燃气轮机控制系统
- 格式:pptx
- 大小:5.35 MB
- 文档页数:58
rb211燃汽轮机机控制系统国产化的原因
RB211燃气轮机控制系统国产化的原因主要有以下几点:
1.技术落后。
我国早期的燃气轮机技术相对落后,主要依赖进口,这使得我国在燃气轮
机领域的发展受到了一定的限制。
2.成本较高。
进口的燃气轮机控制系统成本较高,这对于企业来说是一笔不小的开销。
3.安全隐患。
长期使用进口的燃气轮机控制系统,可能存在一定的安全隐患,这对于企
业的稳定运行来说是一个潜在的风险。
4.技术封锁。
由于某些原因,一些关键的燃气轮机技术并未向我国开放,这就使得我们
必须走自主研发的道路。
因此,为了打破国外技术的垄断,我国开始着手进行燃气轮机控制系统的自主研发与国产化工作。
通过技术攻关、自主创新等方式,我国在燃气轮机控制系统领域取得了一系列突破,逐步实现了燃气轮机控制系统的国产化。
目前,我国已经具备了自主研发和生产燃气轮机控制系统的能力,这为我国燃气轮机行业的发展提供了重要的技术支持。
同时,这也意味着我国在燃气轮机领域的技术水平已经达到了国际先进水平,为我国未来的能源安全和经济发展提供了重要的保障。
M701F燃气轮机控制系统浅析本文主要介绍M701F燃气轮机主控制系统,并简要分析了自动负荷调节、转速控制、负荷控制、温度控制以及燃料分配控制的功能、逻辑实现。
标签:M701F燃气轮机;控制;功能;逻辑1 M701F燃气轮机控制系统概述M701F燃气轮机的DCS采用三菱Diasys Netmation过程控制系统,其中燃气轮机部分的控制主要由透平控制系统TCS(Turbine Control System)、透平保护系统TPS(Turbine Protection System)和高级燃烧压力波动监视系统ACPFM (Advanced Combustion Pressure Fluctuation Monitor)组成。
M701F燃气轮机主控制简介。
燃气轮机主控系统的功能是连续调节燃料量,以满足燃气轮机各运行阶段的需要。
M701F燃气轮机主控系统主要具有如下控制功能:自动负荷调节(ALR)、转速控制(GOVERNOR)、负荷控制(LOAD LIMIT)、温度控制、燃料限制控制、燃料分配控制、燃料压力控制、燃气温度控制、进口导叶(IGV)控制和燃烧室旁路阀控制,具体原理框图如图1所示。
燃气轮机运行各阶段的控制方式如图2所示。
燃气轮机点火前CSO(控制信号输出)=-5%,使燃料阀严密关闭。
燃气轮机点火时,CSO为FIRE阶段的最小CSO,以保证能够可靠点燃。
点火后一段时间内,CSO等于暖机升速阶段的WUP,保证燃气轮机在升速阶段的燃烧稳定,此时燃气轮机转速不受控制,在CSO≈15%的燃料量及SFC产生的合力矩作用下自由加速。
当转速至一定值时(约1110rpm),FLCSO将开始大于暖机升速阶段的最小CSO,使CSO=FLCSO。
此后,由于FLCSO是直接由燃气轮机转速决定的,因此不管SFC力矩或阻力矩是否改变,即使在SFC脱扣或IGV在2745rpm快速全关时,燃气轮机均以设定的135rpm升速率升至额定转速;在接近额定转速时,GVCSO将小于FLCSO,通过最小选择器使CSO=GVCSO,燃气轮机开始进入空载和同期的调速阶段,直到并网带负荷。
燃气轮机控制系统的设计与优化燃气轮机是一种重要的动力装置,广泛应用于发电、航空等领域。
燃气轮机控制系统的设计与优化是提高其性能和效率的关键。
本文将从控制系统的需求分析、设计原理与方法、系统优化等方面进行论述。
一、需求分析在设计燃气轮机控制系统之前,首先需要对系统的需求进行分析。
燃气轮机控制系统需要满足以下基本需求:1. 系统稳定性:控制系统应能够保持燃气轮机的稳定运行,确保其输出功率的稳定性。
2. 响应速度:控制系统应具备快速响应的能力,能够实时调整燃气轮机的输出功率,以适应外部负荷的变化。
3. 控制精度:控制系统应能够精确控制燃气轮机的输出功率,以满足设定的要求。
4. 安全性:控制系统应具备多重保护机制,及时检测和处理燃气轮机的故障状态,保证系统的安全运行。
基于以上需求,设计和优化燃气轮机控制系统需要考虑以下几个方面。
二、设计原理与方法1. 控制策略选择:燃气轮机控制系统可以采用PID控制器、模糊控制、神经网络控制等不同控制策略。
根据燃气轮机的特性和应用需求,选择合适的控制策略。
2. 信号采集与处理:通过传感器采集燃气轮机的运行状态、环境参数等信息,并进行信号处理和滤波,以获得准确可靠的系统反馈信息。
3. 控制算法设计:根据控制策略和系统需求,设计控制算法,实现对燃气轮机输出功率的调节和控制。
常用的算法包括PID控制算法、模糊控制算法、神经网络控制算法等。
4. 控制系统实现:将设计的控制算法实施到实际的硬件平台上,通过控制器对燃气轮机进行控制。
同时,需要实现对燃气轮机其他相关部件的控制,如燃料供给系统、鼓风系统等。
