=-当 6k =- 时 2313618155k k -+-=---=-当 0k = 时 2311k k -+-=-18.【答案】(1)a2+b2;(a+b)2-2ab(2)a2+b2=(a+b)2-2ab(3)解:阴影部分的面积=S 正方形ABCD+S正方形CGFE−S△ABD−S△BGF=m2+n2−12m2−12(m+n)n∴阴影部分的面积=12m2+12n2−12mn=12(m2+n2)−12mn=12[(m+n)2−2mn]−12mn∵m+n=mn=4∴阴影部分的面积=12[(m+n)2−2mn]−12mn=12×(42−2×4)−12×42=答:阴影部分面积为2。
讲 义(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4④ 系数变化,(2a +b )(2a -b )=4a 2-b 2 ⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m )=x 2y 2-(z 2+zm +zm +m 2)=x 2y 2-z 2-2zm -m 2⑥ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4 1、计算下列各式:(1)[(x +y)3]4 ; (2) (a 4n )n -1 ;(3) (-a 3)2+(-a 2)3-(-a 2)·(-a)4 ;(4) x 3·x 2·x 4+(-x 4)2+4(-x 2)4例. 计算:()()53532222x y x y +-(二)、连用:连续使用同一公式或连用两个以上公式解题。
例. 计算:()()()()111124-+++a a a a例. 计算:()()57857822a b c a b c +---+例.(1)已知a b ab -==45,,求a b 22+的值。
(2) 已知2=+b a ,1=ab ,求22b a +的值。
(3) 已知8=+b a ,2=ab ,求2)(b a -的值。
(4) 已知x-y=2,y-z=2,x+z=14。
求x 2-z 2的值。
例:计算19992-2000×1998 例.已知13x x-=,求441x x +的值。
乘法公式练习题一、选择题1.用乘法公式计算(2+1)(22+1)(24+1)…(22018+1)的结果( )A. 24036+1B. 24036−1C. 22018+2D. 22018−22.已知(m−n )2=8,(m +n )2=2,则m 2+n 2的值为( )A. 10B. 6C. 5D. 33.对于任意正整数m ,能整除式子(m +3)(m−3)−(m +2)(m−2)的整数是 ( )A. 2B. 3C. 4D. 54.下列计算结果为2ab−a 2−b 2的是( )A. (a−b )2B. (−a−b )2C. −(a +b )2D. −(a−b )25.下列运算中,正确的有( ) ①(x +2y )2=x 2+4y 2; ②(a−2b )2=a 2−4ab +4b 2; ③(x +y )2=x 2−2xy +y 2; ④(x−14)2=x 2−12x +116.A. 1个B. 2个C. 3个D. 4个6.利用平方差公式计算:1013×923,应先将算式写成( ).A. (10+13)×(9+23)B. (10+13)(10−13)C. (9+43)(9+23)D. (11−23)(11−43)7.小明在利用完全平方公式计算二项整式的平方时,不小心用墨水把中间一项的系数染黑了,得到正确的结果为4a2■ab+9b2,则中间一项的系数是()A. 12B. −6C. 6或−6D. 12或−128.下列各式中,是完全平方式的是( )A. m2−4m−1B. x2−2x−1C. x2+2x+14D. 14b2−ab+a29.下列各式中与2ab−a2−b2相等的是()A. −(a−b)2B. −(a+b)2C. (−a−b)2D. (−a+b)210.下列算式中,能连续两次用平方差公式计算的是( )A. (x+y)(x2+y2)(x−y)B. (x+1)(x2−1)(x+1)C. (x+y)(x2−y2)(x−y)D. (x−y)(x2+y2)(x−y)二、填空题11.