高三数学一轮复习课时作业31 数列的综合应用 新人教A版 理
- 格式:doc
- 大小:119.00 KB
- 文档页数:6
课时作业31 数列求和[基础达标]1.[2020·某某某某二十四中模拟]已知数列{a n}的各项都是正数,n∈N*.(1)若{a n}是等差数列,公差为d,且b n是a n和a n+1的等比中项,设=b2n+1-b2n,n∈N*,求证:数列{}是等差数列;(2)若a31+a32+a33+…+a3n=S2n,S n为数列{a n}的前n项和,求数列{a n}的通项公式.解析:(1)由题意得b2n=a n a n+1,则=b2n+1-b2n=a n+1a n+2-a n a n+1=2da n+1,因此+1-=2d(a n+2-a n+1)=2d2,∴{}是等差数列.(2)当n=1时,a31=a21,∵a1>0,∴a1=1.当n≥2时,a31+a32+a33+…+a3n=S2n,①a31+a32+a33+…+a3n-1=S2n-1,②①-②得,a3n=S2n-S2n-1=(S n-S n-1)(S n+S n-1).∵a n>0,∴a2n=S n+S n-1=2S n-a n,③∵a1=1合适上式,∴当n≥2时,a2n-1=2S n-1-a n-1,④③-④得a2n-a2n-1=2(S n-S n-1)-a n+a n-1=2a n-a n+a n-1=a n+a n-1,∵a n+a n-1>0,∴a n-a n-1=1,∴数列{a n}是首项为1,公差为1的等差数列,可得a n=n.2.[2020·某某某某诊断]已知等差数列{a n}的公差大于0,且a4=7,a2,a6-2a1,a14是等比数列{b n}的前三项.(1)求数列{a n}的通项公式;(2)记数列{b n}的前n项和为S n,若S n>39,求n的取值X围.解析:(1)设等差数列{a n}的公差为d(d>0),由a4=7,得a1+3d=7,①又a2,a6-2a1,a14是等比数列{b n}的前三项,∴(a6-2a1)2=a2a14,即(5d-a1)2=(a1+d)(a1+13d),化简得d=2a1,②联立①②,解得a1=1,d=2.∴a n=1+2(n-1)=2n-1.(2)∵b1=a2=3,b2=a6-2a1=9,b3=a14=27是等比数列{b n}的前三项,∴等比数列{b n}的首项为3,公比为3.∴S n =31-3n1-3=33n-12. 由S n >39,得33n-12>39,化简得3n >27,解得n >3,n ∈N *.3.[2020·某某某某省级示X 高中联考]在数列{a n }中,a 1=1,a n +1a n =4n +12n n +2,设b n =n +1n·a n .(1)证明:数列{b n }是等比数列; (2)求{a n }的前n 项积T n .解析:(1)因为b n +1b n =n +2n +1·a n +1n +1n·a n =n n +2n +12·a n +1a n =n n +2n +12·4n +12n n +2=4,b 1=2a 1=2,所以数列{b n }是首项为2,公比为4的等比数列. (2)由(1)知b n =n +1n ·a n =2·4n -1,则a n =n n +1·22n -1. 从而T n =(12×23×34×…×n n +1)·21+3+5+…+(2n -1)=2n 2n +1.4.[2020·某某河津二中月考]设数列{a n }满足a 1=1,3a 2-a 1=1,且2a n =a n -1+a n +1a n -1a n +1(n ≥2,n ∈N *).(1)求数列{a n }的通项公式;(2)设数列{b n }中,b 1=12,4b n =a n -1a n (n ≥2,n ∈N *),{b n }的前n 项和为T n ,证明:T n <1.解析:(1)∵2a n =a n -1+a n +1a n -1a n +1(n ≥2),∴2a n =1a n -1+1a n +1,又a 1=1,3a 2-a 1=1,∴1a 1=1,1a 2=32,∴1a 2-1a 1=12, ∴⎩⎨⎧⎭⎬⎫1a n 是首项为1,公差为12的等差数列,∴1a n =1+12(n -1)=12(n +1),即a n =2n +1. (2)∵4b n =a n -1a n (n ≥2),∴b n =1nn +1=1n -1n +1(n ≥2),又b 1=12符合上式,∴b n=1n -1n +1(n ∈N *), ∴T n =b 1+b 2+…+b n =(1-12)+(12-13)+…+(1n -1n +1)=1-1n +1<1.5.[2019·某某某某中学期中]设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n3,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =⎩⎪⎨⎪⎧n ,n 为奇数,1a n,n 为偶数,求数列{b n }的前n 项和S n .解析:(1)a 1+3a 2+32a 3+…+3n -1a n =n3①,当n ≥2时,a 1+3a 2+32a 3+…+3n -2a n -1=n -13②,①-②,得3n -1·a n =13(n ≥2),即a n =13n ;当n =1时,a 1=13,符合上式.所以数列{a n }的通项公式为a n =13n .(2)由(1)知b n =⎩⎪⎨⎪⎧n ,n 为奇数,3n,n 为偶数,①当n 为奇数时,S n =1+32+3+34+…+3n -1+n =1+n2·1+n 2+=n 2+2n +14+98(3n -1-1).②当n 为偶数时,S n =1+32+3+34+…+(n -1)+3n =[1+n -1]2·n2+91-9n21-9=n 24+98(3n-1).所以数列{b n }的前n 项和S n=⎩⎪⎨⎪⎧n 2+2n +14+983n -1-1,n 为奇数,n 24+983n-1,n 为偶数.6.[2020·某某某某模拟]已知等差数列{a n }的前n 项和为S n ,公差d >0,且a 2a 3=40,a 1+a 4=13,在公比为q (0<q <1)的等比数列{b n }中,b 1,b 3,b 5∈{160,132,120,18,12}.(1)求数列{a n },{b n }的通项公式;(2)若数列{}满足=a n b n ,求数列{}的前n 项和T n .解析:(1)因为{a n }为等差数列,所以a 1+a 4=a 2+a 3=13, 又a 2a 3=40,所以a 2,a 3是方程x 2-13x +40=0的两个实数根. 又公差d >0,所以a 2<a 3,所以a 2=5,a 3=8,所以⎩⎪⎨⎪⎧a 1+d =5,a 1+2d =8,解得⎩⎪⎨⎪⎧a 1=2,d =3,所以a n =3n -1,因为在公比为q (0<q <1)的等比数列{b n }中,b 1,b 3,b 5∈{160,132,120,18,12},所以易知b 1=12,b 3=18,b 5=132.此时公比q 2=b 3b 1=14,所以q =12,所以b n =(12)n .(2)由(1)知a n =3n -1,b n =(12)n ,所以=(3n -1)·(12)n,所以T n =2×(12)1+5×(12)2+8×(12)3+…+(3n -1)×(12)n,12T n =2×122+5×123+…+(3n -4)×12n +(3n -1)×12n +1, 两式相减,得12T n =2×(12)1+3[(12)2+(12)3+…+(12)n ]-(3n -1)×(12)n +1=1+3×(12)[1-(12)n -1]-(3n -1)×(12)n +1=52-(12)n ×3n +52.故{}的前n 项和T n =5-(3n +5)×(12)n .[能力挑战]7.[2020·某某某某联考]若正项数列{a n }的前n 项和为S n ,a 1=1,点P (S n ,S n +1)在曲线y =(x +1)2上.(1)求数列{a n }的通项公式; (2)设b n =1a n ·a n +1,T n 表示数列{b n }的前n 项和,若T n ≥13m -1对任意n ∈N *恒成立,某某数m 的取值X 围.解析:(1)由已知可得S n +1=(S n +1)2,得S n +1-S n =1,所以{S n }是以S 1为首项、1为公差的等差数列,所以S n =S 1+(n -1)×1=n ,得S n =n 2,当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,当n =1,也符合上式,故{a n }的通项公式为a n =2n -1.(2)b n =1a n ·a n +1=12n -12n +1=12(12n -1-12n +1),所以T n =b 1+b 2+b 3+…+b n =12(1-12n +1),显然T n 是关于n 的增函数,所以T n 有最小值(T n )min =T 1=13,又T n ≥13m -1对任意n ∈N *恒成立,所以13≥13m -1恒成立,所以m ≤4,故实数m 的取值X 围为(-∞,4].。
§6.5数列的综合应用基础知识自主学习要点梳理1扁廖数列应用题的基本步骤(1) 审题一仔细阅读材料,认真理解题意.(数列)语言,将实际问题转化(2) 建(3) 求解——求出该问题的数学解.(4) 还原——将所求结果还原到原实际问题中.2 •数列应用题常见模型(1) 等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差.(2) 等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比.(3) 分期付款模型:设贷款总额为a,年利率为匚等额还款数为b,分n期还完,则归r(l + r)n---------------- a.(1 +厂)"一1基础自测1 •数列何}是公差不为0的等差数列且a?、a10. a15> 等比数列{"}的连续三项,若等比数列{切}的首项6=3,则b2等于()A. B.5 C.2 D.解析由条件知=a7-a153/. (a7+3d) 2=a7X(a7+8d)5,24.*.9d=2a7, q=•.•b[=3^ .\b2=b1-q=5. :%o _ 如+3〃_ 5ciq ciq 32•—套共7册的书计划每两年出一册,若出完全部各册书,公元年代之和为13 958,则出齐这套书的年份是( )A.1994B.1996C.1998D.2000解析设出齐这套书的年份是x, D贝j (x-12) +(x-10)+(x-8)+..-+x=13 958,・・.7x・=13 9585/.X=2000.2(12 + 0)x73. (2009-四川文,3)等差数列{aj的公差不为零,首项a1=1,a2是引和as的等比中项,贝燉列{aj的前10项之和是( )A.90B.100C.145D.190解析由题意知,S+d) 2=a1(a1+4d), B即+2a[d+d2= +4a1d,/.d=2a1=2.•••S[o=1Oa[d=10+90=100・+2 a x 10x9 21-24•有一种细菌和一种病毒,每个细菌在每秒钟末能在杀死一个病毒的 同时将自身分裂为2个,现在有一个这样的细菌和100个这样的病 毒,问细菌将病毒全部杀死至少需要)A.6秒C.8秒解析 依题意 1+21+22+...+2n -1>100,>100,.\2n>101,・・・n27,即至少需要7秒细菌将病毒全部杀死. B.7秒 D.91 — 2〃1-25•已知数列{aj中,a1=2,点(a n.l5a n) a〔+■■■+*[ 0= ■解析• a n=2a n-l"^,• •a r r1=2(a ri.i・1),・・阳}是等比数列,则a n=2-1+1. • .a〔+a?+■ ■・*a[0=10+(2°+21+22+ (29)=10+ =1 033.1-210(n > 1 且n W N)满足y=2x-11 0331-2解(1)由a n+1=2S n+15nT得an=2Sn”1 (虑2), 两式相减得a n+r a n=2a n^0a n+1=3a n (n>2).又a2=2S〔+1 =3r\a2=3a1.故{%}是首项为公比为3的等比数列,・・气=3胡.(2)设{"}的公差为d,由T3=1 Sjb-j+b2+b3=15,可得b2=5, 故可设b1=5-d3b3=5+d J又a 〔=1 ,a2=39a3=9j 由题意可得(5-d+1)(5+d+9)=(5+3)2, 解得d1=2,d2=-10.・・•等差数列{"}的各项为正,.・・d>0,.•.d=25b1=3,.\T n=3n+ X2=n2+2n ・探究提高对等差.等比数列的综合问题的分析,应重点分析等差.等比数列的通项及前n项和;分析等差.等比数列项之间的关系•往往用到转化与化归的思想方法.2知能迁移1 (2009・全国I文,17)设等差数列{%}的前n项和为公比是正数的等比数列{"}的前n项和为口已知a1=15b1=35a3+b3=173T3-S3=125求{aj/bj的通项公式.解设{aj的公差为d, {bj的公比为q・由a3+b3=17#1 +2d+3q2=175①由①、②及q>0解得q=2,d=2.故所求的通项公式为a n=2n-1 ,b n=3 X 2討・题型二数列与函数的综合应用【例2】(12分)已知f(x)=log a x(a>0且詐4),设f(aj,f(a2),…,f(aj (nGN*)是首预为4,公差另2的等差数列.(1)设a为常数,求证:{%}是等比数列;(2)若b n=a n f(a n)5{b n}的箭n项和是S“^a=时,求S“・利用函数的有关知识得出%的表达式,再利用表达式解决其他问题.V2 思维启迪(1)证明f(a n)=4+(n-1) X 2=2n+2,/log a a n=2n+252分• 口一口2n+2• "a r\~a■・・・(n>2)为定值.・・・{%}为等比数列5分(2廨^=aj(ajta^log a a!^=(2n+2^a2n+2.当a=加瓦绑应)七弦血.7分S n=2.尝斜24+^-25+...+(n+1 他卄2 ①2S n=2-24+3-25+4-26+...+n-2n+2+(n+1 )・ 2岚②①■②得-S n=2.23+24+25+...+2n+2-(n+1)-2n+3V2 V2=16+=16+2卄3・24・“12^*2卄3=・“・2卄3・.♦.S =n-2n+3. 12分n"数列N函数的综合问题主要有以下两类:(1 )已知函数条件, 解决数列问题•此类问题一般利用函数的性质.图象研究数列问题;数列条件,解决函数问题•解决此类问题一般要充分利用数公式.求和方法对式子化简变形.2知能迁移2设等比数列{%}的前n 项和和 首项引=1, 公比q=f (D 证明:S =(2) 若数列{《虑2),求数列低}的通(3) 若=1 ,lHc n =a n(貫1,0)・ n¥(bnJ (nWN ; A 擞列{打的前Tn,求证:当曲2时,2STnV4・222 0 =(1+刃[1—(仝)〃 ]=(1+刃—2(厶)1,1 +2 1 + 2o 2又肌厂%(乙严=(乙)=1 +2 1 + 2=(1 + A)—几© ・(1)证明"11丄1 + 21一9(2)解心)=£,..也二旣・.古亡+1.・・・鬼项为=2,公差対1的等差数列.=J^(nl-1)=n+1,即b“="2.\7;=l + 2(-) + 3(-)2+A +H (-),7_1.I1 1 0 1 Q 1(3)证明・・•当=1时, 2•••产巧+ 2(产3(尹+A+%)“.两式相减得扣i+(》+(y+A y = 2[l-(|r]-n(|)\ .• ^=4-(-r2-n(-r i<4. 又・九1%>0, ・・・人单调递增./.T n>T2=2・故当曲2时,2<T n<4・题型三数列的实际应用【例3】假设某市2008年新建住房400万平方米,其中有250万平方米是中低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%・另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米■那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2008年为累计的第一年)将首次不少于4 750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?(参考数据:1.084^1.36,1.085«1.47,1.086«1.59)2思维启泡)要求学生会把实际问题转化为数学问题:S n=250n+ x50=^5r?+^J25n>4 750.(2归“>0・85"*店400崩8+解(1)设中低价房的命积形成的数列为{a}由题意可知{aj是等差数列,其中a-|=250jd=50,IJl!ja n=250+(n-1 )・ 50=50n+200S n=250n+ X 50=25n2+225n,4^25n2+225n>4 750,即n2+9n-190>0,而n是正整数,/.n>10.因此到2017年底,该市历年所建中低价房的累计面(2)设新建住房面积形成数列{b}由题意可知{"}是等比数列,其中b1=4005q=1.083则4=400・(1・08)討・由题意可知a n>0.85b 即50n+200>400-(1.08)n1・ 0・85・当n=5时,a5<0.85b5,当n=6时,a6>0.85b6,因此满足上述不等式的最小正整数n为6・因此到2013年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%.2探會湊匾类问题的关犍是如何把实际问题转化为数学问题,通过反复读题,列出有关信息,转化为数列的有关问题,这也是数学实际应用的具体体现.知能迁移3某市2008年共有1万辆燃油型公交车,有关部门计划于2009年投入128辆电力型公交车, 随后电力型公交车每年的投入比上一年增加50%, 试问:(1)该市在2015年应该投入多少辆电力型公交车?⑵到哪一年底,电力型公交车的数量开始超过该市公交车总量的?(lg657=2.82,lg 2=0.30,lg 3=0.48)解⑴该市逐年投入的电力型公交车的数量组成等比数列心丄其中a1=128,q=1・5,则在2015年应该投入的电力型公交车为a7=a[・q6=128X1.56=1 458 (辆)・13(2)记Sn=a〔+a?+・・・+&“,依据题意,得1 于是呻>5 0丽丽云护.5睜两边取常屈1(顷盤1・5〉lg1-1.5即n> =7・3,又nWI\T,因此心&所以到2016年底,电力型公交车的数量开始超过谡2市公交军蓉鈿=5览2Ig3-lg2657657~32思想方法感悟提高方法与技巧1 •深刻理解等差(比)数列的性质,熟悉它们的推导过程是解题的关键•两类数列性质既有相似之处,又有区别,要在应用中加强记忆.同时,用好性质也会降低解题的运算量,从而减少差错. 2•在等差数列与等比数列中,经常要根据条件列方程(组)求解,在解方程组时,仔细体会两种情形中解方程组的方法的不同之处.3•数列的渗透力很强,它和函数、方程、三角形、不等式等知识相互联系,优化组合,无形中加大了综合的力度•解决此类题目,必须对蕴藏在数列概念和方法中的数学思想有所了解,深刻领悟它在囁需作零鏗学囁讓'/数与方程”、4•在现实生活中,人口的增长、产量的增加、成本的降低、存贷款利自药讦算分期付款问题等,都可以利用数列来解决,因此要会鸚為需矗牒型,并用它解决实际问题失误与防范1 •等比数列的前n项和公式要分两种情况:公比等于1和公比不等于1・最容易忽视公比等于1的情况,要注意这方面的练习.2•数列的应用还包括实际问题,要学会建模,对应哪一类数列,进而求解.3•在有些情况下,证明数列的不等式要用到放缩法.2差数列,则A. B. 