基于FPGA的音乐播放器
- 格式:dps
- 大小:137.50 KB
- 文档页数:12
音乐播放器控制电路课程设计报告班级:学号:姓名:指导老师:一、设计目的将《断桥残雪》简谱按照要求进行编码并将其写入只读存储器ROM之中,然后通过设计的电路读出ROM的内容,进行解码后驱动蜂鸣器播放。
二、开发环境采用Altera Quartus II 9.0软件设计环境。
它提供了全面的逻辑设计能力,包括电路图、文本和波形的设计输入以及编译、逻辑综合、仿真和定时分析以及器件编程等诸多功能。
特别是在原理图输入等方面,Altera Quartus II 9.0被公认为是最易使用、人机界面最友好开发软件。
并采用FPGALP-2900开发装置硬件实现,给人们带来极大的方便。
三、设计过程概述1、数字简谱简介数字简谱用不同的点和线段配合8个阿拉伯数字0~7构成音符,记录表示千变万化的音乐曲子及其基本音乐元素。
乐音是由三个要素决定的:频率决定了乐音的音高,频谱决定过了乐音的音色,音形标志着演奏方式。
乐曲的基本元素是:音的高低(音高)、音的长短(时值)、音的力度和音质(音色)。
音的高低和长短不同决定了乐曲的不同,因此构成了音乐的最重要的基础元素。
音乐用1、2、3、4、5、6、7分别表示同一调式7个不同的音高:多、来、米、法、索、拉、西。
这七个数字上、下标注的点表示音调升高8度音程或降低8度音程。
数字0为休止符,表示停止发音。
数字下或数字上的线段表示因的持续时间的长短。
没有线段的数字为4分音符,器时值为音长的基本度量单元,成为一拍。
数字下面标注的线段表示时间减短,没增加一条线段,表示时值减少一半,音符相应的成为8分音、16分音……数字后面的线段称为延长线,表示前一个音符的市场的增加,每条延长线的时值增量为1拍。
音长是一个相对的时间概念,一拍的时间长度没有限制,可以是1s,也可以是2s或是0.5s,。
若将4分音符的时长定为1s,其他音符的时值长度以其为基本参照度量,半拍为0.5s,2拍为2s,以此类推。
2、音高与频率关系20Hz至20KHz的音频脉冲信号控制蜂鸣器,可以使其根据控制信号的频率发出不同的音调。
基于FPGA的音乐播放器尝试利用FPGA开发板板载资源以及外搭的功率放大电路制作一台音乐播放器,能够播放通过计算机拷贝在SD卡(或MMC卡、TF卡)的根目录中的某一个WAV文件。
一、基本要求:制作音乐播放器(50分)(1)除了外置的音频功率放大器之外,本系统的主体部分(单片机)应基于STI51开发板,音乐来源于SD卡(或MMC卡、TF卡)(10分)(2)制作一个音频功率放大器,能够实现音频信号的功率放大功能,并能成驱动普通扬声器或耳机。
(10分)(3)能够播放单声道、8位,采样率为1.5K(或更高)的WAV文件。
实际播放时,歌声、伴奏声能依稀可辨。
(30分)二、提高要求:提高音乐播放器的音质(50分)(1)能够播放单声道、8位,采样率为2.5K或更高的WAV文件。
实际播放时,歌声、伴奏声清晰可辨。
(20分)(2)音频功率放大器从FPGA开发板取电,使用USB即可完成系统所有器件的供电。
(10分)(3)改造一切可以改造的部分以提高播放器的音质。
(20分)(提示:可以利用Adobe Audition软件编辑WAV文件并改变音频位数与采样率;可以利用Ultraedit软件以二进制方式查看WAV文件;WAV文件数据区的每一个字节顺次送入D/A中即可实现WAV文件的播放。
)起草人:刘文浩2010-11-25,04:43若具备一定的基础,以下内容可以忽略。
下面的内容是利用单片机制作音乐播放器的步骤。
题目分析1 系统开发步骤本题目对于刚学习完单片机尚未上手的同学来说可能难度较大,刚开始就着手制作一个以SD卡(或MMC卡、TF卡)为存储介质的音乐播放器并且要想尽办法提高播放音乐的音质具有较大难度,且容易让制作者失去继续制作下去的信心。
建议在制作过程中循序渐进,一步一步逐步深入逐渐实现以下功能:第一步:能够播放存储在单片机程序(ROM)中的音乐。
(参考时间:4天)第二步:通过串口调试助手向单片机发送WAV文件,使单片机能够播放计算机发出的WAV文件数据流。
摘要根据国家发改委与专业教学委员会对教育机构的要求,为培养适应我国21世纪国民经济发展的电子设计人才;同时基于国家教委面向21世纪电工电子课程体系改革和电工电子工科教学基地建设两项教学改革研究成果。
要求高等本科在校学生能够自己动手完成简单的数字器件设计。