三、系统优化对燃气轮机控制系统进行优化能够提高系统的性能和效率,实现更好的控制效果。
以下是一些常用的系统优化方法:1. 参数整定优化:通过调整控制系统的参数,如PID控制器的比例、积分、微分系数等,优化控制算法的性能。
2. 系统动态响应优化:通过改变控制算法中的控制参数和结构,优化系统的动态响应速度和稳定性。
燃气轮机控制系统的设计及性能分析燃气轮机控制系统是指控制燃气轮机运行的一套电气系统,主要由控制器、传感器和执行器等组成。
它的设计和性能直接影响着燃气轮机的可靠性、安全性和经济性。
本文旨在探讨燃气轮机控制系统的设计及性能分析,帮助读者更好地了解和运用这一领域的知识。
一、燃气轮机控制系统的设计1. 控制目标与策略燃气轮机控制的目标主要是控制其转速和负载,在保证燃气轮机安全可靠的情况下,最大限度地提高其效率。
控制策略包括速度控制和负荷控制两种方式,其中速度控制是通过调节燃气轮机的燃气流量来控制转速,负荷控制是通过调节冷却水流量或蒸汽流量来控制负荷。
控制策略的选取应根据具体情况和需要进行综合考虑。
2. 控制器的选型与布置燃气轮机控制器是实现以上控制策略的核心部件,其选型应有以下几个方面的考虑:性能要求、可靠性、扩展性、易用性和经济性。
控制器的布置应考虑控制面板、控制站和控制中心的统一管理,采用现代化的网络化控制手段,提供远程控制和状态监测功能。
3. 传感器的选择与安装燃气轮机控制系统需要大量的传感器来测量各种物理量,如转速、温度、压力、流量等参数,以便进行更准确的控制。
传感器的选择应考虑测量范围、准确度、可靠性、安全性和适应性等因素,而传感器的安装应考虑其位置、数量和要求,保证传感器读取的数据准确无误。
4. 执行器的选用与安装燃气轮机控制系统需要执行器来执行控制器发出的命令,如电动机、风门和水阀等。
执行器的选用应考虑其可靠性、速度、精度和功率等因素,而执行器的安装应考虑其位置、数量和要求,其操作应简单、耐用、安全可靠。
二、燃气轮机控制系统的性能分析1. 燃气轮机的效率分析燃气轮机的效率是指其输出功率与输入热量之间的比值,影响燃气轮机的经济性和环保性。
燃气轮机的效率可以通过计算发电机的电能输出和燃气使用量来确定。
燃气轮机的热效率越高,其使用效益和环保效益就越好。
2. 燃气轮机的灵敏度分析燃气轮机的灵敏度是指控制器对于输入信号的变化所产生的反应速度和精度。
·50李鑫1,2,田晓晶1,2,徐玲玉1,2,袁国凯1,2,傅颖1,2,孔祥林1,2(1.清洁高效透平动力装备全国重点实验室,四川德阳,618000;2.东方电气集团东方汽轮机有限公司,四川德阳,618000)摘要:目前世界上的主流商业燃机均已实现了机组一键启停自动运行保护的功能。
而实现这一功能的主体便是燃机控制系统。
燃机控制系统作为整个机组运行的神经中枢,是关系到燃机运行安全的核心部件。
我国虽然通过“打捆”招标的方式引进了国外先进燃气轮机的制造技术,但控制系统的研发技术依然牢牢掌握在国外厂商手中。
东方汽轮机有限公司在研发国产重型燃机的过程中,同步推进控制系统的自主研发,通过开展专项试验研究,逐步开发出符合国产燃机特性的燃机控制系统。
文章对控制系统的主要功能和研发过程中所开展的试验项目进行了简要介绍,为同类型控制系统的研发指明了有效的方向。
关键词:燃气轮机,控制系统,试验中图分类号:TK477文献标识码:B文章编号:1674-9987(2023)04-0010-04 Function Introduction of Dongqi50MW Heavy Duty GasTurbine Control SystemLI Xin,TIAN Xiaojing,XU Lingyu,YUAN Guokai,FU Yin,KONG Xianglin(1.State key Laboratory of Clean and Effient Turbomachiney Power Equipment,Deyang Sichuan,618000;2.Dongfang Turbine Co.,Ltd.,Deyang Sichuan,618000)Abstract:At present,main stream gas turbine products in the world have realized the function of one-button start-stop and auto⁃matic protection.The main component to realize this function is the gas turbine control system.Gas turbine control system is a key component related to gas turbine safe operation as the nerve center of the whole unit operation.Although some advanced