的值为Cl?+ “4c. ^5 —I D・或解析设农』的公比为q(q>0), 得”4®解得q=因此2腭+ 1由a32a2+a nV5-12A/5+I21 +V52定时检测一、选择题1 •各项都是正数的等比数列何}中,a2, a3,2•数列{aj中,a n=3n-7 (nGN*),数列{bj满足6= ,b n.j=27b n(n>2 KnGN*),^a n+log k b n为常数,则補足条件的k值( )A •唯一存在,且为B •唯一存在,且为3 1C ■存在且不唯一1 3D •不一定存在2解析依题意,/a n +log k b n 是常数, 即 log k 3=1 ,.*.kq3.答案B L =3n-7+(3n-2)log k=(3+3log k )n-7-2log k 53=0, 133•有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点•已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底匯面积)超过39,则该塔形中正方体的个数至少是( )A.4C.6D.72 解析正方体按从下向上的顺序其棱长构成等比数列,其棱长分别为:2, , 1,,n 层正方体的表面积为 7216[1-(-),?] 1曲応知一0羊4- 740込32(—)"・整理得2p3£・・・n>5・ 2答案C 21 1 V2 214•气象学院用3・2万元买了一台天文观测仪,已知这台观测仪从启用的第一天起连续使用,第n天的维修保养费为元(nGN*),使用它直至报废最合算(所谓报废最合算是指使用这台仪器的平均耗资最少)为止, n+ 49一共使用巧厂()A.800天B.600天C.1 000天D.1 200天解析由第n天的维修保养费为元(ne Nil + 49可以得出观测仪的整个耗资费用,由平均费用鬲少而求得最小值成立时的相应n的值.设一共使用了n天,则使用n天的平均耗资为丸+ 49当且仅当(5侖取帑最木植,此时n=800.3.2x10" ----------------- — 1^4 OO答案A 2 二3.2x10 | 〃|9.9n n 20 23.2xl04 _ nn 205.2008年春,我国南方部分地区遭受了罕见的特大冻灾•大雪无情人有情,柳州某中学组织学生在学校开展募捐活动,第一天只有10人捐款,人均捐款10元,之后通过积极宣传,从第二天起,每天的捐款人数是前一天的2倍,且当天人均捐款数比前一天多5元,则截止到第5天(包括第5天)捐款总数将达到.8 000元A.4 800元C.9 600元D.11 200元解析由题意知,5天共捐款B10X10+ (10 X 2) X (10+5) + (10 X 22) X (15+5) + (10 X 23)X (20+5) + (10X24) X (25+5) =8 000 (元)・6•務譽攀野e”輕足引弓,且玄風+1是函Wx)=x2-b n x+2"的两个零点, A.24 B.32 C.48 D.64 D解析依题意<a n a n+1=2% 所lUa n+1a n+2=2n+15两式相除得=2,所以a〔,a3,a5,...成等比数列,a2,a4,a6,...^等比数列,而a1=1,a2=2,^f ^310=2-24=32,311=1.25=32. 又因为a n+a n+i=b n^^^Zb10=a10+a11=64.5_ r填空题〒已知数列{aj满足引=1 ,a2=-2,a n+2解析由于a1=13a2=-23a n+2=-, -10所以斥4=,a5=1卫6=・2,・・・,于是{%}是周期为4的数列,故S2Q=6X (1 -2-1 + )|+1-2=-10.•,则该数列前26器的和为丄a n8. (2008•江苏,10)将全体正整数排成一个三角形数阵:123456789 10按照以上排列的规律,第n行(血3)从左向右的第个,即为3个数为--- -2—H +6个,因此第n行第3个数是全体正整数中第+3n2 -nn2 -n + 69. (2009-福建理,15)五位同学围成一圈依序循环报数,规定:①第一位同学首次报出的数为第二位同学首次报出的数也为之后每位同学所报出的数都是前两位同学所报出的数之和;②若报出的数为3的倍数,则报该数的同学需拍手一次.已知甲同学第一个报数,当五位同学依序循环报到第100个数时,甲同学拍手的总次数为.解析设第n个同学报出的数为a n^!|a n+a n+1=a n+25••a n+2=a n+a n+15a n+3=a n+1 +a n+2=a n+2a n+1,a n+4=a n+3+a n+2=23n+^a n+1,•••a n+4+a n=2a n+3a n+1=3(a n+a n+1)-又a.为大于0的整数,・・叫被3整除时,富4也被3整除;a“不被3整除时,a.+4也不被3整除.=1 ,*2=1,*3=2,a4=3,a5=5,・・何}中被3整除的数为a4+4k(kWN),又甲报岀的数为a1+5m(mGN),・・・甲报出的数引+5^^3整除时,存在kWN,使1+5m=4+4k,・・.k= 5m-3 m_3---------- =m -------------- ,、4 4/.m-3被4整除,设m-3=4p(p WZ),贝!|m=4p+3.v1<1+5m<100,/.0<m<19.8,.-.0<4p+3<19.8,/.- <p<4.2,・・・p只能取0, 1, 2, 3, 4共5个整数,・・・m只能取3, 7, 11, 15, 19共5个整数,・••甲报出的数只有5次能被・・・甲拍了5次手.答案5三、解答题石〕为融我国的稀土资源,国家限定某矿区的出口总量不能超过80 吨,该矿区计划从2010年开始出口,当年出口a吨,以后每年出口量均比上一年减少10%.(1) 以2010年为第一年,设第n年出口量为a“吨,试求a“的表达式;(2) 因稀土资源不能再生,国家计划10年后终止该矿区的出口,问2010年最多出口多少吨?(保留一位小数)参考数据:0・9作0・35・解(1)由题意知每年的出口量构成等比数列,且首项a〔=a,公比q=1-10%=0.9,.•.a n=a0.9n1・(2) 10 年出口总量»0= =10a(1-0.910)・•.S1o<80, /.10a (1-0.910) S80, Q(]_0 9IO)即aS .\a<12.3. 1-0.9故2010年最多出口12・3吨.81_0.9心11 •设数列{a“}的前n项和为Sn,且(3・m) S n+2ma n=m+3 (nGN*) ■箕中m为常数,m^-3,且m*0・(2)若数列{aj的公比满足q=f(m)且匕口胡店f(bn・J(n G N;n22),求证:为等差数列,并求b“・证明(1)由(3・m) S n+2ma n=m+3,徼3-m)S n+1+2ma n+1=m+3, 相减,得(3+m)a n+1=2ma n (m^-3),・.・m是常数,且m^-3, m^O,©+i= 2ma n m + 3故 遑坐为0的常数,・・・{%}是等比数列. m +3(2)由b 1=a 1=1,q=f(m)=5nGN* H n>2, zm 是以1为首项,为公差的尊差数烦J, = 1b n b n-\ 3 •111 < -- > —仏J3 丄十口工 丄b n 3 3 " n + 2 解 (1)由题意得a 1=n-15a 2=(n-1 )+(n-2)-1 =2n-4,a 3=(n-1 )+(n-2)+(n-3)-1 -2=3n-9-b n= f (b n .!)= 3 得“b 刃+34=3虬・1,m + 33 2殆 •2 h+3,。
课时作业 数列的综合应用1.已知数列{a n }为等差数列,且满足OA →=a 3OB →+a 2 015OC →,其中点A ,B ,C 在一条直线上,点O 为直线AB 外一点,记数列{a n }的前n 项和为S n ,则S 2 017的值为( A )A.2 0172B .2 017C .2 018D .2 015解析:因为点A ,B ,C 在一条直线上, 所以a 3+a 2 015=1,则S 2 017=2 017a 1+a 2 0172=2 017a 3+a 2 0152=2 0172,故选A.2.某制药厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n 年的累计产量为f (n )=13(n +1)(n +2)(2n +3)吨,但如果年产量超过130吨,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是( C )A .5年B .6年C .7年D .8年解析:由题意知第一年产量为a 1=13×2×3×5=10;以后各年产量分别为a n =f (n )-f (n -1)=13(n +1)(n +2)(2n +3)-13n ·(n +1)·(2n +1)=2(n +1)2(n ∈N *), 令2(n +1)2≤130,所以1≤n ≤65-1, 所以1≤n ≤7.故最长的生产期限为7年.3.定义:若数列{a n }对任意的正整数n ,都有|a n +1|+|a n |=d (d 为常数),则称{a n }为“绝对和数列”,d 叫作“绝对公和”.在“绝对和数列”{a n }中,a 1=2,绝对公和为3,则其前2 017项的和S 2 017的最小值为( C )A .-2 017B .-3 014C .-3 022D .3 032解析:依题意,要使其前2 017项的和S 2 017的值最小,只需每一项都取最小值即可.因为|a n +1|+|a n |=3,所以有-a 3-a 2=-a 5-a 4=…=-a 2 017-a 2 016=3,即a 3+a 2=a 5+a 4=…=a 2 017+a 2 016=-3,所以S 2 017的最小值为2+2 017-12×(-3)=-3 022,故选C.4.设等比数列{a n }的公比为q ,其前n 项之积为T n ,并且满足条件:a 1>1,a 2 015a 2 016>1,a 2 015-1a 2 016-1<0.给出下列结论:(1)0<q <1;(2)a 2 015a 2 017-1>0;(3)T 2 016的值是T n 中最大的;(4)使T n >1成立的最大自然数等于4 030.其中正确的结论为( C )A .(1)(3)B .(2)(3)C .(1)(4)D .(2)(4) 解析:由a 2 015-1a 2 016-1<0可知a 2 015<1或a 2 016<1.如果a 2 015<1,那么a 2 016>1, 若a 2 015<0,则q <0; 又∵a 2 016=a 1q2 015,∴a 2 016应与a 1异号,即a 2 016<0,这与假设矛盾,故q >0.若q ≥1,则a 2 015>1且a 2 016>1,与推出的结论矛盾,故0<q <1,故(1)正确. 又a 2 015a 2 017=a 22 016<1,故(2)错误.由结论(1)可知a 2 015>1,a 2 016<1,故数列从第 2 016项开始小于1,则T 2 015最大,故(3)错误.由结论(1)可知数列从第2 016项开始小于1,而T n =a 1a 2a 3…a n ,故当T n =(a 2 015)n时,求得T n >1对应的自然数为4 030,故(4)正确.5.(2019·太原模拟)已知数列{a n }中,a 1=0,a n -a n -1-1=2(n -1)(n ∈N *,n ≥2),若数列{b n }满足b n =n ·a n +1+1·⎝ ⎛⎭⎪⎫811n -1,则数列{b n }的最大项为第 6 项.解析:由a 1=0,且a n -a n -1-1=2(n -1)(n ∈N *,n ≥2),得a n -a n -1=2n -1(n ≥2),则a 2-a 1=2×2-1,a 3-a 2=2×3-1,a 4-a 3=2×4-1,…,a n -a n -1=2n -1(n ≥2),以上各式累加得a n =2(2+3+…+n )-(n -1)=2×n +2n -12-n +1=n 2-1(n ≥2),当n=1时,上式仍成立,所以b n =n ·a n +1+1·⎝ ⎛⎭⎪⎫811n -1=n ·n +12·⎝ ⎛⎭⎪⎫811n -1=(n 2+n )·⎝ ⎛⎭⎪⎫811n -1(n ∈N *).由⎩⎪⎨⎪⎧b n ≥b n -1,b n ≥b n +1,得⎩⎪⎨⎪⎧n 2+n ·⎝ ⎛⎭⎪⎫811n -1≥n 2-n ·⎝ ⎛⎭⎪⎫811n -2,n 2+n ·⎝ ⎛⎭⎪⎫811n -1≥n 2+3n +2·⎝ ⎛⎭⎪⎫811n ,解得163≤n ≤193.因为n ∈N *,所以n =6, 所以数列{b n }的最大项为第6项.6.将正整数12分解成两个正整数的乘积有1×12,2×6,3×4三种,其中3×4是这三种分解中两数差的绝对值最小的,我们称3×4为12的最佳分解.当p ×q (p ≤q 且p ,q ∈N *)是正整数n 的最佳分解时,我们定义函数f (n )=q -p ,例如f (12)=4-3=1,数列{f (3n)}的前100项和为 350-1 .解析:当n 为偶数时,f (3n )=0;当n 为奇数时,f (3n)=3n +12-3n -12,因此数列{f (3n)}的前100项和为31-30+32-31+…+350-349=350-1.7.(2019·长沙、南昌联考)已知数列{a n }的前n 项和为S n ,且满足:a 1=1,a n >0,a 2n +1=4S n +4n +1(n ∈N *),若不等式4n 2-8n +3<(5-m )2n ·a n 对任意的n ∈N *恒成立,则整数m 的最大值为( B )A .3B .4C .5D .6解析:当n ≥2时,⎩⎪⎨⎪⎧a 2n +1=4S n +4n +1,a 2n =4S n -1+4n -1+1,两式相减得a 2n +1-a 2n =4a n +4, 即a 2n +1=a 2n +4a n +4=(a n +2)2, 又a n >0,所以a n +1=a n +2(n ≥2). 对a 2n +1=4S n +4n +1,令n =1,可得a 22=4a 1+4+1=9, 所以a 2=3,则a 2-a 1=2,所以数列{a n }是以1为首项,2为公差的等差数列, 故a n =2n -1.因为4n 2-8n +3=(2n -1)(2n -3),n ∈N *,2n -1>0,所以不等式4n 2-8n +3<(5-m )·2n ·a n 等价于5-m >2n -32n . 记b n =2n -32n ,则b n +1b n =2n -12n +12n -32n =2n -14n -6,当n ≥3时,b n +1b n<1, 又b 1=-12,b 2=14,b 3=38,所以(b n )max =b 3=38.故5-m >38,得m <378,所以整数m 的最大值为4.8.(2019·南昌调研)已知正项数列{a n }的前n 项和为S n ,∀n ∈N *,2S n =a 2n +a n .令b n =1a n a n +1+a n +1a n,设{b n }的前n 项和为T n ,则在T 1,T 2,T 3,…,T 100中有理数的个数为 9 .解析:∵2S n =a 2n +a n ,① ∴2S n +1=a 2n +1+a n +1,②②-①,得2a n +1=a 2n +1+a n +1-a 2n -a n ,a 2n +1-a 2n -a n +1-a n =0,(a n +1+a n )(a n +1-a n -1)=0.又∵{a n }为正项数列,∴a n +1-a n -1=0, 即a n +1-a n =1.在2S n =a 2n +a n 中,令n =1,可得a 1=1.∴数列{a n }是以1为首项,1为公差的等差数列. ∴a n =n , ∴b n =1n n +1+n +1n=n +1 n -n n +1[n n +1+n +1 n ][n +1 n -n n +1 ]=n +1 n -n n +1n n +1=1n -1n +1,∴T n =1-12+12-13+…+1n -1-1n +1n -1n +1=1-1n +1, 要使T n 为有理数,只需1n +1为有理数, 令n +1=t 2,∵1≤n ≤100,∴n =3,8,15,24,35,48,63,80,99,共9个数. ∴T 1,T 2,T 3,…,T 100中有理数的个数为9.9.(2019·福建漳州模拟)已知数列{a n }满足na n -(n +1)·a n -1=2n 2+2n (n =2,3,4,…),a 1=6.(1)求证:⎩⎨⎧⎭⎬⎫a n n +1为等差数列,并求出{a n }的通项公式; (2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,求证:S n <512.解:(1)证明:由na n -(n +1)a n -1=2n 2+2n (n =2,3,4,…),a 1=6,可得a n n +1-a n -1n=2,a 11+1=3,则⎩⎨⎧⎭⎬⎫a n n +1是首项为3,公差为2的等差数列,可得a nn +1=3+2(n -1)=2n +1,则a n =(n +1)(2n +1)(n ∈N *).(2)证明:由1n +12n +1<12n n +1=12⎝ ⎛⎭⎪⎫1n -1n +1,可得数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和S n =1a 1+1a 2+…+1a n ≤16+12×⎝ ⎛⎭⎪⎫12-13+13-14+…+1n -1n +1=16+12⎝ ⎛⎭⎪⎫12-1n +1<16+14=512,即S n <512.10.已知函数f (x )=⎝⎛⎭⎪⎫sin x 2+cos x 22-1cos 2x2-sin2x2,函数y =f (x )-3在(0,+∞)上的零点按从小到大的顺序构成数列{a n }(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =3πa n 4n 2-13n -2,求数列{b n }的前n 项和S n . 解:(1)f (x )=⎝ ⎛⎭⎪⎫sin x 2+cos x 22-1cos 2x2-sin2x2=sin x cos x=tan x ,由tan x =3及x >0得x =k π+π3(k ∈N ),数列{a n }是首项a 1=π3,公差d =π的等差数列,所以a n =π3+(n -1)π=n π-2π3.(2)b n =3πa n 4n 2-13n -2 =12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1.S n =12⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝⎛⎭⎪⎫12n -1-12n +1=12⎝⎛⎭⎪⎫1-12n +1=n2n +1. 11.已知{a n }是公差不为0的等差数列,{b n }是等比数列,且a 1=b 1=1,a 2=b 2,a 5=b 3. (1)求数列{a n },{b n }的通项公式;(2)记S n =a 1b 1+a 2b 2+…+a n b n,是否存在m ∈N *,使得S m ≥3成立,若存在,求出m ,若不存在,请说明理由.解:(1)设数列{a n }的公差为d (d ≠0),数列{b n }的公比为q ,则由题意知⎩⎪⎨⎪⎧1+d =1·q ,1·q 2=1+4d ,∴d =0或d =2,∵d ≠0,∴d =2,q =3,∴a n =2n -1,b n =3n -1.(2)由(1)可知,S n =a 1b 1+a 2b 2+…+a n b n =11+331+532+…+2n -33n -2+2n -13n -1,13S n =131+332+533+…+2n -33n -1+2n -13n ,两式相减得,23S n =1+231+232+…+23n -1-2n -13n =1+23×1-⎝ ⎛⎭⎪⎫13n -11-13-2n -13n =2-2n +23n <2,∴S n <3.故不存在m ∈N *,使得S m ≥3成立.12.(2019·河南洛阳模拟)已知等差数列{a n }的公差d ≠0,且a 3=5,a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式; (2)设b n =1a 2n +4n -2,S n 是数列{b n }的前n 项和.若对任意正整数n ,不等式2S n +(-1)n+1·a >0恒成立,求实数a 的取值范围. 解:(1)因为a 3=5,a 1,a 2,a 5成等比数列,所以⎩⎪⎨⎪⎧a 1+2d =5,a 1+d 2=a 1a 1+4d ,解得a 1=1,d =2,所以数列{a n }的通项公式为a n =2n -1. (2)因为b n =1a 2n +4n -2=12n -12+4n -2=14n 2-1=12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以S n =b 1+b 2+…+b n=12⎝ ⎛⎭⎪⎫1-13+12⎝ ⎛⎭⎪⎫13-15+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝⎛⎭⎪⎫1-12n +1,依题意,对任意正整数n ,不等式1-12n +1+(-1)n +1a >0,当n 为奇数时,1-12n +1+(-1)n +1a >0即a >-1+12n +1,所以a >-23;当n 为偶数时,1-12n +1+(-1)n +1a >0即a <1-12n +1,所以a <45.所以实数a 的取值范围是⎝ ⎛⎭⎪⎫-23,45.。