本次设计在自己手动焊接简易的PFGA板子上实现,并且在QusrtusII 9.0上利用VHDL设计数控分频器电路,利用数控分频原理设计音乐硬件演奏电路,并制定LPM-ROM 存储音乐数据,以“梁祝”乐曲为例,将音乐数据存储到LPM-ROM,就达到了已纯硬件的手段来实现乐曲演奏的效果,只要修改LPM-ROM所存储的音乐数据,将其转换为其他的音乐数据,再重新制定LPM-ROM,在连接到程序中就可以实现其他与取得演奏。
本次设计采用的FPGA主芯片位ALTERA公司的FLEX系列的EPF10K10LC84-4。
由于板子是自己手动在万用板上焊接的所以只焊接了必要的外设如蜂鸣器和LED。
关键词FPGA;音乐播放器;QuartusII;VHDL;目录摘要 (I)第一章前言 (2)1.1关于EDA技术 (2)1.2 关于VHDL (2)1.3 关于EDA工具 (3)1.4 有关本次课程设计 (3)第二章设计实现 (4)2.1音乐演奏电路原理 (4)2.1.1音符频率的获得 (4)2.1.2乐曲节奏的控制 ............................................................... 错误!未定义书签。
2.1.3乐谱发生器 ....................................................................... 错误!未定义书签。
2.1.4乐曲演奏电路原理框图 ................................................... 错误!未定义书签。
基于FPGA的音乐播放器姓名:陆波学号:09090323指导老师:周爱军•音乐硬件演奏电路基本原理•硬件电路的发声原理,声音的频谱范围约在几十到几千赫兹,若能利用程序来控制FPGA芯片某个引脚输出一定频率的矩形波,接上扬声器就能发出相应频率的声音。
乐曲中的每一音符对应着一个确定的频率,要想FPGA发出不同音符的音调,实际上只要控制它输出相应音符的频率即可。
乐曲都是由一连串的音符组成,因此按照乐曲的乐谱依次输出这些音符所对应的频,就可以在扬声器上连续地发出各个音符的音调。
而要准确地演奏出一首乐曲,仅仅让扬声器能够发生是不够的,还必须准确地控制乐曲的节奏,即乐曲中每个音符的发生频率及其持续时间是乐曲能够连续演奏的两个关键因素。
•音调的控制:频率的高低决定了音调的高低。
通过查阅资料,得到下面的音符名与频率的关系表:音符名频率/hz音符名频率/hz音符名频率/hz 低音1262中音1523高音11046低音2294中音2587高音21175低音3330中音3659高音31318低音4349中音4698高音41397低音5392中音5784高音51568低音6440中音6880高音61760低音7494中音7988高音71976•分频比预置数的计算:•分频比就是从6Mhz基准频率通过二分频得到的3Mhz频率基础上计算得到的。
对于乐曲中的休止符,只需将其分频系数设为0,将分频预置数设为16383即可。
例如:低音3的频率为330hz,分频比为3M/330hz=3000000/330=9091,则其分频预置数为:16383-9091=7292。
其他的音符对应的分频比和分频比预置数均按此法计算可得到。
依次计算出低、中、高3X7=21个音的预置数。
•各音阶对应的预置数如右表:音符名预置数音符名预置数音符名预置数低音14933中音110647高音113515低音26179中音211272高音213830低音37292中音311831高音314107低音47787中音412085高音414236低音58730中音512556高音514470低音69565中音612974高音614678低音710310中音713347高音714858•音长的控制:•音符的持续时间必须根据乐曲的速度及每个音符的节拍数来确定。
目录引言 (1)1 VHDL及QUARTUSII软件简介 (2)1.1EDA简介 (2)1.2硬件描述语言VHDL (2)1.3软件介绍 (3)2 简易音乐演奏器设计 (5)2.1硬件电路设计 (5)2.2软件代码设计 (6)2.2.1音符储存单元 (6)2.2.2选择播放模式及手动模块单元 (6)2.2.3分频模块单元 (8)2.2.4预置数模块单元 (9)2.2.5音频发声模块单元 (10)3引脚锁定及下载 (10)3.1引脚锁定 (10)3.2结果分析 (11)4设计总结 (11)参考文献 (116)附录 (16)引言VHDL语言是一种用于电路设计的高级语言。