根据完全平方公式填空:(1)(x+1)2=(__________)2+2×________×________+(________)2=____________;(2)(−x+1)2=(________)2+2×________×________+(________)2=____________;(3)(−2a−b)2=(________)2+2×________×________+(________)2=____________.12.在括号内填上适当的项:(1)a+2b−c=a+();(2)2−x2+2xy−y2=2−();(3)(a+b−c)(a−b+c)=[a+()][a−()].13.若x2+Rx+16是一个完全平方式,则R的值等于.14.已知a +b =10,a−b =8,则a 2−b 2=______.三、计算题15.计算:(1)(x−1)(x +1);(2)(a +2b)(a−2b);(3)(14a−1)(14a +1);(4)(2m +3n)(2m−3n).16.用乘法公式计算:(1)(x−2y +3z )2;(2)(2a +3b−1)(1+2a +3b).四、解答题17.先化简,再求值:(x +1)(x−1)+x 2(1−x)+x 3,其中x =2.18.(1)计算并观察下列各式:(x−1)(x+1)=;(x−1)(x2+x+1)=;(x−1)(x3+x2+x+1)=;(2)从上面的算式及计算结果,你发现了什么?请根据你发现的规律直接填空:(x−1)()=x6−1;(3)利用你发现的规律计算:(x−1)(x m+x m−1+x m−2+x m−3+⋯+x+1)的结果为.19.如图1是一个宽为a、长为4b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2).(1)观察图2,请你用等式表示(a+b)2,(a−b)2,ab之间的数量关系:______;(2)根据(1)中的结论.如果x+y=5,xy=9,求代数式(x−y)2的值;4(3)如果(2019−m)2+(m−2020)2=7,求(2019−m)(m−2020)的值.答案和解析1.【答案】B【解析】【分析】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.原式变形后,利用平方差公式计算即可得到结果.【解答】解:原式=(2−1)×(2+1)×(22+1)×(24+1)×…×(22017+1)×(22018+1)=(22−1)×(22+1)×(24+1)×…×(22017+1)×(22018+1)=(24−1)×(24+1)×…×(22017+1)×(22018+1)=(22018−1)×(22018+1)=24036−1.故选:B.2.【答案】C【解析】【分析】本题考查了代数式求值和完全平方公式:(a±b)2=a2±2ab+b2.根据完全平方公式由(m−n)2=8得到m2−2mn+n2=8①,由(m+n)2=2得到m2+2mn+n2=2②,然后①+②得,2m2+2n2=10,变形即可得到m2+n2的值.【解答】解:∵(m−n)2=8,∴m2−2mn+n2=8①,∵(m+n)2=2,∴m2+2mn+n2=2②,①+②得,2m2+2n2=10,∴m2+n2=5.故选C.3.【答案】D【解析】【分析】此题考查平方差公式,关键是根据平方差公式化简.根据平方差公式化简后解答即可.【解答】解:因为(m+3)(m−3)−(m+2)(m−2)=m2−9−m2+4=−5,所以对于任意正整数m,能整除式子(m+3)(m−3)−(m+2)(m−2)的整数是5,故选D.4.【答案】D【解析】【分析】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.根据完全平方公式即可求出答案.【解答】解:原式=−(a2−2ab+b2)=−(a−b)2故选D.5.【答案】B【解析】【分析】本题考查了完全平方公式的变形.熟练掌握公式是解题的关键【解答】解: ①(x+2y)2=x2+4xy+4y2,故错误; ②(a−2b)2=a2−4ab+4b2,故正确; ③(x+y)2=x2+2xy+y2故错误; ④(x−14)2=x 2−12x +116故正确.故选B .6.【答案】B【解析】【分析】本题考查了平方差公式的应用,能灵活运用公式进行计算是解此题的关键,注意:(a +b)(a−b)=a 2−b 2.先根据式子的特点进行变形,再根据平方差公式进行计算,即可求出答案.【解答】解:原式=(10+13)(10−13).故选B .7.【答案】D【解析】【分析】本题主要考查完全平方公式,熟记完全平方公式是解题的关键.运用完全平方公式求出(2a ±3b )2对照求解即可.