课时作业(三十一) [第31讲 数列的综合应用][时间:45分钟 分值:100分]基础热身1.[2012·惠州调研] “lg x ,lg y ,lg z 成等差数列”是“y 2=xz ”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.[2011·德州二模] 已知等差数列{a n }的前n 项和为S n ,S 9=-18,S 13=-52,等比数列{b n }中,b 5=a 5,b 7=a 7,那么b 15的值为( )A .64B .-64C .128D .-128 3.[2011·珠海综测] 设正项等比数列{a n },{lg a n }成等差数列,公差d =lg3,且{lg a n }的前三项和为6lg3,则数列{a n }的通项公式为( )A .n lg3B .3nC .3nD .3n -14.等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则{a n }的公比为( )A .2B .3 C.12 D.13能力提升 5.[2011·忻州联考] 成等比数列的三个数a +8,a +2,a -2分别为等差数列的第1、4、6项,则这个等差数列前n 项和的最大值为( )A .120B .90C .80D .606.[2011·南平质检] 已知函数f (x )满足f (x +1)=32+f (x ),x ∈R ,且f (1)=52,则数列{f (n )}(n ∈N *)的前20项的和为( )A .305B .315C .325D .3357.[2011·大连双基检测] 已知等差数列{a n }的首项a 1及公差d 都是整数,前n 项和为S n ,若a 1>1,a 4>3,S 3≤9,设b n =1na n ,则使b 1+b 2+…+b n <99100成立的最大n 值为( )A .97B .98C .99D .1008.2011年,我国南方省市遭遇旱灾以及洪水灾害,为防洪抗旱,某地区大面积植树造林,如图K31-1,在区域{(x ,y )|x ≥0,y ≥0}内植树,第一棵树在点A 1(0,1),第二棵树在点B 1(1,1),第三棵树在点C 1(1,0),第四棵树在点C 2(2,0),接着按图中箭头方向每隔一个单位种一棵树,那么第2011棵树所在的点的坐标是( )A .(13,44)B .(12,44)C .(13,43)D .(14,43)9.[2011·陕西卷] 植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,现将树坑从1到20依次编号,为使各位同学从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两个最佳坑位的编号为( )A .①和⑳B .⑨和⑩C .⑨和⑪D .⑩和⑪10.[2012·永州调研] 已知等差数列{a n },对于函数f (x )=x 5+x 3满足:f (a 2-2)=6,f (a 2 010-4)=-6,S n 是其前n 项和,则S 2 011=________.11.[2011·菏泽二模] 已知a n =2n -1(n ∈N +),把数列{a n }的各项排成如图K31-2所示的三角数阵,记S (m ,n )表示该数阵中第m 行中从左到右的第n 个数,则S (10,6)对应数阵中的数是________.1 3 5 7 9 11 13 15 17 19…… 图K31-212.[2011·丰台二模] 如图K31-3所示,已知正方形ABCD 的边长为1,以A 为圆心,AD 长为半径画弧,交BA 的延长线于P 1,然后以B 为圆心,BP 1长为半径画弧,交CB 的延长线于P 2,再以C 为圆心,CP 2长为半径画弧,交DC 的延长线于P 3,再以D 为圆心,DP 3长为半径画弧,交AD 的延长线于P 4,再以A 为圆心,AP 4长为半径画弧,…,如此继续下去,画出的第8道弧的半径是________,画出第n 道弧时,这n 道弧的弧长之和为________.13.[2011·绍兴质检] 已知奇函数f (x )是定义在R 上的增函数,数列{x n }是一个公差为2的等差数列,满足f (x 8)+f (x 9)+f (x 10)+f (x 11)=0,则x 2 011的值等于________.14.(10分)[2011·江门调研] 某旅游景点2010年利润为100万元,因市场竞争,若不开发新项目,预测从2011年起每年利润比上一年减少4万元.2011年初,该景点一次性投入90万元开发新项目,预测在未扣除开发所投入资金的情况下,第n 年(n 为正整数,2011年为第1年)的利润为100⎝ ⎛⎭⎪⎫1+13n 万元. (1)设从2011年起的前n 年,该景点不开发新项目的累计利润为A n 万元,开发新项目的累计利润为B n 万元(须扣除开发所投入资金),求A n 、B n 的表达式;(2)依上述预测,该景点从第几年开始,开发新项目的累计利润超过不开发新项目的累计利润?15.(13分)[2011·合肥一中月考] 已知直线l 的方程为3x -2y -1=0,数列{a n }的前n 项和为S n ,点(a n ,S n )在直线l 上.(1)求数列{a n }的通项公式;(2)b n =n 2S n +1a n ,数列{b n }的前n 项和为T n ,求f (n )=b nT n +24(n ∈N +)的最大值.难点突破16.(12分)[2011·荆州质检] 某市为了解决交通拥堵问题,一方面改建道路、加强管理,一方面控制汽车总量增长,交管部门拟从2012年1月起,在一段时间内,对新车上牌采用摇号(类似于抽签)的方法进行控制,制定如下方案:①每月进行一次摇号,从当月所有申请用户以及以前没有摇到号的申请用户中,摇出当月上牌的用户,摇到号的用户不再参加以后的摇号;②当月没有摇到号的申请者自动加入下一个月的摇号,不必也不能重复申请,预计2012年1月申请车牌的用户有10a 个,以后每个月又有a 个新用户申请车牌.计划2012年1月发放车牌a 个,以后每月发放车牌数比上月增加5%.以2012年1月为第一个月,设前n (n ∈N *)个月申请车牌用户的总数为a n ,前n 个月发放车牌的总数为b n ,使得a n >b n 成立的最大正整数为n 0.(参考数据:1.0516=2.18,1.0517=2.29,1.0518=2.41)(1)求a n 、b n 关于n 的表达式,直接写出n 0的值,说明n 0的实际意义;(2)当n ≤n 0,n ∈N *时,设第n 个月中签率为y n ,求证:中签率y n 随着n 的增加而增大. ⎝ ⎛⎭⎪⎫第n 个月中签率=第n 个月发放车牌数第n 个月参加摇号的用户数课时作业(三十一)【基础热身】1.A [解析] 若lg x ,lg y ,lg z 成等差数列,则2lg y =lg x +lg z ,即lg y 2=lg xz ,则y 2=xz ,若y 2=xz ,当x ,z 都取负数时,lg x ,lg z 无意义,故选A. 2.B [解析] 设等差数列{a n }的公差为d ,则⎩⎪⎨⎪⎧S 9=9a 1+9×82d =-18,S 13=13a 1+13×122d =-52,解得⎩⎪⎨⎪⎧a 1=2,d =-1,∴b 5=a 5=a 1+4d =-2,b 7=a 7=a 1+6d =-4, 设等比数列{b n }的公比为q ,则q 2=b 7b 5=2,b 15=b 7q 8=-4×24=-64,故选B.3.B [解析] 依题意有3lg a 1+3lg3=6lg3,即a 1=3. 设等比数列{a n }的公比为q ,则 q =a 2a 1,lg q =lg a 2-lg a 1=d =lg3,解得q =3, 所以a n =3×3n -1=3n,故选B.4.D [解析] 设公比为q ,又4S 2=S 1+3S 3,即4(a 1+a 1q )=a 1+3(a 1+a 1q +a 1q 2),解得{a n }的公比q =13.【能力提升】5.B [解析] 由a +8,a +2,a -2成等比数列,得(a +2)2=(a +8)(a -2),解得a =10,设等差数列为{a n },公差为d ,则a 1=18,a 4=12,a 6=8, ∴2d =a 6-a 4=-4,d =-2, 则这个等差数列前n 项和为S n =18n +n n -12×(-2)=-n 2+19n =-⎝⎛⎭⎪⎫n -1922+1924,∴当n =10或n =9时,S n 有最大值90,故选B.6.D [解析] 由已知f (x +1)-f (x )=32,则数列{f (n )}是等差数列,公差为32,其前20项和为20×52+20×192×32=335,故选D.7.B [解析] 由a 4>3,S 3≤9,得a 1+3d >3,且3a 1+3d ≤9, ∴3-a 1<3d ≤9-3a 1,2a 1<6,则a 1<3,即1<a 1<3. ∵首项a 1及公差d 都是整数, ∴a 1=2,1<3d ≤3,则d =1,∴等差数列{a n }的通项公式为a n =2+(n -1)×1=n +1,则b n =1n n +1=1n -1n +1,b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1, 由1-1n +1<99100,得n <99,即n 的最大值为98,故选B.8.A [解析] OA 1B 1C 1设为第一个正方形,种植3棵树,依次下去,第二个正方形种植5棵树,第三个正方形种植7棵树,前43个正方形共有43×3+43×422×2=1935棵树,2011-1935=76,76-44=32,45-32=13,因此第2011棵树在(13,44)点处.9.D [解析] 从实际问题中考虑将树苗放在最中间的坑旁边,则每个人所走的路程和最小,一共20个坑,为偶数,在中间的有两个坑为10和11号坑,故答案选D.10.6 033 [解析] f (x )为奇函数,所以由f (a 2-2)+f (a 2 010-4)=0得f (a 2-2)=f (4-a 2 010),所以a 2-2=4-a 2 010,即a 2+a 2 010=6,所以S 2 011=2 011a 1+a 2 0112=2 011a 2+a 2 0102=6 033.11.101 [解析] 观察知每一行的第一个数构成数列:1,3,7,13,21,…,相邻两项构成递推关系:a (m +1,1)=a (m,1)+2m ,所以a (10,1)=a (9,1)+18=a (8,1)+16+18=a (7,1)+14+34=a (6,1)+12+48=a (5,1)+10+60=a (4,1)+8+70=13+78=91,即第10行的第一个数为91,所以第10行第6个数为101.12.8 n n +1π4[解析] 从第一道弧开始,半径依次为1,2,3,4,…,并且从第二道弧开始,每一道弧的半径比前一道弧的半径大1,所以第8道弧的半径为8.弧长依次为π2×1,π2×2,π2×3,…,π2×n ,所以弧长之和为π2×(1+2+3+…+n )=n n +1π4. 13.4 003 [解析] 设x 8=m ,则x 9=m +2,x 10=m +4,x 11=m +6,且x 8+x 11=x 9+x 10, ∴f (m )+f (m +2)+f (m +4)+f (m +6)=0, 且f (m )<f (m +2)<f (m +4)<f (m +6), ∴f (m )<0,f (m +6)>0.若m 与m +6关于原点不对称,则m +2与m +4也关于原点不对称, ∵f (x )是奇函数,即f (-x )=-f (x ),∴f (m )+f (m +2)+f (m +4)+f (m +6)≠0,矛盾,∴m 与m +6关于原点对称,则m +2与m +4关于原点对称, 则m =-3,x 8=-3,x 2 011=x 8+(2 011-8)×2=4 003.14.[解答] (1)依题意,A n 是首项为100-4=96,公差为-4的等差数列的前n 项和,所以A n =96n +n n -12×(-4)=98n -2n 2;数列⎩⎨⎧⎭⎬⎫100⎝ ⎛⎭⎪⎫1+13n 的前n 项和为100n +1003×1-13n1-13=100n +50⎝ ⎛⎭⎪⎫1-13n ,B n =100n +50⎝ ⎛⎭⎪⎫1-13n -90=100n -40-503n . (2)由(1)得,B n -A n =⎝⎛⎭⎪⎫100n -40-503n -(98n -2n 2)=2n +2n 2-40-503n ,B n -A n 是数集N *上的单调递增数列,观察并计算知B 4-A 4=-5081<0,B 5-A 5>0,所以从第5年开始,开发新项目的累计利润超过不开发新项目的累计利润.15.[解答] (1)由题意知3a n -2S n -1=0,① 则3a n +1-2S n +1-1=0,② ②-①得a n +1=3a n ,所以数列{a n }是公比为3的等比数列. 由3a 1-2S 1-1=0,得a 1=1,所以a n =3n -1.(2)由①知,2S n =3a n -1,所以b n =n 2S n +1a n=3n ,T n =n a 1+a n2=3n 2+3n 2.f (n )=b n T n +24=3n 3n 2+3n 2+24=2n n 2+n +16=2n +16n +1≤29.当且仅当n =16n,即n =4时,等号成立.所以f (n )的最大值为f (4)=29.【难点突破】16.[解答] (1)a n =10a +(n -1)a =(n +9)a ,b n =a 1-1.05n1-1.05=20a (1.05n-1),由a n >b n 得,n 0=17,说明第17个月以后,该项政策可以取消,不需要摇号就可以直接上牌.(2)证明:当n =1时,y 1=110,当1<n ≤17,n ∈N *时,y n =b n -b n -1a n -b n -1= 1.05n -1n +29-20·1.05n -1,∴y n = 1.05n -1n +29-20·1.05n -1(n ∈N *,n ≤17),当2≤n ≤17,n ∈N *时,1 y n -1y n-1=n+291.05n-1-n-1+291.05n-2=n+29-1.05n+281.05n-1=-0.05n-0.401.05n-1<0,∴1y n<1y n-1,n∈N*,n≤17时,a n>b n,∴a n-a n-1>b n-b n-1>0,∴0<y n<1,∴y n>y n-1,所以y1<y2<…<y17,即y n随着n的增加而增大.。