manufac⁃turing technologies of gas turbines has introduced through"bundling"bidding,but the research and development technology of the control system is still firmly in the hands of foreign manufacturers.In the process of developing domestic heavy duty gas turbine, Dongfang Turbine Co.,Ltd.started the research and development of the control system at the same time,through the implementation of special experimental research,the gas turbine control system in line with the characteristics of domestic gas turbine has been gradually developed.In this paper,the main functions of the control system and the test items carried out during the development process are briefly introduced,it points out the effective direction for the research and development of the same type of control sys⁃tem.Key words:gas turbine,control system,test第一作者简介:李鑫(1984-),男,学士,高级工程师,毕业于重庆大学自动化专业,主要从事燃气轮机测控与试验技术的研究工作。
燃气轮机控制系统的故障原因与对策分析发布时间:2021-05-26T15:56:29.323Z 来源:《中国电业》2021年2月5期作者:路鹏[导读] 燃气轮机在运行过程中,常常会因为传感器、CPU模块、路鹏中海石油(中国)有限公司天津分公司(天津) 301900摘要:燃气轮机在运行过程中,常常会因为传感器、CPU模块、输入/输出模块、网络通信模块以及执行机构等软硬件的故障所引起的燃气轮机紧急停机,不仅加大了工作人员的运维难度,也造成了不可避免的经济损失。
因此,对燃气轮机控制系统得故障原因进行系统的分析,不仅有助于及时准确的发现已有故障,降低运维成本;也能有助于形成科学的运维方案,最大可能避免由可控原因而造成的故障停机损失;还能后将燃气轮机控制系统的系统级故障和具体的部件级故障关联,明确故障的具体场景和形式,为进一步完备、完整的诊断重型燃气轮机控制系统故障提供研究的支撑。
关键词:燃气轮机;系统故障;对策1 故障对象不同于航空发动机用于输出推力,无论是地面用燃气轮机还是舰船用燃气轮机都以输出轴功率为主,会增加相应的传动装置和发电装置,同时燃气轮机机组通常还配置了很多辅机设备。
因此燃气轮机控制系统部件更多,更为庞杂。
本文从燃气轮机控制系统的具体组成部件:传感器部分、执行机构部分、电子控制器部分展开研究,明确燃气轮机控制系统故障对象的种类型号、布置数量、安装位置、运行环境、工作用途等。
燃机控制系统按照系统工艺流程可以分为多个子系统,以某典型燃气轮机机组为例,根据子系统对燃气轮机的传感器和执行机构进行梳理。
2 传感器故障2.1 热电偶典型故障燃气轮机中热电偶主要用于测量轴承金属温度、叶片通道温度等高温区域的温度。
热电偶作为一种一次仪表,把温度信号转换为热电势信号,通过变送器,将电势信号传输至燃气轮机控制系统的热电偶输入模块,从而实现可以实现温度显示和控制。
2.2 热电阻典型故障热电阻在中低温区的高测量精度使其广泛应用于工业场景,在燃气轮机中热电阻主要用于发电机定子绕组等温度区域。
燃气轮机控制系统的控制方法浅述
燃气控制系统控制是控制燃气轮机燃烧过程和输出功率。
燃气轮机的燃烧过程涉及到多种变量,其中最主要的包括:燃料比,空气供应量,进气温度,燃料水平,火焰位置,压缩比等。
为了能够控制好这些参数,燃气控制系统需要控制包括燃料调节阀,压缩比调节阀,进气流量控制器,涡轮增压器及方向控制阀在内的多个控制部件。
机械控制系统控制主要是控制燃气轮机机械部件,包括涡轮机械,冷却系统及辅助系统等。
其中涡轮机械包括轴承控制,涡轮叶片控制,涡轮控制件等。
涡轮叶片控制的主要是叶片固定和调节叶片,其中安装叶片一般采用全自动的设备完成,调节叶片则通过定期调整叶片的调节杆完成以改变叶片倾斜角和叶片偏离角来改变涡轮机械性能。
调整时,一般可采用自动操纵阀的控制方式,也可采用步进伺服电机的控制方式来实现调节。