【解答】解:由(2a ±3b )2=4a 2±12ab +9b 2,∴染黑的部分为±12.故选D .8.【答案】D【解析】【分析】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.利用完全平方公式的结构特征判断即可得到结果.【解答】解:14b 2−ab +a 2=(12b−a )2.故选D .9.【答案】A【解析】【分析】此题主要考查完全平方式的定义及其应用,比较简单.把2ab−a 2−b 2根据完全平方式整理,然后直接选取答案.【解答】解:2ab−a 2−b 2,=−(a 2−2ab +b 2),=−(a−b )2.故选A .10.【答案】A【解析】【分析】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键,利用平方差公式的结构特征判断即可.【解答】解:A.首先(x +y )(x−y )=x 2−y 2,再与(x 2+y 2)使用平方差公式,可以两次使用平方差公式,故A 正确;B .不能使用平方差公式,故B 错误;C .只能使用一次平方差公式,故C 错误;D .不能使用平方差公式,故D 错误.故选A .11.【答案】(1)x ;x ;1;1;x 2+2x +1;(2)−x ;(−x);1;1;x 2−2x +1;(3)−2a ;(−2a);(−b);(−b);4a 2+4ab +b 2.【解析】【分析】本题考查了完全平方公式,能熟记公式的特点是解此题的关键,注意:(a+b)2=a2 +2ab+b2,(a−b)2=a2−2ab+b2.根据完全平方公式得出各题结果即可.【解答】解:根据完全平方公式可得:(1)(x+1)2=x2+2×x×1+12=x2+2x+1;(2)(−x+1)2=(−x)2+2×(−x)×1+12=x2−2x+1;(3)−2a−b)2=(−2a)2+2×(−2a)×(−b)+(−b)2=4a2+4ab+b2.故答案为(1)x;x;1;1;x2+2x+1;(2)−x;(−x);1;1;x2−2x+1;(3)−2a;(−2a);(−b);(−b);4a2+4ab+b2.12.【答案】(1)2b−c;(2)x2−2xy+y2;(3)b−c,b−c.【解析】【分析】本题主要考查平方差公式,解题的关键是掌握添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.(1)根据添括号法则求解可得;(2)根据添括号法则求解可得;(3)根据添括号法则求解可得.【解答】解:(1)a+2b−c=a+(2b−c);(2)2−x2+2xy−y2=2−(x2−2xy+y2);(3)(a+b−c)(a−b+c)=[a+(b−c)][a−(b−c)].故答案为(1)2b−c;(2)x2−2xy+y2;(3)b−c,b−c.13.【答案】±8【解析】【分析】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.根据完全平方公式的特征判断即可得到k的值.【解答】解:∵x2+Rx+16是一个完全平方式,∴k=±2×4=±8,故答案为±8.14.【答案】80【解析】【分析】本题考查平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.根据平方差公式即可求出答案.【解答】解:∵(a+b)(a−b)=a2−b2,a+b=10,a−b=8,∴a2−b2=10×8=80.故答案为80.15.【答案】解:(1)原式=x2−1.(2)原式=a2−(2b)2=a2−4b2.(3)原式=1a2−1.16(4)原式=(2m)2−(3n)2=4m2−9n2.【解析】本题主要考查的是平方差公式的有关知识.(1)直接利用平方差公式进行求解即可;(2)直接利用平方差公式进行求解即可;(3)直接利用平方差公式进行求解即可;(4)直接利用平方差公式进行求解即可.16.【答案】解:(1)原式=[(x−2y)+3z]2=(x−2y)2+6z(x−2y)+9z2=x2+4y2+9z2−4xy+6xz−12yz;(2)原式=[(2a+3b)−1][(2a+3b)+1]=(2a+3b)2−1=4a2+12ab+9b2−1.【解析】本题主要考查的是平方差公式和完全平方公式,掌握平方差公式和完全平方公式是解答此题的关键.(1)把(x−2y)当作一项,直接运用完全平方公式进行计算即可;(2)把(2a+3b)当作一项,直接运用平方差公式和完全平方公式进行计算即可.17.