课时规范练31 数列求和基础巩固组1.(2020山东滨州模拟)若数列{a n }的通项公式为a n =2n +2n-1,则该数列的前10项和为( )A.2 146B.1 122C.2 148D.1 1242.已知函数f (n )={n 2,n 为奇数,-n 2,n 为偶数,且a n =f (n )+f (n+1),则a 1+a 2+a 3+…+a 100等于( )A.0B.100C.-100D.10 200 3.在数列{a n }中,若a n+1+(-1)n a n =2n-1,则数列{a n }的前12项和等于( )A.76B.78C.80D.824.已知数列{a n },若a n+1=a n +a n+2(n ∈N *),则称数列{a n }为“凸数列”.已知数列{b n }为“凸数列”,且b 1=1,b 2=-2,则数列{b n }的前2 020项和为( ) A.5 B.-5 C.0 D.-45.(多选)公差为d 的等差数列{a n }满足a 2=5,a 6+a 8=30,则下面结论正确的有( )A.d=2B.a n =2n+1C.1a n2-1=141n+1n+1D.1a n2-1的前n 项和为n4(n+1)6.(多选)数列{a n }满足a 1=1,且对任意的n ∈N *都有a n+1=a n +n+1,则( ) A.a n =n (n+1)2B.数列1a n 的前100项和为200101C.数列1a n的前100项和为99100D.数列{a n }的第100项为50 050 7.(2020德州调研)已知T n 为数列2n +12n的前n 项和,若m>T 10+1 013恒成立,则整数m 的最小值为( ) A.1 026 B.1 025 C.1 024 D.1 0238.(2020河北“五个一”名校质检)若f(x)+f(1-x)=4,a n=f(0)+f1n +…+f n-1n+f(1)(n∈N*),则数列{a n}的通项公式为.9.(2020安徽阜阳太和模拟)设S n是数列{a n}的前n项和,且a1=1,a n+1+S n S n+1=0,则S n=,数列{S n S n+1}的前n项和T n为.10.(2020山东潍坊高三上期末)已知各项均不相等的等差数列{a n}的前4项和为10,且a1,a2,a4是等比数列{b n}的前3项.(1)求a n,b n;(2)设c n=b n+1a n(a n+1),求{c n}的前n项和S n.11.(2020山东枣庄滕州高三上期末)已知等比数列{a n}满足a1,a2,a3-a1成等差数列,且a1a3=a4.等差数列{b n}的前n项和S n=(n+1)log2a n2.(1)求a n,b n;(2)求数列{a n b n}的前n项和T n.综合提升组12.(2020河南郑州模拟)数列{a n}满足a1=1,且对任意的m,n∈N*,都有a m+n=a m+a n+mn,则1a1+1 a2+1a3+…+1a2018=()A.20172018B.20182019C.40342018D.4036201913.(2020广东肇庆模拟)各项均为正数的数列{a n}满足a1=1,a2=12,1a n+1=√1a n·1a n+2(n∈N*),那么a1·a3+a2·a4+a3·a5+…+a n·a n+2=.14.(2020山东九校高三上学期联考)已知在数列{a n}中,a1=12,其前n项和S n满足S n2-a n S n+a n=0(n≥2),则a2=,S2 019=.15.(2020新高考全国1,18)已知公比大于1的等比数列{a n}满足a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,求数列{b m}的前100项和S100.创新应用组16.(多选)已知函数f(x)=12(x2+a)的图象在点P n(n,f(n))(n∈N*)处的切线l n的斜率为k n,直线l n交x 轴,y轴分别于点A n(x n,0),B n(0,y n),且y1=-1.以下结论中,正确的结论有()A.a=-1B.记函数g(n)=x n(n∈N*),则函数g(n)先减后增,且最小值为1C.当n∈N*时,y n+k n+12<ln(1+k n)D.当n∈N*时,记数列{}的前n项和为S n,则S n<√2(2n-1)n17.(2020山东第一次模拟)在①b1+b3=a2;②a4=b4;③S5=-25这三个条件中任选一个,补充在下面问题中,若问题中的k存在,求k的值,若k不存在,请说明理由.问题:设等差数列{a n}的前n项和为S n,{b n}是等比数列,,b1=a5,b2=3,b5=-81,是否存在k,使得S k>S k+1且S k+1<S k+2?参考答案课时规范练31数列求和1.A因为a n=2n+2n-1,所以前n项和S n=2(1-2n)1-2+n(2n-1+1)2=2n+1+n2-2,所以前10项和S10=211+102-2=2146.2.B由题意,得a1+a2+a3+…+a100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-(4+3)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-50×101+50×103=100.故选B.3.B由已知a n+1+(-1)n a n=2n-1,得(-1)n a n+1+a n=(-1)n(2n-1),①a n+2+(-1)n+1a n+1=2n+1,②①+②得a n+2+a n=(-1)n(2n-1)+(2n+1).当n取奇数时,a n+2+a n=2,当n取偶数时,a n+2+a n=4n.取n=1,5,9及n=2,6,10,结果相加可得S12=a1+a2+a3+a4+…+a11+a12=3×2+8+24+40=78.故选B.4.B由“凸数列”的定义及b1=1,b2=-2,得b3=-3,b4=-1,b5=2,b6=3,b7=1,b8=-2,…,∴数列{b n}是周期为6的周期数列,且b1+b2+b3+b4+b5+b6=0.于是数列{b n}的前2020项和等于b1+b2+b3+b4=-5.5.ABD∵{a n}是等差数列,∴a6+a8=2a7=30,∴a 7=15,∴a 7-a 2=5d ,又a 2=5,则d=2,故A 正确; ∴a n =a 2+(n-2)d=2n+1,故B 正确; ∴1a n2-1=14n (n+1)=141n−1n+1,故C 错误;∴1a n2-1的前n 项和为141-12+12−13+ (1)−1n+1=141-1n+1=n4(n+1),故D 正确.故选ABD .6.AB 因为a n+1=a n +n+1,所以a n+1-a n =n+1.又因为a 1=1,所以a n =(a n -a n-1)+(a n-1-a n-2)+…+(a 2-a 1)+a 1=n+(n-1)+…+2+1=n (n+1)2,数列{a n }的第100项为5050,故A 正确,D 错误;所以1a n=2n (n+1)=21n−1n+1,所以数列1a n的前100项和为21-12+12−13+…+1100−1101=21-1101=200101,故B 正确,C 错误.故选AB . 7.C ∵2n +12n=1+12n ,∴T n =n+1-12n ,∴T 10+1013=11-1210+1013=1024-1210.又m>T 10+1013恒成立,∴整数m 的最小值为1024.8.a n =2(n+1) 由f (x )+f (1-x )=4,可得f (0)+f (1)=4,…,f 1n+fn -1n=4,所以2a n =[f (0)+f (1)]+f1n+f n -1n +…+fn -1n+f1n+[f (1)+f (0)]=4(n+1),即a n =2(n+1).9.1nn n+1∵a n+1=S n+1-S n ,a n+1+S n S n+1=0,∴S n+1-S n +S n S n+1=0,∴1Sn+1−1S n=1.又1S 1=1a 1=1,∴1S n是以1为首项,1为公差的等差数列,∴1S n=n ,∴S n =1n.∴S n S n+1=1n (n+1)=1n−1n+1,∴T n =1-12+12−13+…+1n−1n+1=1-1n+1=nn+1.10.解(1)设数列{a n }的公差为d ,由题意知a 1+a 2+a 3+a 4=4a 1+4×(4-1)2d=4a 1+6d=10. ①又因为a 1,a 2,a 4成等比数列,所以a 22=a 1·a 4,即(a 1+d )2=a 1·(a 1+3d ), 化简得d 2=a 1d , 又因为d ≠0, 所以a 1=d.②由①②得a 1=1,d=1,所以a n=n.b1=a1=1,b2=a2=2,q=b2b1=2,所以b n=2n-1.(2)由(1)及c n=b n+1a n(a n+1)可得,c n=2n-1+1n(n+1)=2n-1+1n−1n+1,所以S n=20+21+…+2n-1+1-12+12−13+…+1n−1n+1=1-2n1-2+1-1n+1=2n-1n+1,所以数列{c n}的前n项和S n=2n-1n+1. 11.解(1)设{a n}的公比为q,{b n}的公差为d.因为a1,a2,a3-a1成等差数列,所以2a2=a1+(a3-a1),即2a2=a3.因为a2≠0,所以q=a3a2=2.因为a1a3=a4,所以a1=a4a3=q=2.因此a n=a1q n-1=2n.由题意,S n=(n+1)log2a n2=(n+1)n2.所以b1=S1=1,b1+b2=S2=3,从而b2=2.所以{b n}的公差d=b2-b1=2-1=1.所以b n=b1+(n-1)d=1+(n-1)·1=n.(2)令c n=a n b n,则c n=n·2n.因此T n=c1+c2+…+c n-1+c n=1×21+2×22+3×23+…+(n-1)·2n-1+n·2n.又因为2T n=1×22+2×23+3×24+…+(n-1)·2n+n·2n+1,两式相减得-T n=2+22+23+…+2n-n·2n+1=2-2n·21-2-n·2n+1=2n+1-2-n·2n+1=(1-n)·2n+1-2.所以T n=(n-1)·2n+1+2.12.D因为a1=1,且对任意的m,n∈N*都有a m+n=a m+a n+mn,令m=1,则有a n+1=a n+n+1,即a n+1-a n=n+1,用累加法可得a n=a1+(n-1)(n+2)2=n(n+1)2,所以1a n =2n(n+1)=21n−1n+1,所以1a1+1a2+1a3+…+1a2018=21-12+12−13+…+12018−12019=2×1-12019=40362019.13.131-14n 由1an+1=√1a n·1an+2(n ∈N *),可得a n+12=a n a n+2,∴数列{a n }为等比数列.∵a 1=1,a 2=12,∴q=12,∴a n =12n -1,∴a n ·a n+2=12n -1·12n+1=14n ,∴a 1·a 3=14, ∴a 1·a 3+a 2·a 4+a 3·a 5+…+a n ·a n+2=14+142+…+14n =14(1-14n )1-14=131-14n .14.-1612020由题意,知S n 2-a n S n +a n =0(n ≥2),令n=2,则S 22-a 2S 2+a 2=0,即(a 2+12)2-a 2a 2+12+a 2=0,化简得32a 2+14=0,所以a 2=-16.因为S n 2-a n S n +a n =0(n ≥2),a n =S n -S n-1(n ≥2),所以S n S n-1+S n -S n-1=0(n ≥2),整理得1S n−1S n -1=1(n ≥2),又因为1S 1=1a 1=2,所以1S n是一个以2为首项,1为公差的等差数列,所以1S n=n+1,所以S n =1n+1,所以S 2019=12020.15.解(1)设{a n }的公比为q.由题设得a 1q+a 1q 3=20,a 1q 2=8. 解得q=12(舍去),q=2.因为a 1q 2=8,所以a 1=2. 所以{a n }的通项公式为a n =2n .(2)由题设及(1)知b 1=0,且当2n ≤m<2n+1时,b m =n. 所以S 100=b 1+(b 2+b 3)+(b 4+b 5+b 6+b 7)+…+(b 32+b 33+…+b 63)+(b 64+b 65+…+b 100)=0+1×2+2×22+3×23+4×24+5×25+6×(100-63)=480.16.ACD 由f (x )=12(x 2+a ),得f'(x )=x ,则f'(n )=n ,即k n =n ,∴曲线在点P n (n ,f (n ))处的切线l n 的切线方程为y-12(n 2+a )=n (x-n ),直线l n 与y 轴交于点B n (0,y n ),则y n =12(n 2+a )-n 2且y 1=-1,解得a=-1,故A 正确. 直线l n 与x 轴交于A n (x n ,0), ∴0-12(n 2+a )=n (x n -n ).整理得g (n )=x n =n2+12n ,则x'n =12−12n 2,令x'n =12−12n 2=0,解得n=1(负值舍去). 当n>1时,x'n >0,∴函数g (n )为增函数,当n=1时,函数取最小值,且最小值为1.∴函数g (n )是单调递增的,且最小值为1,故B 不正确.在l n 中,令x=0,得y n =-n 2+12(n 2-1)=-12(n 2+1),∴y n +k n +12=-12n 2+n ,当n=1时,y 1+k 1+12=12=ln √e <ln2=ln(1+1)=ln(1+k 1);当n ≥2时,y n +k n +12=-12n 2+n ≤0,而ln(1+k n )=ln(1+n )>ln1=0,故C 正确. ∵|y =√2√n 2+1·n<√2n 2,∴S n <√2112+122+132+…+1n 2.当n=1时,S 1=1<√2.当n>1时,1n 2<1n (n -1)=1n -1−1n ,∴S n <√21+(1-12)+12−13+…+(1n -1-1n )=√22-1n =√2(2n -1)n,故D 正确.故选ACD .17.解根据题意,∵b 2=3,b 5=-81,{b n }是等比数列,∴b 1=-1,q=-3, ∴b n =-(-3)n -1, ∵b 1=a 5,∴a 5=-1.若存在k ,使得S k >S k+1,即S k >S k +a k+1,则a k+1<0;同理,若使S k+1<S k+2,即S k+1<S k+1+a k+2,则a k+2>0. 若选①b 1+b 3=a 2,则a 2=-10,a 5=-1,∴d=3,a 1=-13,∴a k =3k-16,a k+1=3k-13,a k+2=3k-10,要使S k+1<S k ,且S k+1<S k+2,只要{3k -13<0,3k -10>0.∴103<k<133,∴存在k=4符合题意.若选②a 4=b 4,则a 5=-1,a 4=b 4=27,∴数列{a n }为递减数列,故不存在k 使a k+1<0,且a k+2>0. 若选③S 5=-25,则a 5=-1,∴d=2,a 1=-9,∴a k =2k-11,a k+1=2k-9,a k+2=2k-7,同理求得{2k -9<0,2k -7>0.∴72<k<92,∴存在k=4符合题意.。
课时规范练31 数列求和基础巩固组1.(2019广东广州调研)数列112,314,518,7116,…,(2n-1)+12n ,…的前n 项和S n 的值等于( )A.n 2+1-12nB.2n 2-n+1-12nC.n 2+1-12n -1D.n 2-n+1-12n2.(2019广东深圳调研)已知函数f (n )={n 2,n 为奇数,-n 2,n 为偶数,且a n =f (n )+f (n+1),则a 1+a 2+a 3+…+a 100等于( )A.0B.100C.-100D.10 2003.(2019河南开封调研)已知数列{a n }满足a 1=1,a n+1·a n =2n (n ∈N *),则S 2 018等于( )A.22 018-1 B.3×21 009-3C.3×21 009-1 D.3×21 008-24.(2017全国2,理15)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑n =1n1S k= .5.已知数列{a n }的前n 项和为S n ,且满足S n =2a n -4(n ∈N *),则a n = ;数列{log 2a n }的前n 项和为 .6.(2019山东淄博一模,17)已知在等比数列{a n }中,a 1=2,且a 1,a 2,a 3-2成等差数列.(1)求数列{a n }的通项公式;(2)若数列{b n }满足:b n =1n n+2log 2a n -1,求数列{b n }的前n 项和S n .7.(2019山东实验等四校联考,17)已知数列{a n}的前n项和S n满足√n n=√n n-1+1(n≥2,n∈N),且a1=1.(1)求数列{a n}的通项公式;(2)记b n=1n n·n n+1,T n为数列{b n}的前n项和,求使T n≥2n成立的n的最小值.综合提升组8.(2019广东珠海一中等六校联考)已知数列{a n}满足a1=1,且对于任意的n∈N*都有a n+1=a n+a1+n,则1 n1+1n2+…+1n2017等于()A.20162017B.40322017C.20172018D.403420189.(多选)已知函数f(x)=12(x2+a)的图象在点P n(n,f(n))(n∈N*)处的切线l n的斜率为k n,直线l n交x 轴,y轴分别于点A n(x n,0),B n(0,y n),且y1=-1.以下结论中,正确的结论有()A.a=-1B.记函数g(n)=x n(n∈N*),则函数g(n)的单调性是先减后增,且最小值为1C.当n∈N*时,y n+k n+12<ln(1+k n)D.当n∈N*时,记数列{√|n n n }的前n项和为S n,则S n<√2(2n-1)n10.(2019衡水联考)已知数列{a n}与{b n}的前n项和分别为S n,T n,且a n>0,6S n=n n2+3a n,n∈N*,b n=2n n(2n n-1)(2n n+1-1),若∀n∈N*,k>T n恒成立,则k的最小值是.11.(2019山东淄博实验中学期末,17)已知等差数列{a n}的公差d>0,其前n项和为S n,且S5=20,a3,a5,a8成等比数列.(1)求数列{a n}的通项公式;(2)令b n=1n n·n n+1+n,求数列{b n}的前n项和T n.12.(2019贵州贵阳一模)已知数列{a n}的前n项和是S n,且S n+12a n=1(n∈N*).(1)求数列{a n}的通项公式;(2)设b n =lo g 13(1-S n+1)(n ∈N *),令T n =1n 1n 2+1n 2n3+…+1n n n n +1,求T n .创新应用组13.(2019河南重点学校月考)已知数列{a n }中,a 1=1,a n-1-a n =2a n a n-1(n ≥2).(1)求数列{a n }的通项公式;(2)设b n =nn 2n +1,数列{b n }的前n 项和为S n ,证明:对任意的n ∈N *,都有13≤S n <12.14.(2019河南郑州二模,17)已知数列{a n}中,a1=1,a n>0,前n项和为S n,若a n=√n n+√n n-1(n∈N*,且n≥2).(1)求数列{a n}的通项公式;(2)记c n=a n·2n n,求数列{c n}的前n项和T n.15.(2019四川百校模拟冲刺改编)定义在[0,+∞)上的函数f(x)满足:当0≤x<2时,f(x)=2x-x2;当x≥2时,f(x)=3f(x-2).记函数f(x)的极大值点从小到大依次记为a1,a2,…,a n,…,并记相应的极大值为b1,b2,…,b n,….(1)求数列{a n},{b n}的通项公式;(2)设S=a1b1+a2b2+…+a20b20,求S的值(不必求出具体的数值).参考答案课时规范练31数列求和1.A该数列的通项公式为a n=(2n-1)+12n ,则S n=[1+3+5+…+(2n-1)]+12+122+…+12n=n2+1-12n.2.B由题意,得a1+a2+a3+…+a100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-(4+3)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-50×101+50×103=100.故选B.3.B a1=1,a2=2n1=2,又n n +2·n n +1n n +1·n n=2n +12n=2,∴n n +2n n=2. ∴a 1,a 3,a 5,…成等比数列;a 2,a 4,a 6,…成等比数列,∴S 2018=a 1+a 2+a 3+a 4+a 5+a 6+…+a 2017+a 2018=(a 1+a 3+a 5+…+a 2017)+(a 2+a 4+a 6+…+a 2018)=1-210091-2+2(1-21009)1-2=3·21009-3.故选B .4.2nn +1设等差数列的首项为a 1,公差为d ,由题意可知{n 1+2n =3,4n 1+4×32n =10,解得{n 1=1,n =1.所以S n =na 1+n (n -1)2d=n (1+n )2.所以1n n=2n (n +1)=2(1n -1n +1).所以∑n =1n1Sk=2(1-12)+(12-13)+…+(1n -1n +1)=2(1-1n +1)=2nn +1.5.2n+1n (n +3)2∵S n =2a n -4(n ∈N *),∴n=1时,a 1=S 1=2a 1-4,解得a 1=4,n ≥2时,a n =S n -S n-1=2a n -2a n-1,整理,得a n =2a n-1,∴{a n }是首项为4,公比为2的等比数列,∴a n =4×2n-1=2n+1,log 2a n =n+1,∴数列{log 2a n }的前n 项和为2+3+4+5+…+(n+1)=n (n +3)2.6.