它在80年代的后期出现。
最初是由美国国防部开发出来供美军用来提高设计的可靠性和缩减开发周期的一种使用范围较小的设计语言。
随着EDA技术的高速发展,电子系统的设计技术和工具发生了深刻的变化,大规模可编程逻辑器件CPLD/FPGA的出现,给设计人员带来了诸多方便。
利用它进行产品开发,不仅成本低、周期短、可靠性高,而且具有完全的知识产权。
突出了其作为硬件描述语言的良好的可读性、可移植性和易读性等优点。
本文基于FPGA开发系统,在QuartusII 7.2软件平台上,完成了简易乐曲演奏器设计和与仿真,并下载到试验箱进行硬件实现。
首先,本文介绍了QuartusII 7.2软件的基本使用方法和VHDL硬件描述语言的特点,采用VHDL 硬件描述语言描述简易信号发生器,完成对电路的功能仿真。
在设计过程中,重点探讨了简易乐曲演奏设计思路和功能模块划分。
然后,初步探讨了电路逻辑综合的原理,该软件对简易乐曲演奏器进行了逻辑综合。
最后,使用EDA实验开发系统进行电路的下载和验证。
验证结果表明设计的简易乐曲演奏器完成了预期的功能。
本设计是采用VHDL来实现的简易乐曲演奏器。
它能实现自动播放和手动播放。
1 VHDL及QuartusII软件简介1.1 EDA简介EDA是电子设计自动化(Electronic Design Automation)的缩写,在20世纪60年代中期从计算机辅助设计(CAD)、计算机辅助制造(CAM)、计算机辅助测试(CAT)和计算机辅助工程(CAE)的概念发展而来的。
音乐播放器控制电路课程设计报告班级:学号:姓名:指导老师:一、设计目的将《断桥残雪》简谱按照要求进行编码并将其写入只读存储器ROM之中,然后通过设计的电路读出ROM的内容,进行解码后驱动蜂鸣器播放。
二、开发环境采用Altera Quartus II 9.0软件设计环境。
它提供了全面的逻辑设计能力,包括电路图、文本和波形的设计输入以及编译、逻辑综合、仿真和定时分析以及器件编程等诸多功能。
特别是在原理图输入等方面,Altera Quartus II 9.0被公认为是最易使用、人机界面最友好开发软件。
并采用FPGALP-2900开发装置硬件实现,给人们带来极大的方便。
三、设计过程概述1、数字简谱简介数字简谱用不同的点和线段配合8个阿拉伯数字0~7构成音符,记录表示千变万化的音乐曲子及其基本音乐元素。
乐音是由三个要素决定的:频率决定了乐音的音高,频谱决定过了乐音的音色,音形标志着演奏方式。
乐曲的基本元素是:音的高低(音高)、音的长短(时值)、音的力度和音质(音色)。
音的高低和长短不同决定了乐曲的不同,因此构成了音乐的最重要的基础元素。
音乐用1、2、3、4、5、6、7分别表示同一调式7个不同的音高:多、来、米、法、索、拉、西。
这七个数字上、下标注的点表示音调升高8度音程或降低8度音程。
数字0为休止符,表示停止发音。
数字下或数字上的线段表示因的持续时间的长短。
没有线段的数字为4分音符,器时值为音长的基本度量单元,成为一拍。
数字下面标注的线段表示时间减短,没增加一条线段,表示时值减少一半,音符相应的成为8分音、16分音……数字后面的线段称为延长线,表示前一个音符的市场的增加,每条延长线的时值增量为1拍。
音长是一个相对的时间概念,一拍的时间长度没有限制,可以是1s,也可以是2s或是0.5s,。
若将4分音符的时长定为1s,其他音符的时值长度以其为基本参照度量,半拍为0.5s,2拍为2s,以此类推。
2、音高与频率关系20Hz至20KHz的音频脉冲信号控制蜂鸣器,可以使其根据控制信号的频率发出不同的音调。
摘要一、设计的任务与要求 (2)1、任务与要求 (2)2、系统原理 (2)3、创新部分 (3)二、系统顶层原理图 (3)三、各功能模块叙述 (3)1、时钟生成模块 (3)2、时钟生成子模块 (4)3、时钟生成子模块各内部模块 (4)4、模式选择模块 (8)5、模式选择子模块 (9)6、模式选择子模块各内部模块 (9)7、显示模块 (15)8、显示子模块 (16)9、显示子模块各内部模块 (16)10、数据选择使能模块 (21)11、数据选择使能子模块 (22)12、数据选择使能子模块各内部模块 (22)13、数据选择模块 (26)14、音乐输出模块 (27)15、音乐输出子模块 (28)16、音乐输出模块子模块各内部模块 (28)四、硬件验证结果说明 (33)1、硬件资源使用情况 (33)2、引脚锁定 (33)3、基本功能验证 (34)五、心得体会 (36)六、参考文献 (36)摘要本文是以altera公司的FPGA芯片(EP2C5T144C8)为核心控制器,在QuartusII7.2软件平台上,完成了简易MP3的设计和与仿真,并下载到GW48-CK实验开发箱上进行了硬件验证。