【答案】解:原式=x2−1+x2−x3+x3,=2x2−1,当x=2时,原式=2×22−1=7.【解析】本题考查了整式的混合运算和代数式求值,主要考查学生的计算和化简能力.根据平方差公式和单项式乘以多项式法则先化简,再代入求值即可.18.【答案】(1)x2−1;x3−1;x4−1;(2)x5+x4+x3+x2+x+1;(3)x m+1−1【解析】【分析】本题考查了平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差,也考查了规律型问题的解决方法.(1)利用平方差公式计算(x−1)(x+1),利用立方差公式计算(x−1)(x2+x+1)=x3−1;利用上面两等式的变化规律计算(x−1)(x3+x2+x+1);(2)利用(1)中三个等式的变化规律求解;(3)利用(1)中三个等式的变化规律求解.【解答】解:(1)(x−1)(x+1)=x2−1;(x−1)(x2+x+1)=x3−1;(x−1)(x3+x2+x+1)=x4−1;(2)(x−1)(x5+x4+x3+x2+x+1)=x6−1;(3)(x−1)(x m+x m−1+x m−2+x m−3+…+x+1)=x m+1−1.故答案为(1)x2−1;x3−1;x4−1;(2)x5+x4+x3+x2+x+1;(3)x m+1−1.19.【答案】(a+b)2=(a−b)2+4ab【解析】解:(1)由图2可知,大正方形的边长为(a+b),小正方形的边长为(a−b),大正方形的面积可以表示为:(a+b)2或(a−b)2+4ab,因此有(a+b)2=(a−b)2+4ab,故答案为:(a+b)2=(a−b)2+4ab;(2)由(a+b)2=(a−b)2+4ab得,(x−y)2=(x+y)2−4xy=25−9=16;答:代数式(x−y)2的值为16;(3)∵a2+b2=(a+b)2−2ab,∴(2019−m)2+(m−2020)2=[(2019−m)+(m−2020)]2−2(2019−m)(m−2020),=(−1)2−2(2019−m)(m−2020),又∵(2019−m)2+(m−2020)2=7,∴7=1−2(2019−m)(m−2020)∴(2019−m)(m−2020)=−3,答:(2019−m)(m−2020)的值为−3.(1)表示出大、小正方形的边长和面积,根据面积之间的关系得出结论;(2)由(1)的结论得(x−y)2=(x+y)2−4xy,再整体代入即可;(3)由a2+b2=(a+b)2−2ab的形式可得,(2019−m)2+(m−2020)2=[(2019−m)+(m−2020)]2−2(2019−m)(m−2020),再根据(2019−m)+(m−2020)=−1,(2019−m)2+(m−2020)2=7,得出答案.本题考查完全平方公式的几何背景,用不同的方法表示图形的面积,得出关系等式是关键,适当的变形是正确计算的前提.。
人教版八年级上册数学14.2乘法公式同步练习第1课时平方差公式1.若x²−y²=4,则x+y²x−y²的值是()A.4B.8C.16D.642.下列多项式相乘不能用平方差公式计算的是()A.(4x-3y)(3y-4x)B.(-4x+3y)(-4x-3y)C.(3y+2x)(2x-3y)D.−14x+2y+2y3.已知(x+2)(x--2)--2x=1,则2x²−4x+3的值为()A.13B.8C.--3D.54.若a=2022º,b=2021×2023-2022²,c=−×,则a,b,c的大小关系是()A.a<b<cB.b<a<cC.c<b<aD.b<c<a5.计算:x+1x−1x²+1=.6.已知a--b=2,则a²−b²−4a的值为7.运用平方差公式计算:(1)9.9×10.1(2)(5ab-3xy)(-3xy-5ab)(3)31×29(4)(3m-2n)(-3m-2n)8.如图,大正方形ABCF与小正方形EBDH的面积之差是40,则涂色部分的面积是()A.20B.30C.40D.609.若(3a+3b+1)(3a+3b--1)=899,则a+b=.10.[3−1×3+1×32+1×34+1×⋯×3³²+1+1]÷3的个位上的数字为.11.如果a,b为有理数,那么2a²−a−b(a+b)-[(2-a)(a+2)+(-b-2)(2-b)]的结果与b的值有关吗?12.先化简,再求值:(a+2b)(a—2b)—(--2a+3b)(-2a-3b)+(--a-b)(b-a),其中a=2,b=3.13.