解(1)设等比数列{a n }的公比为q ,∵a 1,a 2,a 3-2成等差数列,∴2a 2=a 1+(a 3-2)=2+(a 3-2)=a 3, ∴q=n3n 2=2,∴a n =a 1q n-1=2n (n ∈N *).(2)由(1)及b n =1n n+2log 2a n -1,可知(12)n +2log 22n -1=(12)n+2n-1,∴S n =(12+1)+(12)2+3+[(12)3+5]+…+(12)n+(2n-1)=12+(12)2+(12)3+…+(12)n+[1+3+5+…+(2n-1)]=12[1-(12)n ]1-12+n ·[1+(2n -1)]2=n 2-(12)n+1(n ∈N *).7.解(1)由已知√n n =√n n -1+1,得√n n −√n n -1=1,所以数列{√n n }为等差数列,且√n 1=1.∴√n n =n ,即S n =n 2,当n ≥2时,a n =S n -S n-1=n 2-(n-1)2=2n-1,又a 1=1也满足上式,∴a n =2n-1.(2)由(1)知,b n =1(2n -1)(2n +1)=1212n -1−12n +1, ∴T n =121-13+13−15+…+12n -1−12n +1=121-12n +1=n2n +1,由T n ≥2n 有n 2≥4n+2,有(n-2)2≥6,所以n ≥5,∴n 的最小值为5.8.D 由题意可得a n+1-a n =n+1,则a 1=1,a 2-a 1=2,a 3-a 2=3,…,a n -a n-1=n ,以上各式相加可得a n =n (n +1)2,则1n n=2(1n -1n +1),1n 1+1n 2+…+1n2017=2×(1-12)+(12-13)+…+12017−12018=40342018.9.ACD 由f (x )=12(x 2+a ),得f'(x )=x ,则f'(n )=n ,即k n =n ,∴曲线在点P n (n ,f (n ))处的切线l n 的切线方程为y-12(n 2+a )=n (x-n ),直线l n 与y 轴交于点B n (0,y n ),则y n =12(n 2+a )-n 2且y 1=-1,解得a=-1,故A 正确;直线l n 与x 轴交于A n (x n ,0),∴0-12(n 2+a )=n (x n -n ).整理得g (n )=x n =n 2+12n,则x'n =12−12n2,令x'n =12−12n 2=0,解得n=1(负值舍去).当n>1时,x'n >0,∴函数g (n )为增函数,当n=1时,函数取最小值,且最小值为1.∴函数g (n )的单调性是增函数,且最小值为1,故B 不正确;在l n 中,令x=0,得y n =-n 2+12(n 2-1)=-12(n 2+1),∴y n +k n +12=-12n 2+n ,当n=1时,y 1+k 1+12=12=ln √e <ln2=ln(1+1)=ln(1+k 1),当n ≥2时,y n +k n +12=-12n 2+n ≤0,而ln(1+k n )=ln(1+n )>ln1=0,故C 正确;∵√|n n n=√2√<√2n 2,∴S n <√2112+122+132+…+1n 2.当n>1时,1n 2<1n (n -1)=1n -1−1n ,∴S n <√21+(1-12)+12−13+…+(1n -1-1n )=√22-1n =√2(2n -1)n,故D 正确.故选ACD .10.149当n=1时,6a 1=n 12+3a 1,解得a 1=3或a 1=0.由a n >0,得a 1=3.由6S n =n n 2+3a n ,得6S n+1=n n +12+3a n+1.两式相减得6a n+1=n n +12−n n 2+3a n+1-3a n .所以(a n+1+a n )(a n+1-a n -3)=0.因为a n >0,所以a n+1+a n >0,a n+1-a n =3.即数列{a n }是以3为首项,3为公差的等差数列,所以a n =3+3(n-1)=3n.所以b n =2n n(2n n-1)(2n n +1-1)=8n(8n-1)(8n +1-1)=1718n-1−18n +1-1.所以T n =1718-1−182-1+182-1−183-1+…+18n -1−18n +1-1=1717−18n +1-1<149.要使∀n ∈N *,k>T n 恒成立,只需k ≥149.11.解(1)因为S 5=5(n 1+n 5)2=20,即a 1+a 5=8,a 3=4,即a 1+2d=4. ①因为a 3,a 5,a 8为等比数列,即n 52=a 3a 8.所以(a 1+4d )2=(a 1+2d )(a 1+7d ),化简得a 1=2d.②联立①和②得a 1=2,d=1,所以a n =n+1.(2)由(1)及b n =1n n ·n n +1+n ,可知b n =1nn ·n n +1+n=1(n +1)(n +2)+n=(1n +1-1n +2)+n ,所以T n =[(12-13)+1]+13−14+2+14−15+3+…+1n +1−1n +2+n =(12-13)+(13-14)+(14-15)+…+1n +1−1n +2+(1+2+3+…+n )=(12-1n +2)+n (n +1)2=n 2(n +2)+n (n +1)2.12.解(1)当n=1时,a 1=S 1,由S 1+12a 1=1,得a 1=23.当n ≥2时,S n =1-12a n ,S n-1=1-12a n-1,则S n -S n-1=12(a n-1-a n ),即a n =12(a n-1-a n ),所以a n =13a n-1(n ≥2).故数列{a n }是以23为首项,13为公比的等比数列.故a n =23·(13)n -1=2·(13)n(n ∈N *).(2)因为1-S n =12a n =(13)n.所以b n =lo g 13(1-S n+1)=lo g 13(13)n +1=n+1.因为1nn n n +1=1(n +1)(n +2)=1n +1−1n +2,所以T n =1n1n 2+1n2n3+…+1n n n n +1=12−13+13−14+…+1n +1−1n +2=12−1n +2=n2(n +2). 13.(1)解由a n-1-a n =2a n a n-1,得nn -1-n nn nnn -1=2,即1n n−1nn -1=2.又1n 1=1,所以数列{1n n }是以1为首项,2为公差的等差数列.所以1n n=1+2(n-1)=2n-1,所以a n =12n -1.(2)证明因为b n =n n 2n +1,所以b n =1(2n -1)(2n +1)=1212n -1−12n +1. 所以S n =12(1-13)+13−15+15−17+…+12n -1−12n +1=12(1-12n +1)=n2n +1.令f (x )=n2n +1=12+1n(x ≥1),易证f (x )单调递增,所以f (x )≥f (1)=13.又f (x )=n 2n +1=12+1n(x ≥1),由1n>0,2+1n>2,所以f (x )=n 2n +1=12+1n<12.所以13≤f (x )<12.即对任意的n ∈N *,都有13≤S n <12.14.解(1)在数列{a n }中,a n =S n -S n-1,又有a n =√n n +√n n -1(n ∈N *,且n ≥2),所以a n =S n -S n-1=(√n n +√n n -1)(√n n −√n n -1)=a n (√n n −√n n -1),所以√n n −√n n -1=1,所以数列{√n n }是以√n 1=√n 1=1为首项,公差为1的等差数列,所以√n n =1+(n-1)=n ,即S n =n 2.当n=1时,a 1=S 1=1,当n ≥2时,a n =S n -S n-1=n 2-(n-1)2=2n-1,a 1=2×1-1=1也满足上式,所以{a n }的通项公式为a n =2n-1.(2)由(1)知c n =a n ·2n n =(2n-1)·22n-1,∴T n =21+3×23+5×25+…+(2n-3)·22n-3+(2n-1)22n-1,①∴4T n =23+3×25+5×27+…+(2n-3)·22n-1+(2n-1)22n+1. ②①-②得-3T n =21+2×23+2×25+2×27+…+2×22n-1-(2n-1)22n+1=5-6n 3×22n+1-103,即T n =6n -59×22n+1+109.15.解(1)由题意当0≤x<2时,f (x )=2x-x 2=-(x-1)2+1,极大值点为1,极大值为1,当x ≥2时,f (x )=3f (x-2).则极大值点形成首项为1公差为2的等差数列,极大值形成首项为1公比为3的等比数列,故a n =2n-1,b n =3n-1,故a n b n =(2n-1)3n-1.(2)由S=a 1b 1+a 2b 2+…+a 20b 20=1×1+3×31+5×32+…+39×319,则3S=1×31+3×32+…+39×320,两式相减得-2S=1+2(31+32+…+319)-320=1+2×3(1-319)1-3-39×320=-2-38×320,∴S=19×320+1.。
第4课时数列的综合应用考纲索引1.等差数列与等比数列的综合应用.2.数列的实际应用.3.数列与其他知识的综合应用.课标要求1.以递推关系为背景,在等差、等比数列交汇的题目中,进行数列的基本运算,求数列的通项公式与前n 项和.2.在数列与函数、不等式、解析几何的交汇处,考查数列的综合应用.3.能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题.1.等差数列与等比数列比较表2.解答数列应用题的步骤(1)审题——仔细阅读材料,认真理解题意.(2)建模——将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的特征、要求是什么.(3)求解——求出该问题的数学解.(4)还原——将所求结果还原到原实际问题中.3.数列应用题常见模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化时,应考虑是a n与a n+1的递推关系,还是S n与S n+1之间的递推关系.基础自测1.(教材改编)已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,则a2的值为().A.-4B.-6C.-8D.-102.已知数列{a n}是各项均为正数的等比数列,数列{b n}是等差数列,且a6=b7,则有().A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10的大小关系不确定3.(教材改编)有一种细菌和一种病毒,每个细菌在每秒钟杀死一个病毒的同时将自身分裂为2个,现在有一个这样的细菌和100个这样的病毒(假设病毒不繁殖),问细菌将病毒全部杀死至少需要().A.6秒钟B.7秒钟C.8秒钟D.9秒钟指点迷津◆两个区分在数列的实际应用中注意区分:①是等差数列还是等比数列问题.②是求数列的通项a n,还是求S n或者求n.◆三种思想(1)数列与函数方程相结合时主要考查函数的思想及函数的性质(多为单调性).(2)数列与不等式结合时需注意放缩.(3)数列与解析几何结合时要注意递推思想.考点透析考向一等差数列与等比数列的综合应用例1(2013·某某市质检二)已知数列{a n}为公差不为零的等差数列,a1=1,各项均为正数的等比数列{b n}的第1项、第3项、第5项分别是a1,a3,a21.(1)求数列{a n}与{b n}的通项公式;(2)求数列{a n b n}的前n项和S n.【审题视点】由等比中项建立d的关系,利用错位相减法求S n.【方法总结】对等差、等比数列的综合问题的分析,应重点分析等差、等比数列的通项及前n项和;分析等差、等比数列项之间的关系,往往用到转化与化归的思想方法.变式训练1.(2013·某某模拟)已知数列{a n}是公差不为零的等差数列,a1=2,且a2,a4,a8成等比数列.(1)求数列{a n}的通项公式;(2)求数列的前n项和.考向二数列的实际应用例2(2013·某某重点中学联考)为了加强环保建设,提高社会效益和经济效益,某某市计划用若干年更换一万辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,更换的新车为电力型车和混合动力型车.今年初投入了电力型公交车128辆,混合动力型公交车400辆,计划以后电力型车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入a辆.(1)求经过n年,该市被更换的公交车总数S(n);(2)若该市计划用7年的时间完成全部更换,求a的最小值.【审题视点】把电力车混合型车分别看作等比数列和等差数列来求解.【方法总结】解等差、等比数列应用题时,首先要认真审题,深刻理解问题的实际背景,理清蕴含在语言中的数学关系,把应用问题抽象为数学中的等差、等比数列问题,使关系明朗化、标准化.然后用等差、等比数列知识求解.这其中体现了把实际问题数学化的能力,也就是所谓的数学建模能力.变式训练2.(2013·某某调研)为了缓解城市道路拥堵的局面,某市拟提高中心城区内占道停车场的收费标准,并实行累进加价收费.已公布的征求意见稿是这么叙述此收费标准的:“(中心城区占道停车场)收费标准为每小时10元,并实行累进加价制度,占道停放1小时后,每小时按加价50%收费.”方案公布后,这则“累进加价”的算法却在媒体上引发了争议.请你用所学的数学知识说明争议的原因,并请按照一辆普通小汽车一天内连续停车14个小时计算,则根据不同的解释,收费各应为多少元?考向三数列与其他知识的综合应用【方法总结】1.数列与函数的综合问题:一般是通过研究函数的性质、图象进而解决数列问题.2.数列与不等式的综合问题:(1)以数列为背景的不等式恒成立问题,多与数列求和相联系,最后利用函数的单调性求解.(2)以数列为背景的不等式证明问题,多与数列求和有关,有时利用放缩法证明.变式训练经典考题典例(2014·某某)已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+x n q n-1,x i∈M,i=1,2,…,n}.(1)当q=2,n=3时,用列举法表示集合A.(2)设s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.【解题指南】第(1)问用列举法,第(2)问通过放缩比较大小.真题体验1.(2014·某某)△ABC的内角A,B,C所对的边分别为a,b,c.(1)若a,b,c成等差数列,求证:sin A+sin C=2sin(A+C);(2)若a,b,c成等比数列,且c=2a,求cos B的值.2.(2014·某某)已知等差数列{a n}满足:a1=2,且a1,a2,a5成等比数列.(1)求数列{a n}的通项公式.(2)记S n为数列{a n}的前n项和,是否存在正整数n,使得S n>60n+800?若存在,求n的最小值;若不存在,说明理由.参考答案与解析知识梳理1.前项前项基础自测1.B2.B3.B4.95.2n+1-3考点透析变式训练经典考题真题体验。
【优化探究】2017届高考数学一轮复习 第五章 第四节 数列求和课时作业 理 新人教A 版A 组 考点能力演练1.已知S n 为数列{a n }的前n 项和,且满足a 1=1,a 2=3,a n +2=3a n ,则S 2 014=( ) A .2×31 007-2 B .2×31 007C.32 014-12 D.32 014+12解析:由a n +2=3a n 可得数列{a n }的奇数项与偶数项分别构成等比数列,所以S 2 014=(a 1+a 3+…+a 2 013)+(a 2+a 4+…+a 2 014)=1-31 0071-3+31-31 0071-3=(-2)×(1-31 007)=2×31 007-2,故选择A.答案:A2.(2016·长沙质检)已知数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,a n +2S n -1=n ,则S 2 015的值为( )A .2 015B .2 013C .1 008D .1 007解析:因为a n +2S n -1=n ,n ≥2,所以a n +1+2S n =n +1,n ≥1,两式相减得a n +1+a n =1,n ≥2.又a 1=1,所以S 2 015=a 1+(a 2+a 3)+…+(a 2 014+a 2 015)=1 008,故选择C.答案:C3.已知数列{a n }满足a 1=1,a 2=2,a n +2=⎝⎛⎭⎪⎫1+cos 2n π2a n +sin 2n π2,则该数列的前18项的和为( )A .2 101B .2 012C .1 012D .1 067解析:当n 为奇数时,a n +2=a n +1,即奇数项构成首项为1、公差为1的等差数列;当n 为偶数时,a n +2=2a n ,即偶数项构成首项为2、公比为2的等比数列,所以该数列的前18项和为9+9×82+21-291-2=45+1 022=1 067,故选择D.答案:D4.(2016·贵阳一模)已知等差数列{a n }的前n 项和为S n ,a 4=4,S 4=10,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前2 015项和为( )A.2 0142 015 B.2 0152 016 C.2 0162 015D.2 0172 016解析:设等差数列{a n }的公差为d ,则a 4=a 1+3d =4,S 4=4a 1+6d =10,联立解得a 1=d =1,所以a n =a 1+(n -1)d =n ,1a n a n +1=1nn +1=1n -1n +1,所以数列⎩⎨⎧⎭⎬⎫1a n a n +1的前2 015项和为⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫12 015-12 016=1-12 016=2 0152 016,故选择B.答案:B5.已知等差数列{a n }的前n 项和为S n ,且S n =nm ,S m =m n(m ,n ∈N *且m ≠n ),则下列各值中可以为S n +m 的值的是( )A .2B .3C .4D.92解析:由已知,设S n =An 2+Bn ,则⎩⎪⎨⎪⎧S n=An 2+Bn =nm ,S m=Am 2+Bm =mn⇒⎩⎪⎨⎪⎧An +B m =1,Am +B n =1.两式相减得B (m -n )=0,故B =0,A =1mn .S m +n =A (m +n )2=m +n2mn=m 2+n 2+2mn mn >4mnmn=4,故只有D 符合,故选D.答案:D6.已知数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧1-3n ,n 为偶数,2n -1,n 为奇数,则其前10项和为________.