通过定制LPM-ROM存储音乐数据,达到了以纯硬件的手段来实现乐曲的演奏效果。
只要修改LPM-ROM中所存储的音乐数据,就可以实现其它乐曲的演奏。
该音乐播放器设计具有电路简单、程序易改和调试方便等特点。
整个系统工作稳定,程序精简,界面友好。
关键词:altera、FPGA、EP2C5T144C8、音乐播放器一、设计的任务与要求:1、任务与要求:基于嵌入式技术利用VHDL硬件语言描述完成音乐播放器(1)基本要求:a、预存2首乐曲;b、用数码管显示当前播放乐曲的序列号;c、设置开始/暂停键,乐曲播放过程中按该键则暂停播放,再按则继续播放;(2)提高部分:a、播放模式选择(顺序播放和随机播放);b、用户可自行设置播放顺序;c、播放乐曲的时间显示;d、自拟其他功能。
基于FPGA的音乐播放器
姓名:陆波
学号:09090323
指导老师:周爱军
•音乐硬件演奏电路基本原理
•硬件电路的发声原理,声音的频谱范围约在几十到几千赫兹,若能利用程序来控制FPGA芯片某个引脚输出一定频率的矩形波,接上扬声器就能发出相应频率的声音。
乐曲中的每一音符对应着一个确定的频率,要想FPGA发出不同音符的音调,实际上只要控制它输出相应音符的频率即可。
乐曲都是由一连串的音符组成,因此按照乐曲的乐谱依次输出这些音符所对应的频,就可以在扬声器上连续地发出各个音符的音调。
而要准确地演奏出一首乐曲,仅仅让扬声器能够发生是不够的,还必须准确地控制乐曲的节奏,即乐曲中每个音符的发生频率及其持续时间是乐曲能够连续演奏的两个关键因素。
•音调的控制:
频率的高低决定了音调的高低。
通过查阅资料,得到下面的音符名与频率的关系表:音符名频率
/hz
音符名频率
/hz
音符名频率
/hz 低音1262中音1523高音11046低音2294中音2587高音21175低音3330中音3659高音31318低音4349中音4698高音41397低音5392中音5784高音51568低音6440中音6880高音61760低音7494中音7988高音71976
•分频比预置数的计算:
•分频比就是从6Mhz基准频率通过二分频得到的3Mhz频率
基础上计算得到的。
对于乐曲
中的休止符,只需将其分频系
数设为0,将分频预置数设为
16383即可。
例如:低音3的频
率为330hz,分频比为
3M/330hz=3000000/330=9091,则其分频预置数为:16383-
9091=7292。
其他的音符对应
的分频比和分频比预置数均按
此法计算可得到。
依次计算出
低、中、高3X7=21个音的预置
数。
•各音阶对应的预置数如右表:音符名预置数音符名预置数音符名预置数低音14933中音110647高音113515低音26179中音211272高音213830低音37292中音311831高音314107低音47787中音412085高音414236低音58730中音512556高音514470低音69565中音612974高音614678低音710310中音713347高音714858
•音长的控制:
•音符的持续时间必须根据乐曲的速度及每个音符的节拍数来确定。
本
试验中,设定最短的音符为4分音符,若将全音符的持续时间设为1s的话,
则需要提供一个4Hz的时钟频率即可
产生4分音符的时间,每1/4个节拍的
时间为0.25s,一个完整的节拍为1s。
•右图即为音乐播放器的原理框图。
控制音调通过设置计数器的预置数来实
现,预置不同的数可以使计数器产生
不同频率的信号,从而产生不同的音
调。
控制音长则是通过控制计数器预
置数的停留时间来实现的,预置数停
留的时间越长,则该音符演奏的时间
越长。
每个音符的演奏时间都是0.25s 的整数倍,对于节拍较长的音符,例
如2分音符,占了2/4个节拍,在记谱
的时候将其连续记录2次即可。
•乐曲产生模块:
•核心模块就在这里,这里:(1)首先罗列了低、中、高21个音的分频比预置数(还有休止符的预置数16383),通过6Mhz的基准频率,在其上升沿的时候,计数器累加,当计满到16383之后就取反speaker(speaker<=~speaker非阻塞赋值),产生对应音符的频率,这里和单片机的定时计数器溢出中断差不多。
•产生了21个音调之后,我们要产生流畅的歌曲,还必须根据歌曲的谱子,调用相应音符并且根据节拍控制其持续的时间,例如:若一个音持续4个1/4节拍,则在clk_4hz的上升沿,连续调用4次它的音符就可以了。
用counter来计数,计满了(何时计满取决于歌曲长度)就将counter返回为0,这样就可以实现循环演奏了。
•分频产生4hz的节拍控制频率:
•module div_clk4hz(clk24m,clk4);
•input clk24m;
•output clk4;
•reg clk4;
•reg [21:0]cnt;
•always @(posedge clk24m)
•if(cnt<2999999)cnt=cnt+1;//(24m/4hz=60000 00,cnt<[6000000/2-1=2999999])
•else begin cnt=0;clk4=!clk4;end
•分频产生6Mz的基准频率:
•module div_clk6mhz(clk24m,clk6m);
•input clk24m;
•output clk6m;
•reg clk6m;
•reg cnt;
•always @(posedge clk24m)
•if(cnt<1)cnt=cnt+1; //(24m/6m=4分
频,cnt<[4/2-1=1]即可)•else begin cnt=0;clk6m=!clk6m;end •endmodule
•主程序大致:
•module song(clk_6mhz,clk_4hz,speaker);
•input clk_6mhz,clk_4hz;
•output speaker;
•reg [3:0]high,med,low;
•reg [13:0]divider,origin;
•reg [7:0]counter;
•reg speaker;
•wire carry;
•reg speaker;
•wire carry;
•assign carry=(divider==16383);
•always @(posedge clk_6mhz)
•begin if(carry)divider<=origin;
•else divider<=divider+1;
•end
•always @(posedge clk_4hz)
•begin
•if(counter==113)counter<=0;
•else counter=counter+1;
•case(counter)
•0: {high,med,low}<='b000000000101;•1: {high,med,low}<='b000000000101;//•2: {high,med,low}<='b000000000110;•3: {high,med,low}<='b000000000110;//•4: {high,med,low}<='b000000000101;•5: {high,med,low}<='b000000000101;//•6: {high,med,low}<='b000100000000;•7: {high,med,low}<='b000100000000;//•8: {high,med,low}<='b000001110000;
endcase
•三个模块都完成之后,生成相应的电路原理图,并连接起来,组成一个完整的音乐播放器电路,如下:
•完成以上步骤之后,分配引脚到试验箱上的芯片,连接好引脚到扬声器等,并且接好相应的短路帽。
然后烧写程序到芯片中去,测试音乐播放器是否可以产生预期已经谱好了曲子的歌曲。
经过硬件测试,能够产生《梁祝》,《两只老虎》,《生日歌》,《月亮之上》。
•实验总结;
•其实,音乐播放器用FPGA来实现是很简单的。
核心部分就是抓住了乐曲的两个要点:音调的控制和音长的控制。
因此,涉及到两个频率,一个用来控制产生相应的音调,一个是用来控制该音调持续的时间(即节拍)。
不过因为看不太懂乐谱,所以做得不是太好。
其实,可以做的完善和人性化一点,因为声音不只21个音,还有升半调#和降调b,可以加些按键控制,选中某一首歌曲播放。
或者还可以通过按键调整模式,可以有自己弹奏乐曲的模式,和音乐自动播放模式,两种模式进行切换。