阅读材料:乐乐遇到一个问题:计算(2+1)×2²+1×2⁴+1.经过观察,乐乐答案讲解发现如果将原式进行适当变形后,可以出现特殊的结构,进而可以运用平方差公式解决问题,具体解法如下:2+1×2²+1×2⁴+1=2−1×2+1×2²+1×2⁴+1=2²−1×2²+1×2⁴+1=2¹−1×2⁴+1=2⁸−1.根据乐乐解决问题的方法,请你试着计算下列各题:12+1×2²+1×2⁴+1×2⁸+1×2¹⁶+1.23+1×3²+1×3⁴+1×3⁸+1×3¹⁶+1.14.(1)将图①中的涂色部分裁剪下来,重新拼成一个如图②所示的长方形,通过比较图①②中涂色部分的面积,可以得到的整式乘法公式为(2)运用你所得到的乘法公式,完成题目:①若x²−9y²=12,x+3y=4,求x-3y的值.②计算:103×97.(3)计算:1−×1−×1−×⋯×1×1−.第2课时完全平方公式1.下列关于104²的计算方法中,正确的是()A.104²=100²+4²B.104²=100+4×100−4C.104²=100²+100×4+4²D.104²=100²+2×100×4+4²2.我们在学习许多公式时,可以用几何图形来推理和验证.观察下列图形,可以推出公式a−b²=a²−2ab+b²的是()3.若x=y+3,xy=4,则.x²−3xy+y²的值为4.已知x²−2x−2=0,则x−1²+2021=5.运用乘法公式计算:1.x+3x−3x²−92.−x−5²−2x+3²3.1+12x21−12x26.已知3a−b=5,9a²−7ab+b²=14,则ab的值为()A.1B.2C.9D.117.已知长方形的长和宽分别为a和b,长方形的周长和面积分别为20和24,则a²+b²的结果为()A.64B.52C.48D.448.已知a,b满足等式x=3a²−2a+4,y=2a²+4a--5,则x,y的大小关系是()A.x=yB.x>yC.x<yD.x≥y9.先化简,再求值:[4xy−1²−xy+2(2−xy)]÷xy,其中x=2,y=-0.3.10.已知2024−x²+x−2023²=9,则(2024-x)(x-2023)的值为.11.已知x+1x=3,求下列各式的值:1x4+1x4.2x.12.如图,将一块大长方形铁皮切割成九块(虚线代表切痕),其中两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是(第10题)长、宽分别为m,n的小长方形,且m>n,切痕的总长为42,每块小长方形的面积为9,则(m-n)²的值为.13.如图①,有A型、B型正方形卡片和C型长方形卡片各若干张.(1)如图②,用1张A型卡片,2张答案讲解B型卡片,3张C型卡片拼成一个长方形,利用两种方法计算这个长方形的面积,可以得到一个等式:(2)选取1张A型卡片,8张C型卡片,张B型卡片,可以拼成一个正方形,这个正方形的边长用含a,b的式子表示为.(3)如图③,正方形的边长分别为m,n,m+2n=10,mn=12,求涂色部分的面积.完全平方公式经过适当的变形,可以用来解决很多数学问题.14.例如:若a+b=3,ab=1,求a²+b²的值.解:∵a+b=3,ab=1,∴a+b²=9,2ab=2.∴a²+b²+2ab=9.∴a²+b²=7.根据上面的解题思路与方法,还可以解决下面的几何问题:如图,C是线段AB上的一点,分别以AC,BC为边向两侧作正方形ACDE与正方形BCFG.设AB=8,两个正方形的面积和为40,求△AFC的面积.。
(3a-5b)(5b+3a) (-4b-7)(4b+7) 63×59 304×299(a+4)2(x-9)2(-3m-6)2 5012472(2p+6q)2(3x+9)2-(x-5)2(3x+y+5)(3x+y-5)2(2x-y-4)2[(x+7)(x-7)]2先化简,再求值。
(4x-9y)2-(x-5y)(5x+y),其中x=8,y=93 3(—x+y)(—x-y) (xy+6)(xy-6)4 4(6a-b)(b+6a) (-b-9)(b+9)64×59 401×399(2a-9b)2(x-8)2(-3m+8)2 5022892(-p+6)2(x+4)2-(3x+1)2(2x-8y+10)(2x-8y-10)2 (3x+5y+4)2[(x+8)(x-8)]2先化简,再求值。