解析:依题意,注意到a 1+a 3+a 5+a 7+a 9=1-28·221-22=341,a 2+a 4+a 6+a 8+a 10=5×-5-292=-85,因此题中的数列的前10项和等于341-85=256.答案:2567.数列{a n }满足a 1+a 2+…+a n =n 2(n ∈N *),设b n =1a n a n +1,T n 是数列{b n }的前n 项和,则T n =________.解析:本题考查数列的前n 项和与通项间的关系、裂项相消法.依题意,当n ≥2时,a n=n 2-(n -1)2=2n -1;又a 1=12=2×1-1,因此a n =2n -1,b n =12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,因此T n =12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1 =12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1. 答案:n2n +18.在数列{a n }中,a 1=1,a n +2+(-1)na n =1,记S n 是数列{a n }的前n 项和,则S 60=________. 解析:依题意得,当n 是奇数时,a n +2-a n =1,即数列{a n }中的奇数项依次形成首项为1、公差为1的等差数列,a 1+a 3+a 5+…+a 59=30×1+30×292×1=465;当n 是偶数时,a n +2+a n =1,即数列{a n }中的相邻的两个偶数项之和均等于1,a 2+a 4+a 6+a 8+…+a 58+a 60=(a 2+a 4)+(a 6+a 8)+…+(a 58+a 60)=15.因此,该数列的前60项和S 60=465+15=480.答案:4809.(2016·南昌模拟)设数列{a n }的前n 项和为S n,4S n =a 2n +2a n -3,且a 1,a 2,a 3,a 4,a 5成等比数列,当n ≥5时,a n >0.(1)求证:当n ≥5时,{a n }成等差数列; (2)求{a n }的前n 项和S n .解:(1)证明:由4S n =a 2n +2a n -3,4S n +1=a 2n +1+2a n +1-3, 得4a n +1=a 2n +1-a 2n +2a n +1-2a n ,(a n +1+a n )(a n +1-a n -2)=0. 当n ≥5时,a n >0,所以a n +1-a n =2, 所以当n ≥5时,{a n }成等差数列.(2)由4a 1=a 21+2a 1-3,得a 1=3或a 1=-1, 又a 1,a 2,a 3,a 4,a 5成等比数列, 所以a n +1+a n =0(n ≤5),q =-1, 而a 5>0,所以a 1>0,从而a 1=3,所以a n =⎩⎪⎨⎪⎧3-1n -11≤n ≤42n -7n ≥5,所以S n =⎩⎪⎨⎪⎧32[1--1n ]1≤n ≤4,n 2-6n +8n ≥5.10.(2016·石家庄一模)设数列{a n }的前n 项和为S n ,a 1=1,a n +1=λS n +1(n ∈N *,λ≠-1),且a 1,2a 2,a 3+3为等差数列{b n }的前三项.(1)求数列{a n },{b n }的通项公式; (2)求数列{a n b n }的前n 项和.解:(1)法一:∵a n +1=λS n +1(n ∈N *), ∴a n =λS n -1+1(n ≥2),∴a n +1-a n =λa n ,即a n +1=(λ+1)a n (n ≥2),λ+1≠0, 又a 1=1,a 2=λS 1+1=λ+1,∴数列{a n }是以1为首项,公比为λ+1的等比数列, ∴a 3=(λ+1)2,∴4(λ+1)=1+(λ+1)2+3,整理得λ2-2λ+1=0,解得λ=1, ∴a n =2n -1,b n =1+3(n -1)=3n -2.法二:∵a 1=1,a n +1=λS n +1(n ∈N *),∴a 2=λS 1+1=λ+1,a 3=λS 2+1=λ(1+λ+1)+1=λ2+2λ+1, ∴4(λ+1)=1+λ2+2λ+1+3,整理得λ2-2λ+1=0,解得λ=1, ∴a n +1=S n +1(n ∈N *), ∴a n =S n -1+1(n ≥2),∴a n +1-a n =a n (n ≥2),即a n +1=2a n (n ≥2), 又a 1=1,a 2=2,∴数列{a n }是以1为首项,公比为2的等比数列, ∴a n =2n -1,b n =1+3(n -1)=3n -2.(2)由(1)知,a n b n =(3n -2)×2n -1,设T n 为数列{a n b n }的前n 项和,∴T n =1×1+4×21+7×22+…+(3n -2)×2n -1,①∴2T n =1×21+4×22+7×23+…+(3n -5)×2n -1+(3n -2)×2n.②①-②得,-T n =1×1+3×21+3×22+…+3×2n -1-(3n -2)×2n=1+3×2×1-2n -11-2-(3n -2)×2n,整理得:T n =(3n -5)×2n+5.B 组 高考题型专练1.(2015·高考天津卷)已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5-3b 2=7.(1)求{a n }和{b n }的通项公式;(2)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.解:(1)设数列{a n }的公比为q ,数列{b n }的公差为d ,由题意知q >0.由已知,有⎩⎪⎨⎪⎧2q 2-3d =2,q 4-3d =10,消去d ,整理得q 4-2q 2-8=0.又因为q >0,解得q =2,所以d =2.所以数列{a n }的通项公式为a n =2n -1,n ∈N *;数列{b n }的通项公式为b n =2n -1,n ∈N *.(2)由(1)有c n =(2n -1)×2n -1,设{c n }的前n 项和为S n ,则S n =1×20+3×21+5×22+…+(2n -3)×2n -2+(2n -1)×2n -1,2S n =1×21+3×22+5×23+…+(2n -3)×2n -1+(2n -1)×2n,上述两式相减,得-S n =1+22+23+ (2)-(2n -1)×2n=2n +1-3-(2n -1)×2n=-(2n-3)×2n-3,所以,S n =(2n -3)×2n+3,n ∈N *.2.(2015·高考全国卷Ⅰ)S n 为数列{a n }的前n 项和,已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.解:(1)由a 2n +2a n =4S n +3①,可知a 2n +1+2a n +1=4S n +1+3②. 由②-①可得a 2n +1-a 2n +2(a n +1-a n )=4a n +1,即 2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ). 由于a n >0,可得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1. (2)由a n =2n +1可知b n =1a n a n +1=12n +12n +3=12⎝ ⎛⎭⎪⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3 =n32n +3.3.(2014·高考浙江卷)已知数列{a n }和{b n }满足a 1a 2a 3…a n =(2)b n (n ∈N *).若{a n }为等比数列,且a 1=2,b 3=6+b 2.(1)求a n 与b n ;(2)设c n =1a n -1b n(n ∈N *).记数列{c n }的前n 项和为S n .①求S n ;②求正整数k ,使得对任意n ∈N *,均有S k ≥S n . 解:(1)由题意得a 1a 2a 3…a n =(2)b n ,b 3-b 2=6, 知a 3=(2)b 3-b 2=8.又由a 1=2,得公比q =2(q =-2舍去), 所以数列{a n }的通项为a n =2n(n ∈N *). 所以a 1a 2a 3…a n =2n n +12=(2)n (n +1).故数列{b n }的通项为b n =n (n +1)(n ∈N *). (2)①由(1)知c n =1a n -1b n =12n -⎝ ⎛⎭⎪⎫1n -1n +1(n ∈N *), 所以S n =12+122+…+12n -⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=1-12n -⎝ ⎛⎭⎪⎫1-1n +1=1n +1-12n (n ∈N *).②因为c 1=0,c 2>0,c 3>0,c 4>0; 当n ≥5时,c n =1n n +1⎣⎢⎡⎦⎥⎤n n +12n -1,而n n +12n-n +1n +22n +1=n +1n -22n +1>0,得n n +12n≤5·5+125<1, 所以,当n ≥5时,c n <0.综上,对任意n ∈N *恒有S 4≥S n ,故k =4.。
第五节数列的综合应用数列的综合应用能在具体的问题情境中,识别数列的等差关系或等比关系,抽象出数列的模型,并能用有关知识解决相应的问题.知识点数列的实际应用问题数列应用题常见模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化时,应考虑是a n与a n+1的递推关系,还是前n项和S n与S n+1之间的递推关系.必备方法解答数列应用题的步骤:(1)审题——仔细阅读材料,认真理解题意.(2)建模——将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的结构和特征.(3)求解——求出该问题的数学解.(4)还原——将所求结果还原到原实际问题中.具体解题步骤用框图表示如下:[自测练习]1.有一种细菌和一种病毒,每个细菌在每秒钟杀死一个病毒的同时将自身分裂为2个,现在有一个这样的细菌和100个这样的病毒,问细菌将病毒全部杀死至少需要() A.6秒钟B.7秒钟C.8秒钟D.9秒钟解析:设至少需要n秒钟,则1+21+22+…+2n-1≥100,∴1-2n 1-2≥100,∴n ≥7. 答案:B2.一个凸多边形的内角成等差数列,其中最小的内角为2π3,公差为π36,则这个多边形的边数为________.解析:由于凸n 边形的内角和为(n -2)π, 故2π3n +n (n -1)2×π36=(n -2)π. 化简得n 2-25n +144=0.解得n =9或n =16(舍去). 答案:93.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于________.解析:每天植树的棵数构成以2为首项,2为公比的等比数列,其前n 项和S n =a 1(1-q n )1-q =2(1-2n )1-2=2n +1-2.由2n +1-2≥100,得2n +1≥102.由于26=64,27=128,则n +1≥7,即n ≥6.答案:6考点一 等差、等比数列的综合应用|在数列{a n }中,a 1=2,a 2=12,a 3=54,数列{a n +1-3a n }是等比数列.(1)求证:数列⎩⎨⎧⎭⎬⎫a n 3n -1是等差数列;(2)求数列{a n }的前n 项和S n .[解] (1)证明:∵a 1=2,a 2=12,a 3=54, ∴a 2-3a 1=6,a 3-3a 2=18. 又∵数列{a n +1-3a n }是等比数列, ∴a n +1-3a n =6×3n -1=2×3n , ∴a n +13n -a n3n -1=2, ∴数列⎩⎨⎧⎭⎬⎫a n 3n -1是等差数列.(2)由(1)知数列⎩⎨⎧⎭⎬⎫a n 3n -1是等差数列,∴a n 3n -1=a 130+(n -1)×2=2n , ∴a n =2n ×3n -1.∵S n =2×1×30+2×2×31+…+2n ×3n -1, ∴3S n =2×1×3+2×2×32+…+2n ×3n .∴S n -3S n =2×1×30+2×1×3+…+2×1×3n -1-2n ×3n =2×1-3n1-3-2n ×3n=3n -1-2n ×3n , ∴S n =⎝⎛⎭⎫n -12×3n +12.等差数列、等比数列综合问题的解题策略(1)分析已知条件和求解目标,为最终解决问题设置中间问题,例如求和需要先求出通项、求通项需要先求出首项和公差(公比)等,确定解题的顺序.(2)注意细节:在等差数列与等比数列综合问题中,如果等比数列的公比不能确定,则要看其是否有等于1的可能,在数列的通项问题中第一项和后面的项能否用同一个公式表示等,这些细节对解题的影响也是巨大的.1.(2016·贵州七校联考)已知{a n }是等差数列,{b n }是等比数列,S n 为数列{a n }的前n 项和,a 1=b 1=1,且b 3S 3=36,b 2S 2=8(n ∈N *).(1)求a n 和b n ;(2)若a n <a n +1,求数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和T n .解:(1)由题意得⎩⎪⎨⎪⎧q 2(3+3d )=36,q (2+d )=8,解得⎩⎪⎨⎪⎧d =2q =2或⎩⎪⎨⎪⎧d =-23,q =6,∴⎩⎪⎨⎪⎧a n =2n -1,b n =2n -1,或⎩⎪⎨⎪⎧a n =13(5-2n ),b n =6n -1.(2)若a n <a n +1,由(1)知a n =2n -1, ∴1a n a n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,∴T n =12⎝⎛⎭⎫1-13+13-15+…+12n -1-12n +1=n 2n +1.考点二 数列的实际应用问题|为了加强环保建设,提高社会效益和经济效益,长沙市计划用若干时间更换一万辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,替换车为电力型和混合动力型车.今年初投入了电力型公交车128辆,混合动力型公交车400辆;计划以后电力型车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入a 辆.(1)求经过n 年,该市被更换的公交车总数S (n ); (2)若该市计划7年内完成全部更换,求a 的最小值.[解] (1)设a n ,b n 分别为第n 年投入的电力型公交车、混合动力型公交车的数量. 依题意,得{a n }是首项为128,公比为1+50%=32的等比数列,{b n }是首项为400,公差为a 的等差数列.所以{a n }的前n 项和S n =128×⎣⎡⎦⎤1-⎝⎛⎭⎫32n 1-32=256⎣⎡⎦⎤⎝⎛⎭⎫32n -1, {b n }的前n 项和T n =400n +n (n -1)2a . 所以经过n 年,该市被更换的公交车总数为S (n )=S n +T n =256⎣⎡⎦⎤⎝⎛⎭⎫32n -1+400n +n (n -1)2a . (2)若计划7年内完成全部更换,则S (7)≥10 000,所以256⎣⎡⎦⎤⎝⎛⎭⎫327-1+400×7+7×62a ≥10 000, 即21a ≥3 082,所以a ≥1461621.又a ∈N *,所以a 的最小值为147.解决数列应用题一个注意点解决数列应用问题,要明确问题属于哪一种类型,即明确是等差数列问题还是等比数列问题,要求a n 还是S n ,特别是要弄清项数.2.某工业城市按照“十二五”(2011年至2015年)期间本地区主要污染物排放总量控制要求,进行减排治污.现以降低SO 2的年排放量为例,原计划“十二五”期间每年的排放量都比上一年减少0.3万吨,已知该城市2011年SO 2的年排放量约为9.3万吨.(1)按原计划,“十二五”期间该城市共排放SO 2约多少万吨?(2)该城市为响应“十八大”提出的建设“美丽中国”的号召,决定加大减排力度.在2012年刚好按原计划完成减排任务的条件下,自2013年起,SO 2的年排放量每年比上一年减少的百分率为p ,为使2020年这一年SO 2的年排放量控制在6万吨以内,求p 的取值范围.⎝ ⎛⎭⎪⎫参考数据:823≈0.9505,923≈0.955 9解:(1)设“十二五”期间,该城市共排放SO 2约y 万吨,依题意,2011年至2015年SO 2的年排放量构成首项为9.3,公差为-0.3的等差数列, 所以y =5×9.3+5×(5-1)2×(-0.3)=43.5(万吨).所以按原计划“十二五”期间该城市共排放SO 2约43.5万吨. (2)由已知得,2012年的SO 2年排放量为9.3-0.3=9(万吨),所以2012年至2020年SO 2的年排放量构成首项为9,公比为1-p 的等比数列. 由题意得9×(1-p )8<6,由于0<p <1, 所以1-p <823,所以1-p <0.950 5,解得p >4.95%.所以SO 2的年排放量每年减少的百分率p 的取值范围为(4.95%,1).考点三 数列与不等式的综合问题|(2015·高考浙江卷)已知数列{a n }满足a 1=12且a n +1=a n -a 2n (n ∈N *). (1)证明:1≤a na n +1≤2(n ∈N *);(2)设数列{a 2n }的前n 项和为S n ,证明:12(n +2)≤S n n ≤12(n +1)(n ∈N *).[证明] (1)由题意得a n +1-a n =-a 2n ≤0,即a n +1≤a n , 故a n ≤12.由a n =(1-a n -1)a n -1得a n =(1-a n -1)(1-a n -2)…(1-a 1)a 1>0. 由0<a n ≤12得a n a n +1=a n a n -a 2n =11-a n ∈[1,2],即1≤a na n +1≤2. (2)由题意得a 2n =a n -a n +1, 所以S n =a 1-a n +1.① 由1a n +1-1a n =a n a n +1和1≤a n a n +1≤2得1≤1a n +1-1a n ≤2, 所以n ≤1a n +1-1a 1≤2n ,因此12(n +1)≤a n +1≤1n +2(n ∈N *).②由①②得12(n +2)≤S n n ≤12(n +1)(n ∈N *).数列与不等式相结合问题的处理方法解决数列与不等式的综合问题时,如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等;如果是解不等式问题要使用不等式的各种不同解法,如列表法、因式分解法等.3.(2016·云南一检)在数列{a n }中,a 1=35,a n +1=2-1a n ,设b n =1a n -1,数列{b n }的前n项和是S n .(1)证明数列{b n }是等差数列,并求S n ; (2)比较a n 与S n +7的大小.解:(1)∵b n =1a n -1,a n +1=2-1a n ,∴b n +1=1a n +1-1=1a n -1+1=b n +1,∴b n +1-b n =1,∴数列{b n }是公差为1的等差数列. 