(x+3y)2-(x-3y)(3x+y),其中x=4,y=-15 5(—x+y)(—x-y) (xy+2)(xy-2) 6 6(2a-3b)(3b+2a) (-b-6)(b+6) 74×69 402×399(a+9b)2(x+6y)2(-3m+7n)2 803279972(4p-7)2(x-6)2-(4x-7)2(x-y+10)(x-y-10)2(2x-2y+2)2[(2x+6)(2x-6)]2先化简,再求值。
(3x-8y)2+(x-5y)(5x+y),其中x=-10,y=96 6(—x+y)(—x-y) (2xy+8)(2xy-8)5 5(4a-2b)(2b+4a) (-b-1)(b+1)64×59 603×599(2a-9)2(x+6)2(m-7n)23327992(p+9)2(2x-10)2-(x-5)2(x+8y+10)(x+8y-10)2 (x-y+1)2[(2x+2)(2x-2)]2先化简,再求值。
(x+7y)2+(x-4y)(4x+y),其中x=6,y=93 3(—x+y)(—x-y) (xy+5)(xy-5)4 4(a-3b)(3b+a) (-b-3)(b+3)34×29 301×299(4a+7b)2(x+7)2(-2m+7)243289992(p-6q)2(x+2)2-(x+10)2(x+7y+1)(x+7y-1)2(x-3y+2)2[(x+6)(x-6)]2先化简,再求值。
(3x-9)2+(4x-4y)(4x+4y),其中x=4,y=-18 8(—x+y)(—x-y) (5xy+1)(5xy-1)7 7(6a-2b)(2b+6a) (-6b-9)(6b+9) 71×69 602×599(2a-4b)2(3x+7)2(-4m+2)2 222872(p+8q)2(2x-5)2-(4x-9)2(x+5y+5)(x+5y-5)2(4x-y-3)2[(2x+5)(2x-5)]2先化简,再求值。
(2x+2)2+(x-y)(x+y),其中x=8,y=-52 2(—x+y)(—x-y) (3xy+3)(3xy-3) 3 3(a-3b)(3b+a) (-b-4)(b+4) 73×69 303×299(a+9b)2(4x-4)2(-3m-6)2 802289972(-2p-5)2(3x+10)2+(4x-8)2(x+y+1)(x+y-1)2(x-2y+1)2[(4x+9)(4x-9)]2先化简,再求值。
(4x-9y)2+(2x-2y)(2x+2y),其中x=-4,y=75 5(—x+y)(—x-y) (5xy+3)(5xy-3) 4 4(a-b)(b+a) (-5b-6)(5b+6)42×39 802×799(3a+5b)2(2x+3y)2(3m-4)2 7125982(-p-9)2(x+10)2+(x+10)2(2x+6y+1)(2x+6y-1)2 (4x-3y-3)2[(x+6)(x-6)]2先化简,再求值。
(x+9)2+(x-y)(x+y),其中x=-4,y=36 6(—x+y)(—x-y) (4xy+4)(4xy-4)5 5(a-b)(b+a) (-b-8)(b+8)51×49 203×199(a-6)2(x+4)2(-m+2n)2222582(-p-2)2(2x-1)2-(x+4)2(4x-y+10)(4x-y-10)2 (2x-5y-5)2[(x+5)(x-5)]2先化简,再求值。
(3x+4)2+(x-y)(x+y),其中x=-2,y=-53 3(—x+y)(—x-y) (3xy+6)(3xy-6) 4 4(a-b)(b+a) (-6b-4)(6b+4)44×39 903×899(a-7)2(x-7y)2(m-7n)2400128982(-p+2q)2(3x-6)2+(3x-5)2(2x+y+9)(2x+y-9)2(x+5y+2)2[(x+3)(x-3)]2先化简,再求值。
(2x-4y)2-(4x-5y)(5x+4y),其中x=-4,y=-31 1(—x+y)(—x-y) (5xy+3)(5xy-3)8 8(3a-b)(b+3a) (-b-5)(b+5)34×29 501×499(a+2)2(x-7)2(m+6n)2600122992(-2p-2)2(2x+4)2-(3x-7)2(2x-5y+7)(2x-5y-7)2(4x+4y+1)2[(x+4)(x-4)]2先化简,再求值。
(4x-6y)2+(x-5y)(5x+y),其中x=2,y=-73 3(—x+y)(—x-y) (xy+8)(xy-8)4 4(4a-3b)(3b+4a) (-2b-7)(2b+7)63×59 304×299(3a+7b)2(2x+7)2(m-6n)2 232372(3p+8)2(2x+7)2+(x-1)2(x-5y+3)(x-5y-3)2 (2x+2y+1)2[(2x+10)(2x-10)]2先化简,再求值。