由a 1=35,b n =1a n -1得b 1=-52,∴S n =-5n 2+n (n -1)2=n 22-3n .(2)由(1)知:b n =-52+n -1=n -72.由b n =1a n -1得a n =1+1b n =1+1n -72.∴a n -S n -7=-n 22+3n -6+1n -72.∵当n ≥4时,y =-n 22+3n -6是减函数,y =1n -72也是减函数,∴当n ≥4时,a n -S n -7≤a 4-S 4-7=0.又∵a 1-S 1-7=-3910<0,a 2-S 2-7=-83<0,a 3-S 3-7=-72<0,∴∀n ∈N *,a n -S n -7≤0, ∴a n ≤S n +7.6.数列的综合应用的答题模板【典例】 (12分)(2015·高考四川卷)设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求使得|T n -1|<11 000成立的n 的最小值.[思路点拨] 由S n =2a n -a 1,得a 2=2a 1,a 3=4a 1,再通过a 1,a 2+1,a 3成等差数列确定首项a 1=2是解决(1)的切入点;由(1)知⎩⎨⎧⎭⎬⎫1a n 是首项为12,公比为12的等比数列,所以T n =1-12n ,然后解不等式即可. [规范解答] (1)由已知S n =2a n -a 1,有 a n =S n -S n -1=2a n -2a n -1(n ≥2), 即a n =2a n -1(n ≥2).所以a =2. 从而a 2=2a 1,a 3=2a 2=4a 1.(2分)又因为a 1,a 2+1,a 3成等差数列,即a 1+a 3=2(a 2+1). 所以a 1+4a 1=2(2a 1+1),解得a 1=2.所以,数列{a n }是首项为2,公比为2的等比数列. 故a n =2n .(6分) (2)由(1)得1a n =12n .所以T n =12+122+…+12n =12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=1-12n .(8分)由|T n -1|<11 000,得⎪⎪⎪⎪1-12n -1<11000,即2n >1 000. 因为29=512<1 000<1 024=210, 所以n ≥10.(10分) 于是,使|T n -1|<11 000成立的n 的最小值为10.(12分) [模板形成][跟踪练习] (2015·湖北七市联考)数列{a n }是公比为12的等比数列,且1-a 2是a 1与1+a 3的等比中项,前n 项和为S n ;数列{b n }是等差数列,b 1=8,其前n 项和T n 满足T n =nλ·b n+1(λ为常数,且λ≠1).(1)求数列{a n }的通项公式及λ的值; (2)比较1T 1+1T 2+1T 3+…+1T n 与12S n 的大小.解:(1)由题意得(1-a 2)2=a 1(a 3+1), 即⎝⎛⎭⎫1-12a 12=a 1⎝⎛⎭⎫14a 1+1, 解得a 1=12,∴a n =⎝⎛⎭⎫12n . 设{b n }的公差为d ,又⎩⎪⎨⎪⎧ T 1=λb 2,T 2=2λb 3,即⎩⎪⎨⎪⎧8=λ(8+d ),16+d =2λ(8+2d ),解得⎩⎪⎨⎪⎧λ=12,d =8或⎩⎪⎨⎪⎧λ=1,d =0(舍),∴λ=12.(2)由(1)知S n =1-⎝⎛⎭⎫12n,∴12S n =12-⎝⎛⎭⎫12n +1≥14,① 又T n =4n 2+4n ,1T n =14n (n +1)=14⎝⎛⎭⎫1n -1n +1,∴1T 1+1T 2+…+1T n=14⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1 =14⎝⎛⎭⎫1-1n +1<14,② 由①②可知1T 1+1T 2+…+1T n <12S n .A 组 考点能力演练1.(2015·杭州二模)在正项等比数列{a n }中,22为a 4与a 14的等比中项,则2a 7+a 11的最小值为( )A .16B .8C .6D .4解析:因为{a n }是正项等比数列,且22为a 4与a 14的等比中项,所以a 4a 14=8=a 7a 11,则2a 7+a 11=2a 7+8a 7≥22a 7·8a 7=8,当且仅当a 7=2时,等号成立,所以2a 7+a 11的最小值为8,故选择B.2.(2016·宝鸡质检)《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的17是较小的两份之和,问最小的一份为( )A.53B.103C.56D.116解析:由100个面包分给5个人,每个人所得成等差数列,可知中间一人得20块面包,设较大的两份为20+d,20+2d ,较小的两份为20-d,20-2d ,由已知条件可得17(20+20+d+20+2d )=20-d +20-2d ,解得d =556,∴最小的一份为20-2d =20-2×556=53,故选A.答案:A3.(2016·豫南十校联考)设f (x )是定义在R 上的恒不为零的函数,且对任意的x ,y ∈R ,都有f (x )·f (y )=f (x +y ).若a 1=12,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围是( )A.⎣⎡⎭⎫12,2B.⎣⎡⎦⎤12,2 C.⎣⎡⎭⎫12,1D.⎣⎡⎦⎤12,1解析:在f (x )·f (y )=f (x +y )中令x =n ,y =1,得f (n +1)=f (n )f (1),又a 1=12,a n =f (n )(n∈N *),则a n +1=12a n ,所以数列{a n }是首项和公比都是12的等比数列,其前n 项和S n =12×⎝⎛⎭⎫1-12n 1-12=1-12n ∈⎣⎡⎭⎫12,1,故选择C. 答案:C4.已知在等差数列=a 4,前n 项和为T n ,则A .S 4>T 4 C .S 4=T 4解析:法一:设等比数列S 4-T 4=a 2+a 3-(b 2+-b 2)>0,所以S 4>T 4.法二:不妨取a n =7n -4,则等比数列{b n }的公比q =3a 4a 1=2,所以S 4=54,T 4=b 1(1-q 4)1-q =45,显然S 4>T 4,选A.答案:A5.正项等比数列{a n }满足:a 3=a 2+2a 1,若存在a m ,a n ,使得a m ·a n =16a 21,m ,n ∈N *,则1m +9n的最小值为( ) A .2 B .16 C.114D.32解析:设数列{a n }的公比为q ,a 3=a 2+2a 1⇒q 2=q +2⇒q =2,∴a n =a 1·2n -1,a m ·a n =16a 21⇒a 21·2m+n -2=16a 21⇒m +n =6,∵m ,n ∈N *,∴(m ,n )可取的数值组合为(1,5),(2,4),(3,3),(4,2),(5,1),计算可得,当m =2,n =4时,1m +9n 取最小值114.答案:C6.(2016·兰州双基)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =________.解析:由题意,得(a 1+3×2)2=(a 1+2)(a 1+7×2),解得a 1=2,所以S n =2n +n (n -1)2×2=n 2+n .答案:n 2+n7.(2015·高考湖南卷)设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.解析:由3S 1,2S 2,S 3成等差数列,得4S 2=3S 1+S 3,即3S 2-3S 1=S 3-S 2,则3a 2=a 3,得公比q =3,所以a n =a 1q n -1=3n -1.答案:3n -18.从盛满2升纯酒精的容器里倒出1升纯酒精,然后填满水,再倒出1升混合溶液后又用水填满,以此继续下去,则至少应倒________次后才能使纯酒精体积与总溶液的体积之次后纯酒精与总溶液的体积比为a n , 2,x >0},把M 中的元素从小到大依次排成一列,得到数列{a n },n ∈N *.(1)求数列{a n }的通项公式;(2)记b n =1a 2n +1,设数列{b n }的前n 项和为T n ,求证:T n <14.解:(1)∵|f (x )|=2,∴π2x =k π+π2,k ∈Z ,x =2k +1,k ∈Z .又∵x >0,∴a n =2n -1(n ∈N *).(2)∵b n =1a 2n +1=1(2n +1)2=14n 2+4n +1<14n 2+4n =14⎝⎛⎭⎫1n -1n +1,∴T n =b 1+b 2+…+b n <14⎝⎛⎭⎫1-12+12-13+…+1n -1n +1=14-14(n +1)<14,∴T n <14得证.10.已知数列{a n }的前n 项和为S n ,且满足a 1=12,a n =-2S n ·S n -1(n ≥2).(1)求数列{a n }的通项公式a n ; (2)求证:S 21+S 22+…+S 2n ≤12-14n . 解:(1)∵a n =-2S n ·S n -1(n ≥2), ∴S n -S n -1=-2S n ·S n -1.两边同除以S n ·S n -1,得1S n -1S n -1=2(n ≥2),∴数列⎩⎨⎧⎭⎬⎫1S n 是以1S 1=1a 1=2为首项,以d =2为公差的等差数列,∴1S n =1S 1+(n -1)·d =2+2(n -1)=2n , ∴S n =12n.将S n =12n代入a n =-2S n ·S n -1,⎧12, (n =1),∴当n ≥2时,S 21+S 22+…+S 2n=14+14×2×2+…+14·n ·n <14+14⎝⎛⎭⎫1-12+…+14⎝⎛⎭⎫1n -1-1n =12-14n; 当n =1时,S 21=14=12-14×1. 综上,S 21+S 22+…+S 2n ≤12-14n. B 组 高考题型专练1.(2015·高考浙江卷)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+12b 2+13b 3+…+1nb n =b n +1-1(n ∈N *).(1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n . 解:(1)由a 1=2,a n +1=2a n ,得a n =2n (n ∈N *). 由题意知:当n =1时,b 1=b 2-1,故b 2=2.当n ≥2时,1n b n =b n +1-b n ,整理得b n +1n +1=b n n ,所以b n =n (n ∈N *). (2)由(1)知a n b n =n ·2n ,因此,T n =2+2×22+3×23+…+n ·2n , 2T n =22+2×23+3×24+…+n ·2n +1, 所以T n -2T n =2+22+23+…+2n -n ·2n +1. 故T n =(n -1)2n +1+2(n ∈N *).2.(2015·高考安徽卷)设n ∈N *,x n 是曲线y =x 2n +2+1在点(1,2)处的切线与x 轴交点的横坐标.(1)求数列{x n }的通项公式;(2)记T n =x 21x 23…x 22解:(1)y ′=(x 2n +,曲线y =x 2n +2+1在点(1,2)处的切线斜率为2n +2,从而切线方程为y 令y =0,解得切线与x 轴交点的横坐标x n =1-1n +1=nn +1.所以数列{x n }的通项公式x n =n n +1. (2)证明:由题设和(1)中的计算结果知T n =x 21x 23…x 22n -1=⎝⎛⎭⎫122⎝⎛⎭⎫342…⎝⎛⎭⎫2n -12n 2. 当n =1时,T 1=14.当n ≥2时,因为x 22n -1=⎝⎛⎭⎫2n -12n 2=(2n -1)2(2n )2>(2n -1)2-1(2n )2=2n -22n =n -1n ,所以T n >⎝⎛⎭⎫122×12×23×…×n -1n =14n . 综上可得对任意的n ∈N *,均有T n ≥14n.3.(2014·高考新课标全国卷Ⅱ)已知数列{a n }满足a 1=1,a n +1=3a n +1.淘宝店铺:漫兮教育(1)证明:⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明:1a 1+1a 2+…+1a n <32.证明:(1)由a n +1=3a n +1得a n +1+12=3⎝⎛⎭⎫a n +12. 又a 1+12=32,所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列.所以a n +12=3n2,因此{a n }的通项公式为a n =3n -12.(2)由(1)知1a n =23n -1.因为当n ≥1时,3n -1≥2×3n -1,。
6.5数列的综合应用A 级 基础达标1.『2014·哈尔滨月考』已知等比数列{a n }中,各项均为正数,且a 6·a 10+a 3·a 5=26,a 5·a 7=5,则a 4+a 8=( )A .4B .5C .6D .72.已知等差数列{a n }中,|a 3|=|a 9|,公差d <0,S n 是数列{a n }的前n 项和,则( ) A .S 5>S 6 B .S 5<S 6 C .S 6=0 D .S 5=S 63.『2014·咸阳模拟』已知等差数列{a n }的前n 项和为S n ,S 4=40,S n =210,S n -4=130,则n =( )A .12B .14C .16D .184.『2014·西安高新一中月考』在公差不为零的等差数列{a n }中,2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则log 2(b 6b 8)的值为( ) A .2 B .4 C .8 D .165.『2014·北京朝阳区模拟』设数列{a n }是公差不为0的等差数列,a 1=1且a 1、a 3、a 6成等比数列,则{a n }的前n 项和S n 等于( )A.n 28+7n 8B.n 24+7n 4C.n 22+3n4D .n 2+n 6.『2014·海口市质检』各项都是正数的等比数列{a n }的公比q ≠1且a 2,12a 3,a 1成等差数列,则a 4+a 5a 3+a 4=( ) A.1-52 B.5+12 C.5-12 D.5+12或5-127.已知数列1,a 1,a 2,16是等差数列,数列1,b 1,b 2,b 3,16是等比数列,则b 2a 1+a 2的值为________.8.『2014·北京东城区模拟』在等差数列{a n }中,a n >0,且a 1+a 2+…+a 10=30,则a 5·a 6的最大值是________.9.『2014·济南质检』已知等比数列{a n }为递增数列,且a 3+a 7=3,a 2·a 8=2,则a 11a 7=________.10.已知在等比数列{a n }中,a 1=1,且a 2是a 1和a 3-1的等差中项. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =2n -1+a n (n ∈N *),求{b n }的前n 项和S n .11.『2014·厦门调研』设数列{a n }的前n 项和为S n ,已知a 1=1,S n =na n -2n (n -1)(n ∈N *).(1)求证:数列{a n }为等差数列,并分别写出a n 和S n 关于n 的表达式; (2)设数列{1a n a n +1}的前n 项和为T n .求证:15≤T n <14.12.已知各项为正数的数列{a n }满足:a 1=1,a 2n +1-a 2n =2(n ∈N *).(1)求数列{a n }的通项公式; (2)求数列{a 2n2n }的前n 项和S n .B 级 知能提升1.『2014·宝鸡中学月考』已知正项等比数列{a n }满足a 2014=a 2013+2a 2012,且a n a m =4a 1,则6(1m +1n )的最小值为( )A.23B .2C .4D .6 2.『2014·湖南十二校联考』定义:称nx 1+x 2+…+x n为n 个正数x 1,x 2,…,x n 的“平均倒数”,若正项数列{c n }的前n 项的“平均倒数”为12n +1,则数列{c n }的通项公式为c n =________.3.『2014·杭州检测』公差d 不为0的等差数列{a n }的部分项ak 1,ak 2,ak 3,…构成等比数列,且k 1=1,k 2=2,k 3=6,则k 4=________.4.某企业为加大对新产品的推销力度,决定从今年起每年投入100万元进行广告宣传,以增加新产品的销售收入.已知今年的销售收入为250万元,经市场调查,预测第n 年与第n -1年销售收入a n 与a n -1(单位:万元)满足关系式:a n =a n -1+5002n -100.(1)设今年为第1年,求第n 年的销售收入a n ;(2)依上述预测,该企业前几年的销售收入总和S n 最大.解析及答案05限时规范特训A 级 基础达标1.『解析』a 6·a 10+a 3·a 5=26⇒a 28+a 24=26,a 5·a 7=5⇒2a 4·a 8=10,将两式相加得(a 4+a 8)2=26+10=36,又因为数列{a n }中,各项均为正数,所以a 4+a 8=6.『答案』C2.『解析』∵d <0,|a 3|=|a 9|,∴a 3>0,a 9<0,且a 3+a 9=0,∴a 6=0,a 5>0,a 7<0,∴S 5=S 6.『答案』D3.『解析』S n -S n -4=a n +a n -1+a n -2+a n -3=80,S 4=a 1+a 2+a 3+a 4=40,所以4(a 1+a n )=120,a 1+a n =30,由S n =n a 1+a n2=210,得n =14. 『答案』B4.『解析』由2a 3-a 27+2a 11=4a 7-a 27=0,得a 7=4,故log 2(b 6b 8)=log 2b 27=log 2a 27=log 216=4.『答案』B5.『解析』由a 1、a 3、a 6成等比数列可得a 23=a 1·a 6,设等差数列{a n}的公差为d ,则(1+2d )2=1×(1+5d ),而d ≠0.故d =14,所以S n =n +n n -12×14=n 28+7n8.故选A. 『答案』A6.『解析』据已知得a 3=a 1+a 2⇒q 2=1+q ,解得q =1±52,由于等比数列各项为正数,故q =1+52,因此a 4+a 5a 3+a 4=q =1+52.『答案』B7.『解析』因为1,a 1,a 2,16是等差数列,所以a 1+a 2=16+1=17.因为1,b 1,b 2,b 3,16是等比数列,所以b 22=1×16=16,因为b 21=b 2>0,所以b 2=4,所以b 2a 1+a 2=417. 『答案』4178.『解析』在等差数列中,a 1+a 2+…+a 10=30,得5(a 1+a 10)=30,即a 1+a 10=a 5+a 6=6,由a 5+a 6≥2a 5a 6,∴6≥2a 5a 6,即a 5a 6≤9,当且仅当a 5=a 6时取等号,∴a 5a 6的最大值为9.『答案』99.『解析』解法一:由已知得⎩⎪⎨⎪⎧a 1q 2+a 1q 6=3,a 1q ·a 1q 7=2,即⎩⎪⎨⎪⎧a 1q21+q 4=3, ①a 21q 8=2. ②由①知a 1>0,又{a n }为递增数列,∴q >1.由①2②,得1+q 42q 4=92, 解得q 4=2或q 4=12(舍去),∴a 11a 7=q 4=2.解法二:由等比数列的性质知,a 2a 8=a 3a 7=2,又a 3+a 7=3,且数列为递增数列, 故a 3=1,a 7=2,a 11a 7=a 7a 3=2.『答案』210.解:(1)设等比数列{a n }的公比为q ,∵a 2是a 1和a 3-1的等差中项,a 1=1,∴2a 2=a 1+(a 3-1)=a 3,∴q =a 3a 2=2,∴a n =a 1q n -1=2n -1(n ∈N *).(2)∵b n =2n -1+2n -1,∴S n =(1+1)+(3+2)+(5+22)+…+(2n -1+2n -1)=『1+3+5+…+(2n -1)』+(1+2+22+…+2n -1)=1+2n -12·n +1-2n1-2=n 2+2n -1.11.证明:(1)当n ≥2时,a n =S n -S n -1=na n -(n -1)a n -1-4(n -1), ∴a n -a n -1=4,∴数列{a n }是以1为首项,4为公差的等差数列.∴a n =4n -3, S n =12n (a 1+a n )=2n 2-n .(2)T n =1a 1a 2+1a 2a 3+…+1a n a n +1=11×5+15×9+19×13+…+14n -34n +1=14『(1-15)+(15-19)+(19-113)+…+(14n -3-14n +1)』=14(1-14n +1)<14. 又T n 为单调递增的,故T n ≥T 1=15,∴15≤T n <14.12.解:(1)因为a 2n +1-a 2n =2,a 1=1,所以数列{a 2n }是首项为1,公差为2的等差数列,所以a 2n =1+(n -1)×2=2n -1.因为a n >0,所以a n =2n -1(n ∈N *). (2)由(1)知,a n =2n -1,所以a 2n 2n =2n -12n .所以S n =12+322+523+…+2n -32n -1+2n -12n ,①则12S n =122+323+524+…+2n -32n +2n -12n +1,② ①-②得,12S n =12+222+223+224+…+22n -2n -12n +1 =12+2(122+123+124+…+12n )-2n -12n +1 =12+2×141-12n -11-12-2n -12n +1=32-2n +32n +1. 所以S n =3-2n +32n .B 级 知能提升1.『解析』记数列{a n }的公比为q ,由题意知a 2012q 2=a 2012q +2a 2012,化简得q 2-q -2=0,所以q =-1(舍去)或q =2,又由已知条件a n a m =4a 1,可得a 21qm+n -2=16a 21,所以2m +n -2=24,故m +n =6,所以6(1m +1n )=(m +n )(1m +1n )=2+n m +m n ≥4,当且仅当n m =mn,因为m 、n ∈N *,所以m =n =3时取“=”,故选C.『答案』C2.『解析』由已知可得,数列{c n }的前n 项和S n =n (2n +1),所以数列{c n }为等差数列,首项c 1=S 1=3,c 2=S 2-S 1=10-3=7,故公差d =c 2-c 1=7-3=4,得数列的通项公式为c n =c 1+(n -1)×4=4n -1.『答案』4n -13.『解析』因为a 1,a 2,a 6构成等比数列,所以(a 1+d )2=a 1(a 1+5d ),得d =3a 1,所以等比数列的公比q =a 2a 1=4,等差数列{a n }的通项公式为a n =a 1+(n -1)×3a 1=3a 1n -2a 1=a 1×43,解得n =22,即k 4=22.『答案』224. 解:(1)由题意可知a n -a n -1=5002n -100(n ≥2),a n -1-a n -2=5002n -1-100,…a 3-a 2=50023-100,a 2-a 1=50022-100,a 1=250=5002.以上各式相加得,a n =500(12+122+…+12n )-100(n -1)=500·121-12n 1-12-100(n -1)=500-5002n -100(n -1).(2)要求销售收入总和S n 的最大值,即求年销售收入大于零的所有年销售收入的和. ∵a n =500-5002n -100(n -1),∴要使a n ≥0,即500-5002n -100(n -1)≥0,也就是12n +n -15≤1.令b n =12n +n -15,则b n -b n -1=12n +n -15-12n -1-n -25=15-12n ,显然,当n ≥3时,b n >b n -1, 而b 5<1,b 6>1, ∴a 5>0,a 6<0.∴该企业前5年的销售收入总和最大.。
[时间:45分钟 分值:100分]基础热身1.[2012·惠州调研] “lg x ,lg y ,lg z 成等差数列”是“y 2=xz ”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.[2011·德州二模] 已知等差数列{a n }的前n 项和为S n ,S 9=-18,S 13=-52,等比数列{b n }中,b 5=a 5,b 7=a 7,那么b 15的值为( )A .64B .-64C .128D .-128 3.[2011·珠海综测] 设正项等比数列{a n },{lg a n }成等差数列,公差d =lg3,且{lg a n }的前三项和为6lg3,则数列{a n }的通项公式为( )A .n lg3B .3nC .3nD .3n -14.等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则{a n }的公比为( )A .2B .3 C.12 D.13能力提升 5.[2011·忻州联考] 成等比数列的三个数a +8,a +2,a -2分别为等差数列的第1、4、6项,则这个等差数列前n 项和的最大值为( )A .120B .90C .80D .606.[2011·南平质检] 已知函数f (x )满足f (x +1)=32+f (x ),x ∈R ,且f (1)=52,则数列{f (n )}(n ∈N *)的前20项的和为( )A .305B .315C .325D .3357.[2011·大连双基检测] 已知等差数列{a n }的首项a 1及公差d 都是整数,前n 项和为S n ,若a 1>1,a 4>3,S 3≤9,设b n =1na n ,则使b 1+b 2+…+b n <99100成立的最大n 值为( )A .97B .98C .99D .1008.2011年,我国南方省市遭遇旱灾以及洪水灾害,为防洪抗旱,某地区大面积植树造林,如图K31-1,在区域{(x ,y )|x ≥0,y ≥0}内植树,第一棵树在点A 1(0,1),第二棵树在点B 1(1,1),第三棵树在点C 1(1,0),第四棵树在点C 2(2,0),接着按图中箭头方向每隔一个单位种一棵树,那么第2011棵树所在的点的坐标是( )A .(13,44)B .(12,44)C .(13,43)D .(14,43)9.[2011·陕西卷] 植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,现将树坑从1到20依次编号,为使各位同学从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两个最佳坑位的编号为( )A .①和⑳B .⑨和⑩C .⑨和⑪D .⑩和⑪10.[2012·永州调研] 已知等差数列{a n },对于函数f (x )=x 5+x 3满足:f (a 2-2)=6,f (a 2 010-4)=-6,S n 是其前n 项和,则S 2 011=________.11.[2011·菏泽二模] 已知a n =2n -1(n ∈N +),把数列{a n }的各项排成如图K31-2所示的三角数阵,记S (m ,n )表示该数阵中第m 行中从左到右的第n 个数,则S (10,6)对应数阵中的数是________.1 3 5 7 9 11 13 15 17 19……12.[2011·丰台二模] 如图K31-3所示,已知正方形ABCD 的边长为1,以A 为圆心,AD 长为半径画弧,交BA 的延长线于P 1,然后以B 为圆心,BP 1长为半径画弧,交CB 的延长线于P 2,再以C 为圆心,CP 2长为半径画弧,交DC 的延长线于P 3,再以D 为圆心,DP 3长为半径画弧,交AD 的延长线于P 4,再以A 为圆心,AP 4长为半径画弧,…,如此继续下去,画出的第8道弧的半径是________,画出第n 道弧时,这n 道弧的弧长之和为________.13.[2011·绍兴质检] 已知奇函数f (x )是定义在R 上的增函数,数列{x n }是一个公差为2的等差数列,满足f (x 8)+f (x 9)+f (x 10)+f (x 11)=0,则x 2 011的值等于________.14.(10分)[2011·江门调研] 某旅游景点2010年利润为100万元,因市场竞争,若不开发新项目,预测从2011年起每年利润比上一年减少4万元.2011年初,该景点一次性投入90万元开发新项目,预测在未扣除开发所投入资金的情况下,第n 年(n 为正整数,2011年为第1年)的利润为100⎝ ⎛⎭⎪⎫1+13n 万元. (1)设从2011年起的前n 年,该景点不开发新项目的累计利润为A n 万元,开发新项目的累计利润为B n 万元(须扣除开发所投入资金),求A n 、B n 的表达式;(2)依上述预测,该景点从第几年开始,开发新项目的累计利润超过不开发新项目的累计利润?15.(13分)[2011·合肥一中月考] 已知直线l 的方程为3x -2y -1=0,数列{a n }的前n 项和为S n ,点(a n ,S n )在直线l 上.(1)求数列{a n }的通项公式;(2)b n =n 2S n +1a n ,数列{b n }的前n 项和为T n ,求f (n )=b nT n +24(n ∈N +)的最大值.难点突破16.(12分)[2011·荆州质检] 某市为了解决交通拥堵问题,一方面改建道路、加强管理,一方面控制汽车总量增长,交管部门拟从2012年1月起,在一段时间内,对新车上牌采用摇号(类似于抽签)的方法进行控制,制定如下方案:①每月进行一次摇号,从当月所有申请用户以及以前没有摇到号的申请用户中,摇出当月上牌的用户,摇到号的用户不再参加以后的摇号;②当月没有摇到号的申请者自动加入下一个月的摇号,不必也不能重复申请,预计2012年1月申请车牌的用户有10a 个,以后每个月又有a 个新用户申请车牌.计划2012年1月发放车牌a 个,以后每月发放车牌数比上月增加5%.以2012年1月为第一个月,设前n (n ∈N *)个月申请车牌用户的总数为a n ,前n 个月发放车牌的总数为b n ,使得a n >b n 成立的最大正整数为n 0.(参考数据:1.0516=2.18,1.0517=2.29,1.0518=2.41)(1)求a n 、b n 关于n 的表达式,直接写出n 0的值,说明n 0的实际意义;(2)当n ≤n 0,n ∈N *时,设第n 个月中签率为y n ,求证:中签率y n 随着n 的增加而增大. ⎝ ⎛⎭⎪⎫第n 个月中签率=第n 个月发放车牌数第n 个月参加摇号的用户数课时作业(三十一)【基础热身】1.A [解析] 若lg x ,lg y ,lg z 成等差数列,则2lg y =lg x +lg z ,即lg y 2=lg xz ,则y 2=xz ,若y 2=xz ,当x ,z 都取负数时,lg x ,lg z 无意义,故选A. 2.B [解析] 设等差数列{a n }的公差为d ,则⎩⎪⎨⎪⎧S 9=9a 1+9×82d =-18,S 13=13a 1+13×122d =-52,解得⎩⎪⎨⎪⎧a 1=2,d =-1,∴b 5=a 5=a 1+4d =-2,b 7=a 7=a 1+6d =-4, 设等比数列{b n }的公比为q ,则q 2=b 7b 5=2,b 15=b 7q 8=-4×24=-64,故选B.3.B [解析] 依题意有3lg a 1+3lg3=6lg3,即a 1=3. 设等比数列{a n }的公比为q ,则 q =a 2a 1,lg q =lg a 2-lg a 1=d =lg3,解得q =3, 所以a n =3×3n -1=3n,故选B.4.D [解析] 设公比为q ,又4S 2=S 1+3S 3,即4(a 1+a 1q )=a 1+3(a 1+a 1q +a 1q 2),解得{a n }的公比q =13.【能力提升】5.B [解析] 由a +8,a +2,a -2成等比数列,得(a +2)2=(a +8)(a -2),解得a =10,设等差数列为{a n },公差为d ,则a 1=18,a 4=12,a 6=8,∴2d =a 6-a 4=-4,d =-2, 则这个等差数列前n 项和为S n =18n +n n -12×(-2)=-n 2+19n =-⎝⎛⎭⎪⎫n -1922+1924,∴当n =10或n =9时,S n 有最大值90,故选B.6.D [解析] 由已知f (x +1)-f (x )=32,则数列{f (n )}是等差数列,公差为32,其前20项和为20×52+20×192×32=335,故选D.7.B [解析] 由a 4>3,S 3≤9,得a 1+3d >3,且3a 1+3d ≤9, ∴3-a 1<3d ≤9-3a 1,2a 1<6,则a 1<3,即1<a 1<3. ∵首项a 1及公差d 都是整数, ∴a 1=2,1<3d ≤3,则d =1,∴等差数列{a n }的通项公式为a n =2+(n -1)×1=n +1,则b n =1n n +1=1n -1n +1,b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1, 由1-1n +1<99100,得n <99,即n 的最大值为98,故选B.8.A [解析] OA 1B 1C 1设为第一个正方形,种植3棵树,依次下去,第二个正方形种植5棵树,第三个正方形种植7棵树,前43个正方形共有43×3+43×422×2=1935棵树,2011-1935=76,76-44=32,45-32=13,因此第2011棵树在(13,44)点处.9.D [解析] 从实际问题中考虑将树苗放在最中间的坑旁边,则每个人所走的路程和最小,一共20个坑,为偶数,在中间的有两个坑为10和11号坑,故答案选D.10.6 033 [解析] f (x )为奇函数,所以由f (a 2-2)+f (a 2 010-4)=0得f (a 2-2)=f (4-a 2 010),所以a 2-2=4-a 2 010,即a 2+a 2 010=6,所以S 2 011=2 011a 1+a 2 0112=2 011a 2+a 2 0102=6 033.11.101 [解析] 观察知每一行的第一个数构成数列:1,3,7,13,21,…,相邻两项构成递推关系:a (m +1,1)=a (m,1)+2m ,所以a (10,1)=a (9,1)+18=a (8,1)+16+18=a (7,1)+14+34=a (6,1)+12+48=a (5,1)+10+60=a (4,1)+8+70=13+78=91,即第10行的第一个数为91,所以第10行第6个数为101.12.8 n n +1π4[解析] 从第一道弧开始,半径依次为1,2,3,4,…,并且从第二道弧开始,每一道弧的半径比前一道弧的半径大1,所以第8道弧的半径为8.弧长依次为π2×1,π2×2,π2×3,…,π2×n ,所以弧长之和为π2×(1+2+3+…+n )=n n +1π4. 13.4 003 [解析] 设x 8=m ,则x 9=m +2,x 10=m +4,x 11=m +6,且x 8+x 11=x 9+x 10, ∴f (m )+f (m +2)+f (m +4)+f (m +6)=0, 且f (m )<f (m +2)<f (m +4)<f (m +6), ∴f (m )<0,f (m +6)>0.若m 与m +6关于原点不对称,则m +2与m +4也关于原点不对称, ∵f (x )是奇函数,即f (-x )=-f (x ),∴f (m )+f (m +2)+f (m +4)+f (m +6)≠0,矛盾,∴m 与m +6关于原点对称,则m +2与m +4关于原点对称,则m =-3,x 8=-3,x 2 011=x 8+(2 011-8)×2=4 003.14.[解答] (1)依题意,A n 是首项为100-4=96,公差为-4的等差数列的前n 项和,所以A n =96n +n n -12×(-4)=98n -2n 2;数列⎩⎨⎧⎭⎬⎫100⎝ ⎛⎭⎪⎫1+13n 的前n 项和为100n +1003×1-13n1-13=100n +50⎝ ⎛⎭⎪⎫1-13n , B n =100n +50⎝ ⎛⎭⎪⎫1-13n -90=100n -40-503n . (2)由(1)得,B n -A n =⎝⎛⎭⎪⎫100n -40-503n -(98n -2n 2)=2n +2n 2-40-503n ,B n -A n 是数集N *上的单调递增数列,观察并计算知B 4-A 4=-5081<0,B 5-A 5>0,所以从第5年开始,开发新项目的累计利润超过不开发新项目的累计利润.15.[解答] (1)由题意知3a n -2S n -1=0,① 则3a n +1-2S n +1-1=0,② ②-①得a n +1=3a n ,所以数列{a n }是公比为3的等比数列. 由3a 1-2S 1-1=0,得a 1=1,所以a n =3n -1.(2)由①知,2S n =3a n -1,所以b n =n 2S n +1a n=3n ,T n =n a 1+a n 2=3n 2+3n 2.f (n )=b n T n +24=3n 3n 2+3n 2+24=2n n 2+n +16=2n +16n +1≤29.当且仅当n =16n,即n =4时,等号成立.所以f (n )的最大值为f (4)=29.【难点突破】16.[解答] (1)a n =10a +(n -1)a =(n +9)a ,b n =a 1-1.05n1-1.05=20a (1.05n-1),由a n >b n 得,n 0=17,说明第17个月以后,该项政策可以取消,不需要摇号就可以直接上牌.(2)证明:当n =1时,y 1=110,当1<n ≤17,n ∈N *时,y n =b n -b n -1a n -b n -1= 1.05n -1n +29-20·1.05n -1,∴y n = 1.05n -1n +29-20·1.05n -1(n ∈N *,n ≤17),当2≤n ≤17,n ∈N *时, 1y n -1y n -1=n +291.05n -1-n -1+291.05n -2=n +29-1.05n +281.05n -1=-0.05n -0.401.05n -1<0, ∴1y n <1y n -1,n∈N*,n≤17时,a n>b n,∴a n-a n-1>b n-b n-1>0,∴0<y n<1,∴y n>y n-1,所以y1<y2<…<y17,即y n随着n的增加而增大.。