(x-9y)2-(x-y)(x+y),其中x=6,y=-71 1(—x+y)(—x-y) (4xy+3)(4xy-3) 6 6(a-b)(b+a) (-6b-2)(6b+2)94×89 503×499(3a-8b)2(x+3)2(-2m+8n)2 80127992(-2p-8)2(3x-1)2-(4x-3)2(x+y+6)(x+y-6)2(x+5y-1)2[(x+7)(x-7)]2先化简,再求值。
(x-4y)2+(2x-y)(x+2y),其中x=6,y=79 9(—x+y)(—x-y) (3xy+5)(3xy-5) 8 8(6a-b)(b+6a) (-5b-7)(5b+7)64×59 304×299(a-7)2(2x-3)2(4m-3)2 422882(2p-9)2(x+1)2+(4x-2)2(x-5y+6)(x-5y-6)2 (x-2y-5)2[(2x+10)(2x-10)]2先化简,再求值。
(x-6)2+(x-y)(x+y),其中x=-4,y=73 3(—x+y)(—x-y) (xy+3)(xy-3) 4 4(a-b)(b+a) (-b-9)(b+9)83×79 104×99(a-9b)2(2x+8)2(3m+9)21032472(-p+5q)2(x+4)2+(2x-5)2(x-5y+9)(x-5y-9)2(2x+5y+3)2[(x+2)(x-2)]2先化简,再求值。
(4x-5)2-(2x-6y)(6x+2y),其中x=-10,y=-35 5(—x+y)(—x-y) (4xy+7)(4xy-7)4 4(3a-6b)(6b+3a) (-2b-4)(2b+4) 71×69 203×199(3a-2)2(x-5)2(m-4)2 500324982(-3p+3q)2(2x-6)2+(x+6)2(3x-y+6)(3x-y-6)2(3x+y-3)2[(3x+1)(3x-1)]2先化简,再求值。
(x-6)2+(x-y)(x+y),其中x=-10,y=-75 5(—x+y)(—x-y) (xy+3)(xy-3)6 6(a-b)(b+a) (-5b-9)(5b+9)72×69 102×99(2a+5b)2(4x-8y)2(-2m-6n)2 81299982(3p+9)2(2x+7)2-(4x+9)2(2x-7y+4)(2x-7y-4)2 (3x-2y+3)2[(x+4)(x-4)]2先化简,再求值。
(x-3y)2-(x-y)(x+y),其中x=4,y=-91 1(—x+y)(—x-y) (xy+3)(xy-3) 2 2(a-6b)(6b+a) (-b-8)(b+8) 63×59 302×299(4a-7b)2(3x-7)2(3m+4n)2 92249992(p-9)2(3x-7)2-(2x-4)2(2x+y+9)(2x+y-9)2(x+y-2)2[(x+5)(x-5)]2先化简,再求值。
(3x+8)2+(6x-6y)(6x+6y),其中x=6,y=-36 6(—x+y)(—x-y) (5xy+6)(5xy-6)5 5(a-6b)(6b+a) (-6b-10)(6b+10)33×29 804×799(2a+3b)2(2x+2)2(-m+7n)2 61239982(p+8q)2(x+9)2-(3x-1)2(2x+y+7)(2x+y-7)2 (2x+4y+4)2[(x+2)(x-2)]2先化简,再求值。
(x-7)2+(x-y)(x+y),其中x=8,y=-19 9(—x+y)(—x-y) (xy+2)(xy-2)8 8(a-6b)(6b+a) (-6b-1)(6b+1) 92×89 203×199(3a+9)2(3x+8)2(-3m-2n)210002219982(-2p-8)2(x-8)2-(3x+4)2(4x-y+3)(4x-y-3)2 (4x-3y-1)2[(x+8)(x-8)]2先化简,再求值。
(3x+3)2-(3x-y)(x+3y),其中x=8,y=31 1(—x+y)(—x-y) (3xy+5)(3xy-5) 2 2(a-b)(b+a) (-6b-9)(6b+9) 72×69 202×199(3a+4)2(2x+4y)2(-4m-9n)2 200327982(p+9)2(x-3)2-(2x-9)2(4x+y+3)(4x+y-3)2(x-y-2)2[(x+1)(x-1)]2先化简,再求值。